袁雪紅,高照良,張翔,杜捷,白皓,徐斌
(1.中國科學(xué)院 水利部 水土保持研究所,712100,陜西楊凌; 2.中國科學(xué)院大學(xué),100049,北京; 3.西北農(nóng)林科技大學(xué)水土保持研究所,712100; 陜西楊凌; 4.西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,712100,陜西楊凌)
?
不同豆科植物對黃土高原棄土場的改良效果
袁雪紅1,2,高照良1,3?,張翔4,杜捷3,白皓3,徐斌3
(1.中國科學(xué)院 水利部 水土保持研究所,712100,陜西楊凌; 2.中國科學(xué)院大學(xué),100049,北京; 3.西北農(nóng)林科技大學(xué)水土保持研究所,712100; 陜西楊凌; 4.西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,712100,陜西楊凌)
為了探究豆科植物種植初期對黃土高原地區(qū)棄土場的改良效果,本文采用野外模擬棄土場和實(shí)驗(yàn)室測定相結(jié)合的方法,在棄土場上種植檸條、白三葉、紅豆草、草木樨和紫花苜蓿5種豆科植物,研究1年后棄土場土壤的水分和養(yǎng)分狀況。結(jié)果表明:各小區(qū)種植植物1年后,土壤水分狀況有了明顯的改善;土壤養(yǎng)分硝態(tài)氮質(zhì)量分?jǐn)?shù)增加,有機(jī)質(zhì)、速效鉀的質(zhì)量分?jǐn)?shù)除了草木樨有所增加以外,其他均減少,速效磷的質(zhì)量分?jǐn)?shù)均減少,土壤中的速效鉀由于植物生長消耗而減少,但其質(zhì)量分?jǐn)?shù)豐富,足以滿足植物生長的需要;土壤中的銨態(tài)氮和硝態(tài)氮質(zhì)量分?jǐn)?shù)表現(xiàn)為表聚作用,且硝態(tài)氮的質(zhì)量分?jǐn)?shù)均大于銨態(tài)氮;植被對土壤的改良程度依次為白三葉>檸條>紅豆草>紫花苜蓿>草木樨。因此,種植豆科植物可以有效的改善土壤的水分和氮素營養(yǎng),為今后棄土場土壤改良提供一定的理論參考。
棄土場; 豆科植物; 土壤改良; 土壤水分; 土壤養(yǎng)分
開發(fā)建設(shè)活動產(chǎn)生大量棄土場,其土壤表層松散、結(jié)構(gòu)體不穩(wěn)定、養(yǎng)分缺乏,產(chǎn)生大量的水土流失[1];因此,對棄土場的改良研究亟待開展。土壤是許多生態(tài)過程的載體[2],土壤水分和養(yǎng)分狀況是度量退化的生態(tài)系統(tǒng)功能恢復(fù)與維持的關(guān)鍵指標(biāo)[3]。目前,生物改土已成為土地改良的重要指導(dǎo)思想。豆科植物因具有很強(qiáng)的固氮能力[4],可有效改善土壤特性,增高土壤中碳、氮、磷及微生物量等的質(zhì)量分?jǐn)?shù)[5-6]。在黃土高原地區(qū),土壤水分是影響植物生長的關(guān)鍵因子[7],對植物分布和土壤的特性具有重要影響。
前人大都集中在對豆科植物不同的種植年限[8-9]、不同種植模式[10]對土壤的改良效果,以及不同種植模式下種間關(guān)系[11]的研究;而對多種豆科植物對同一種土壤的改良效果的對比分析研究較少:因此,筆者選取檸條(Caragana korshinskii Kom)、白三葉(Trifolium repens L.)、紅豆草(Onobrychis viciaefolia Scop)、草木樨(Melilotus suaveolens Ledeb.)和紫花苜蓿(Medicago sativa L.)5種豆科植物,研究其對棄土場土壤水分和養(yǎng)分的影響,為棄土場土壤的改良,提供一定的理論基礎(chǔ)。
研究區(qū)設(shè)在中國科學(xué)院水利部水土保持研究所長武試驗(yàn)站王東溝(E107°41′,N35°14′),屬暖溫帶半濕潤大陸性季風(fēng)氣候,年均氣溫9.1 ℃,年均有效積溫3 029.8 ℃,年均降水量578.5 mm,無霜期為171 d,地帶性土壤為黑壚土,其田間持水量、凋萎濕度和穩(wěn)定土壤濕度分別為22%、9%和15%[12]。
研究小區(qū)設(shè)計(jì)規(guī)格:長×寬×高分別為2 m×2 m×0.8 m,每個(gè)小區(qū)用磚塊砌筑間隔,將附近擾動生土填在小區(qū)內(nèi)模擬棄土場,填土厚度為70 cm;同時(shí),在每個(gè)小區(qū)內(nèi)中央插2 m長中子管。分別選擇抗旱性、抗貧瘠性、抗逆性強(qiáng)、根系發(fā)達(dá)、植株矮小、生長迅速和自我繁殖能力強(qiáng)的多年生豆科植物(檸條、白三葉、紅豆草、草木樨和紫花苜蓿),于2013年11月進(jìn)行單播,每種處理重復(fù)2次,種植前測定小區(qū)土壤背景值(表1)。
表1 試驗(yàn)地土壤養(yǎng)分背景值
2014年8月分別進(jìn)行土壤水分和養(yǎng)分的測定。土壤水分測定深度為0~160 cm。土壤養(yǎng)分按“S”形設(shè)計(jì)5個(gè)取樣點(diǎn),深度為0~10和10~20 cm分層提取,相同層的土樣混合,剔除石塊和植物殘根等雜物,裝入自封袋,帶回實(shí)驗(yàn)室后,將土樣攤平、風(fēng)干、磨細(xì)、過篩備用。
土壤水分用中子儀測定;土壤養(yǎng)分質(zhì)量分?jǐn)?shù)測定參照文獻(xiàn)[13]:土壤有機(jī)質(zhì)用K2Cr2O7-H2SO4外加熱法;土壤速效氮用流動分析儀測定;土壤速效磷用0.5 mol·L-1NaHCO3浸提-鉬銻抗比色法;土壤速效鉀用NH4OAc浸提-火焰光度法。
運(yùn)用Origin85作圖,使用Excel進(jìn)行數(shù)據(jù)處理,運(yùn)用SPSS 18.0統(tǒng)計(jì)軟件進(jìn)行主成分分析等。
3.1不同植物類型下土壤含水率的垂直分布特征
由圖1可見,5種植物土壤含水率在垂直方向上表現(xiàn)出明顯的變異,均隨著土層深度的增加而增加。在0~160 cm土層,檸條、白三葉、紅豆草、草木樨、紫花苜蓿和空白地土壤平均含水率分別為17.69%、15.98%、17.56%、18.35%、17.95%和14.44%(表2),表明豆科植物可改善土壤水分狀況。
表2 不同土層階段不同植物類型的含水率
圖1 不同植物類型在不同土層厚度下土壤含水率的變化Fig.1 Changes of soil moisture content in different plant types under different soil thickness
在0~30 cm土層中,檸條、白三葉、紅豆草、草木樨和紫花苜蓿的土壤平均含水率與對照相比,分別增加了85.58%、75.03%、75.89%、76.46%和76.17%;在30 cm~160 cm土層中,檸條、白三葉、紅豆草、草木樨和紫花苜蓿的土壤平均含水率與對照相比分別增加了15.09%、3.72%、15.07%、15.32%和14.44%;且在0~30 cm土層中,土壤含水率的變化幅度大于30 cm以下,表明豆科植物對土壤表層含水率的改善效果優(yōu)于深層土壤。
3.2不同植物類型下土壤養(yǎng)分質(zhì)量分?jǐn)?shù)的變化特征
3.2.1土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)
由表3可知,在0~20 cm土層中,有機(jī)質(zhì)的平均質(zhì)量分?jǐn)?shù)表現(xiàn)為草木樨>空白>檸條>白三葉>紅豆草>紫花苜蓿;與對照相比,草木樨使土壤有機(jī)質(zhì)平均質(zhì)量分?jǐn)?shù)增加了8.39%,草木樨對土壤有機(jī)質(zhì)積累量大于植物有機(jī)質(zhì)的消耗量;而檸條、白三葉、紅豆草和紫花苜蓿與對照相比,分別減少14.50%、33.46%、37.53%和46.05%(表4)。0~10 cm土層有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)在4.67~8.91 g/kg之間,10~20 cm土層有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)在3.87~9.44 g/kg之間;白三葉和紫花苜蓿在0~10 cm土層有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)大于0~20 cm土層處,檸條、草木樨和紅豆草在0~10 cm土層有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)均小于10~20 cm土層處。這是因?yàn)橥寥乐杏袡C(jī)質(zhì)質(zhì)量分?jǐn)?shù)變化,取決于有機(jī)物質(zhì)輸入和輸出量的相對大小,白三葉和紫花苜蓿的根系主要集中在0~10 cm土層[14-15];而檸條、草木樨和紅豆草的根系主要集中在10~20 cm土層中[16],豆科植物根瘤的存在,根系主要集中層的有機(jī)質(zhì)輸出大于輸入量,使根系所在層的有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)相對增加。
表3 不同植被類型的土壤養(yǎng)分狀況
表4 不同植被類型的土壤養(yǎng)分與對照區(qū)相比增減比例
3.2.2土壤速效氮質(zhì)量分?jǐn)?shù)在0~20 cm土層中,硝態(tài)氮的質(zhì)量分?jǐn)?shù)大小表現(xiàn)為紫花苜蓿>檸條>草木樨>白三葉>紅豆草>空白(表3);表明豆科植物使硝態(tài)氮的質(zhì)量分?jǐn)?shù)增加,紫花苜蓿、檸條、草木樨、白三葉和紅豆草,分別增加了16.25%、6.36%、6.12%、3.77%和3.30% (表4)。在0~20 cm土層中,銨態(tài)氮的質(zhì)量分?jǐn)?shù)表現(xiàn)為檸條>紅豆草>白三葉>空白>草木樨>紫花苜蓿(見表3);與對照相比,檸條、紅豆草和白三葉土壤中,銨態(tài)氮的質(zhì)量分?jǐn)?shù)分別增加了22.83%、18.02%和4.11%,紫花苜蓿和草木樨分別減少30.49%和28.65%(表4)。
由表3可以看出:土壤中的銨態(tài)氮和硝態(tài)氮質(zhì)量分?jǐn)?shù)均表現(xiàn)為0~10 cm土層大于10~20 cm土層,呈現(xiàn)出一定的表聚效應(yīng);且硝態(tài)氮的質(zhì)量分?jǐn)?shù)大于銨態(tài)氮,由于在土壤通氣性好、溫度、濕度和反應(yīng)條件適宜的情況下,銨態(tài)氮易被硝化為硝態(tài)氮[17]。
3.2.3土壤速效磷質(zhì)量分?jǐn)?shù)在0~20 cm土層中,速效磷的平均質(zhì)量分?jǐn)?shù)在4.29~6.26 mg/kg之間,對照的速效磷質(zhì)量分?jǐn)?shù)為9.01 mg/kg,其大小表現(xiàn)為空白>紅豆草>紫花苜蓿>檸條>草木樨>白三葉(表3)。白三葉、草木樨、檸條、紫花苜蓿和紅豆草土壤速效磷的質(zhì)量分?jǐn)?shù)分別減少52.38%、49.5%、44.06%、37.18%和33.51%。
在0~10 cm土層中,豆科植物表現(xiàn)為對土壤速效磷的消耗;而在10~20 cm土層中,除了白三葉表現(xiàn)為對速效磷的消耗外,其他幾種豆科植物均表現(xiàn)為對速效磷的積累,與對照相比,紅豆草、紫花苜蓿、檸條和草木樨的速效磷的質(zhì)量分?jǐn)?shù)分別增加45.3%、40.19%、13.08%和2.34%。這可能是由于豆科植物根部存在大量溶磷菌,能分泌有機(jī)酸,降低局部土壤的pH值,將難溶態(tài)性磷轉(zhuǎn)化為可溶態(tài)磷素,使根系所在層的磷質(zhì)量分?jǐn)?shù)增加[18]。
3.2.4土壤速效鉀質(zhì)量分?jǐn)?shù)在0~20 cm土層中,速效鉀的平均質(zhì)量分?jǐn)?shù)在130.82~153.26 mg/kg之間,除種植草木樨的土壤鉀質(zhì)量分?jǐn)?shù)略微增加之外,其他幾種豆科植物均減少,檸條、白三葉、紫花苜蓿和紅豆草速效磷質(zhì)量分?jǐn)?shù)分別減少9.74%、13.20%、13.94%和15.27%;但土壤中速效鉀的質(zhì)量分?jǐn)?shù)狀況均達(dá)到第2次土壤普查養(yǎng)分分級的3級水平,足以滿足植物生長的需要:因此,土壤鉀的質(zhì)量分?jǐn)?shù)不是土壤養(yǎng)分狀況的限制性因素。
3.3運(yùn)用主成分分析法進(jìn)行土壤肥力綜合分析
運(yùn)用主成分分析法,對豆科植物的改土效果進(jìn)行綜合分析,選取有機(jī)質(zhì)、銨態(tài)氮、硝態(tài)氮、速效磷和速效鉀等指標(biāo),對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,做出不同因素的相關(guān)系數(shù)矩陣(表5)。
表5 不同指標(biāo)的相關(guān)系數(shù)矩陣
注:**表示極顯著相關(guān)水平(p<0.01)。Note:** indicates that the correlation is significant at the 0.01 level.
有機(jī)質(zhì)與速效鉀存在顯著正相關(guān)性(表5),提取主成分后,第1主成分主要反映有機(jī)質(zhì)和速效鉀對土壤的改良效果,第2主成分能較好地反映硝態(tài)氮對土壤的改良效果,通過對主成分載荷矩陣進(jìn)行轉(zhuǎn)換,得出系數(shù)及表達(dá)式:
F1=0.19x1+0.07x2-0.43x3-0.51x4+
1.15x5-0.46x6,
F2=-0.59x1-0.54x2-0.07x3-0.69x4+
0.40x5+1.36x6。
利用標(biāo)準(zhǔn)數(shù)據(jù)即得主成分得分表見表6,植物對土壤養(yǎng)分改良的綜合效果依次為白三葉>檸條>紅豆草>紫花苜蓿>草木樨。
黃土高原地區(qū)土壤水分時(shí)空分布不均勻,且變化率大,因地因時(shí)而異[19]。本研究發(fā)現(xiàn)種植豆科植物后,土壤含水率的垂直分布曲線表現(xiàn)為增長型,且豆科植物可以改善土壤含水率。這是因?yàn)橹参锔采w表土,能夠減少水分蒸發(fā)、增加降雨入滲;同時(shí),植物根系能夠疏松表層土壤,提高土壤的持水性,與大多數(shù)黃土高原的研究結(jié)果一致[20-21]。表層土壤含水率變幅較大,這是由于表層土壤與大氣環(huán)境的變化關(guān)系密切[22],并且不同植物類型下,根系分布深度及其對水分的吸收利用的差異性,導(dǎo)致土壤含水率變化幅度的差異,與陳洪松等[23]研究的結(jié)果一致。豆科植物通過根瘤菌、溶磷菌等微生物,形成不同的根際效益,使不同豆科植物對養(yǎng)分的影響存在差異;因此,要明確不同豆科植物對土壤的改良效果,還需進(jìn)一步研究豆科植物根際土壤微生物的活性,以及與土壤養(yǎng)分的作用效果。
表6 主成分得分
1) 種植豆科植物初期,土壤水分可以得到改善,且對土壤表層含水率的改善效果優(yōu)于深層土壤;土壤養(yǎng)分硝態(tài)氮的質(zhì)量分?jǐn)?shù)增加,種植草木樨還可以使土壤有機(jī)質(zhì)、速效鉀質(zhì)量分?jǐn)?shù)增加,銨態(tài)氮、速效磷的質(zhì)量分?jǐn)?shù)減少;其他幾種植物均表現(xiàn)為土壤有機(jī)質(zhì)、速效磷、速效鉀的消耗而減少。土壤中的銨態(tài)氮和硝態(tài)氮質(zhì)量分?jǐn)?shù)呈現(xiàn)出養(yǎng)分的表聚效應(yīng),且硝態(tài)氮的質(zhì)量分?jǐn)?shù)大于銨態(tài)氮,土壤速效鉀質(zhì)量分?jǐn)?shù)豐富,滿足植物生長的需要,不是土壤養(yǎng)分狀況的限制性因素。
2) 綜合分析植物生長初期對土壤的改良效果表現(xiàn)依次為白三葉>檸條 >紅豆草>紫花苜蓿>草木樨。
[1]徐斌,高霞,高照良.不同施肥下植物對交通運(yùn)輸棄土場土壤改良的分析[J].生態(tài)經(jīng)濟(jì),2015,31(3):173.
Xu Bin,Gao Xia,Gao Zhaoliang.Analysis on soil improvement of plants with different fertilization in spoil ground of transportation [J].Ecological Economy,2015,31(3):173.(in Chinese)
[2]Oyonarte C,Aranda V,Durante P.Soil surface properties in Mediterranean mountain ecosystems:effects of environmental factors and implications of management [J].Forest Ecology and Management,2008,254(2):156.
[3]Kang Bing,Liu Shirong,Cai Daoxiong,et al.Soil physical and chemical characteristics under different vegetation restoration patterns in China south subtropical area [J].Chinese Journal of Applied Ecology,2010,21(10):2479.
[4]Rochester I J,Peoples M B,Hulugalle N R,et al.Using legumes to enhance nitrogen fertility and improve soil condition in cotton cropping systems [J].Filed Crops Research,2001,70(1):27.
[5]劉曉宏,郝明德.長期種植苜蓿對土壤氮素營養(yǎng)的作用[J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2001,9(2):82.
Liu Xiaohong,Hao Mingde.Effects of long-term plant Medicago sativa Linn.on soil nitrogen nutrient [J].Chinese Journal of Eco-Agriculture,2001,9(2):82.(in Chinese)
[6]王從彥,曹震,王磊,等.豆科植物對根際土壤微生物種群及代謝的影響[J].生態(tài)環(huán)境學(xué)報(bào),2013,22(1):85.
Wang Congyan,Cao Zhen,Wang Lei,et al.Ecological effects of leguminous plants on microorganism community in rhizosphere soils [J].Ecology and Environmental Sciences,2013,22(1):85.(in Chinese)
[7]邱揚(yáng),傅伯杰,王軍,等.土壤水分時(shí)空變異及其與環(huán)境因子的關(guān)系[J].生態(tài)學(xué)雜志,2007,26(1):100.
Qiu Yang,Fu Bojie,Wang Jun,et al.Spatial temporal variation of soil moisture and its relation to environmental factors [J].Chinese Journal of Ecology,2007,26(1):100.(in Chinese)
[8]張春霞,郝明德,李麗霞.黃土高原溝壑區(qū)苜蓿地土壤碳、氮、磷組分的變化[J].草業(yè)學(xué)報(bào),2005,13(1):66.
Zhang Chunxia,Hao Mingde,Li Lixia.Soil composition of carbon,nitrogen and phosphorus after successive years of alfalfa planting in the gullies of the Loess Plateau[J].Acta Prataculturae Sinica,2005,13(1):66.(in Chinese)
[9]邰繼承,楊恒山,張慶國,等.種植年限對紫花苜蓿人工草地土壤碳、氮含量及根際土壤固氮力的影響[J].土壤通報(bào),2010,41(3):603.
Tai Jicheng,Yang Hengshan,Zhan Qingguo,et al.Influence of planting years on nitrogen-fixing capacity of rhizosphere and contents of carbon and nitrogen in artificial pastures of alfalfa[J].Chinese Journal of Soil Science,2010,41(3):603.(in Chinese)
[10] 謝開云,趙云,李向林,等.豆—禾混播草地種間關(guān)系研究進(jìn)展[J].草業(yè)學(xué)報(bào).2013,22(3):284.
Xie Kaiyun,Zhao Yun,Li Xianglin,et al.Relationships between grasses and legumes in mixed grassland:a review[J].Acta Prataculturae Sinica,2013,22(3):284.(in Chinese)
[11] 鄭偉,加娜爾古麗,唐高溶,等.混播種類與混播比例對豆禾混播草地淺層土壤養(yǎng)分的影響[J].草業(yè)科學(xué),2015,32(3):329.
Zheng Wei,Jianaerguli,Tang Gaorong,et al.Effects of mixed species,mixed ratios of legume and grass on soil nutrients in surface soils of legume grass mixture pasture[J].Pratacultural Science,2015,32(3):329.(in Chinese)
[12] 王學(xué)春,李軍,郝明德.長武旱塬草糧輪作田土壤水分可持續(xù)利用模式模擬[J].農(nóng)業(yè)工程學(xué)報(bào),2011,27(增刊1):257.
Wang Xuechun,Li Jun,Hao Mingde.Simulation of sustainable use of soil water in dry land for alfalfa-grain rotation system at Changwu arid-plateau of China [J].Transactions of the CSAE,2011,27(S1):257.(in Chinese)
[13] 鮑士旦.土壤農(nóng)化分析[M].北京:農(nóng)業(yè)出版社,1999:25-109.
Bao Shidan.Agricultural chemistry analysis of soils [M].Beijing:China Agriculture Press,1999:25-109.(in Chinese)
[14] 張曉娟.高速公路護(hù)坡草本植物根系分布及力學(xué)特性研究[D].陜西楊凌:西北農(nóng)林科技大學(xué),2013:17-18.
Zhang Xiaojuan.Study on mechanical characteristic and root system distribution of slope protection plants on highway [D].Shaanxi Yangling:Northwest A & F University,2013:17-18.(in Chinese)
[15] 李揚(yáng),孫洪仁,沈月,等.紫花苜蓿根系生物量垂直分布規(guī)律[J].草地學(xué)報(bào),2012,20(5):793.
Li Yang,Sun Hongren,Shen Yue,et al.The vertical distribution patter of alfalfa’s (Medicago stativa L.) root biomass[J].Acta Agrestia Sinica,2012,20(5):793.(in Chinese)
[16] 張宇清,朱清科,齊實(shí),等.梯田埂坎立地植物根系分布特征及其對土壤水分的影響[J].生態(tài)學(xué)報(bào),2005,25(3):500.
Zhang Yuqing,Zhu Qingke,Qi Shi,et al.Root system distribution characteristics of plants on the terrace banks and their impact on soil moisture[J].Acta Ecologica Sinica,2005,25(3):500.(in Chinese)
[17] 王常慧.內(nèi)蒙古溫帶典型草原土壤凈氮礦化作用[D].北京:中國科學(xué)院研究生院,2005:1-2.
Wang Changhui.Soil net N mineralization in the typical temperate grassland in Inner Mongolia [D].Beijing:the Chinese Academy of Sciences,2005:1-2.(in Chinese)
[18] 張英,盧光新,謝永利,等.溶磷菌分泌有機(jī)酸和溶磷能力相關(guān)研究[J].草地學(xué)報(bào),2015,23(5):1033.
Zhang Ying,Lu Guangxin,Xie Yongli,et al.The relationship between organic acid secreted from phosphrus-soublilizing bacteria and the phosphate-solubilizing ability [J].Acta Agrestia Sinica,2015,23(5):1033.(in Chinese)
[19] 何其華,何永華,包維楷.干旱半干旱區(qū)山地土壤水分動態(tài)變化[J].山地學(xué)報(bào),2003,21(2):149.
He Qihua,He Yonghua,Bao Weikai.Research on dynamics of soil moisture in arid and semiarid mountainous areas[J].Journal of Mountain Science,2003,21(2):149.(in Chinese)
[20] 羅珠珠,牛伊寧,李玲玲,等.隴中黃土高原不同種植年限苜蓿草地土壤水分及產(chǎn)量響應(yīng)[J].草業(yè)學(xué)報(bào),2015,24(1):31.
Luo Zhuzhu,Niu Yiling,Li Lingling,et al.Soil moisture and alfalfa productivity response from different years of growth on the Loess Plateau of central Gansu [J].Acta Prataculturae Sinica,2015,24(1):31.(in Chinese)
[21] 傅伯杰,楊志堅(jiān),王仰麟,等.黃土丘陵坡地土壤水分空間分布數(shù)學(xué)模型[J].中國科學(xué)(D輯),2001,31(3):185.
Fu Bojie,Yang Zhijian,Wang Yanglin,et al.Mathematical model of spatial distribution of soil moisture on sloping land in Loess Hilly region [J].Science in China (Series D),2001,31(3):185.(in Chinese)
[22] 齊麗彬,樊軍,邵明安,等.紫花苜蓿不同根系分布模式的土壤水分模擬和驗(yàn)證[J].農(nóng)業(yè)工程學(xué)報(bào),2009,25(4):24.
Qi Libin,Fan Jun,Shao Ming′an,et al.Simulation and verification of soil moisture of root distribution functions for alfalfa [J].Transactions of the CSAE,2009,25(4):24.(in Chinese)
[23] 陳洪松,邵明安.黃土區(qū)坡地土壤水分運(yùn)動與轉(zhuǎn)化機(jī)理研究進(jìn)展[J].水科學(xué)進(jìn)展,2003,14(4):513.
Chen Hongsong,Shao Ming′an.Review on hill slope soil water movement and transformation mechanism on the Loess Plateau [J].Advances in Water Science,2003,14(4):513.(in Chinese)
Improved effects of different legume plants on the abandoned soil field in the Loess Plateau
Yuan Xuehong1,2,Gao Zhaoliang1,3,Zhang Xiang4,Du Jie3,Bai Hao3,Xu Bin3
(1.Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,712100,Yangling,Shaanxi,China;2.University of Chinese Academy of Sciences,100049,Beijing,China; 3.Institute of Soil and Water Conservation,Northwest Agriculture and Forestry University,712100,Yangling,Shaanxi,China; 4.College of Water Conservation and Architectural Engineering,Northwest Agriculture and Forestry University,712100,Yangling,Shaanxi,China)
[Background] The construction activities in recent decades have caused serious soil and water loss,thus ecological restoration and soil and water conservation of spoil ground are the key projects of environmental protection in construction.The objective of this study is to grasp the improvement effects of 5 legumes (Caragana korshinskii Kom,Trifolium repens L.,Onobrychis viciaefolia Scop,Melilotus suaveolens Ledeb.,and Medicago sativa L.) at the early stage on the spoil ground in Loess Plateau region of China.[Methods] Based on field simulation and laboratory analysis,we surveyed soil moisture,nutrient contents and analyzed the correlation among different plant nutrition elements,as well as the improved effects of different plants.[Results] 1) Moisture content of the 0-160 cm layer increased with increasing soil depth,the average moisture content of C.korshinskii Kom,T.repens L.,O.viciaefolia Scop,M.suaveolens Ledeb.,M.sativa L.and control was 17.69%,15.98%,17.56%,18.35%,17.95% and 14.44%,respectively.In the 0-30 cm soil layer,the average moisture content of these plants increased by 77.67%,and in the 30-160 cm soil layer increased by 12.78% compared with the control.2) The mass fraction of nitrate nitrogen of the 5 plants increased compared with the control in the 0-20 cm soil layer,both ammonium nitrogen and nitrate nitrogen in 0-10 cm layer were higher than that of layer 10-20 cm.And for each plant,the mass fraction of nitrate nitrogen was higher than ammonium nitrogen.In the 0-20 cm soil layer,the average mass fraction of available phosphorus under the 5 leguminous plants,ranging from 4.29-6.26 mg/kg,was lower than the control group with 9.01 mg/kg.In the 0-20 cm soil layer the average mass fraction of available K was in the range of 130.82-153.26 mg/kg,the mass fraction of available potassium reached three levels in the second soil survey.3) The results of principal component analysis showed that the comprehensive effect of 5 legumes on improvements of soil varied,with the order of T.repens L.>C.korshinskii Kom >O.viciaefolia Scop >M.sativa L.>M.suaveolens Ledeb.[Conclusions] This study found that planting leguminous plants on the abandoned soil field modified the nutrition condition of soil by improving the soil moisture and the mass fraction of nitrate nitrogen.The improved effect of the surface soil moisture content was better than that of deep soil.Planting M.suaveolens Ledeb.increased the soil organic mass (SOM) and available K mass fraction,reduced the mass fraction of ammonium nitrogen and available phosphorus.Other plants showed the consumption of SOM,available phosphorus,and available potassium.By planting legume on the spoil ground,the accumulation of nitrogen surface increased,and soil available potassium content was rich enough to meet the need of plant growth.The result of the comprehensive analysis revealed that the effect of T.repens L.on soil amelioration was the best among the 5 plants.
spoil ground; legume; soil improvement; soil moisture; soil nutrient
2016-02-29
2016-06-05
項(xiàng)目名稱:“十二五”國家科技支撐計(jì)劃課題“農(nóng)田水土保持關(guān)鍵技術(shù)研究與示范”(2011BAD31B01)
袁雪紅(1989—),女,碩士研究生。主要研究方向:土壤改良工程建設(shè)區(qū)人為侵蝕過程。E-mail:2391915047@qq.com
簡介:高照良(1969—),男,博士,副研究員。主要研究方向:農(nóng)業(yè)水土工程和荒漠化防治。E-mail:13279266629@163.com
S156.99
A
1672-3007(2016)04-0121-07
10.16843/j.sswc.2016.04.015