周瑋,查同剛?,孫懷寧,黃俊威,楊瀚
(1.北京林業(yè)大學(xué)水土保持學(xué)院,100083,北京; 2.林業(yè)生態(tài)工程教育部工程研究中心,100083,北京)
?
北京八達(dá)嶺地區(qū)典型林分林地土壤抗蝕性分析
周瑋1,2,查同剛1,2?,孫懷寧1,2,黃俊威1,2,楊瀚1,2
(1.北京林業(yè)大學(xué)水土保持學(xué)院,100083,北京; 2.林業(yè)生態(tài)工程教育部工程研究中心,100083,北京)
為研究八達(dá)嶺地區(qū)不同森林植被對土壤抗蝕性的影響,揭示不同林分林地土壤抗蝕性特征,以該地區(qū)典型植被類型(油松林、針闊混交林、闊葉林和灌木林)為研究對象,運用主成分分析及相關(guān)分析方法,研究該區(qū)域內(nèi),不同林分類型土壤的抗蝕性。結(jié)果表明:八達(dá)嶺地區(qū)林分林地土壤干篩時,團(tuán)聚體主要集中于5~2 mm粒徑范圍內(nèi),在0.5~0.25 mm粒徑范圍內(nèi)質(zhì)量分?jǐn)?shù)最少;濕篩后,<0.25 mm小粒徑范圍內(nèi)質(zhì)量分?jǐn)?shù)最大,在10~5 mm大粒徑范圍內(nèi)質(zhì)量分?jǐn)?shù)最少。為比較各典型林分林地土壤抗蝕性,選取土壤理化性質(zhì)、土壤團(tuán)聚特征等12種指標(biāo),以主成分分析方法為基礎(chǔ),確定評價北京八達(dá)嶺地區(qū)土壤抗蝕性的最佳指標(biāo)體系,同時,經(jīng)相關(guān)分析選定干篩時,土壤幾何平均直徑(GMD)為八達(dá)嶺地區(qū)各典型林分林地最佳土壤抗蝕指標(biāo)。經(jīng)分析,八達(dá)嶺地區(qū)各典型林分土壤表層(0~10 cm)抗蝕性由強到弱依次為闊葉林>灌木林>針闊混交林>油松林;對于主要發(fā)生土壤侵蝕的0~20 cm土壤表層抗蝕性由強到弱為灌木林>油松林>闊葉林>針闊混交林;在各土層平均值綜合情況下,評價結(jié)果選取抗蝕性綜合指數(shù)表示,得出各林地土壤抗蝕性由強到弱依次為灌木林>油松林>針闊混交林>闊葉林。
林地土壤; 土壤團(tuán)聚體; 土壤抗蝕性; 八達(dá)嶺地區(qū)
土壤侵蝕不僅會引起土壤質(zhì)量的下降,還會帶來水體富營養(yǎng)化等一系列生態(tài)環(huán)境問題,如地表徑流挾帶土壤氮進(jìn)入水體,是造成水體面源污染的主要途徑之一[1-2]。地表植被通過調(diào)節(jié)凋落物輸入、熱量與水分分配和土壤微生物類群與活動等途徑,影響林地土壤層的抗侵蝕能力和侵蝕過程。土壤抗蝕性是指土壤抵抗水分散和懸浮的能力[3],是評定土壤抵抗侵蝕能力的重要參數(shù)之一,且與土壤理化性質(zhì)等內(nèi)在因素密切相關(guān)[4-9];此外,土壤抗蝕性大小,還與植被類型等外部因素有關(guān)[10]。因土壤抗蝕性能受多指標(biāo)影響,且時空變異性較大,故即便為同一林地,在不同時間下也有差異[11]。關(guān)于土壤抗蝕性的研究頗多:韓魯艷等[13]通過聚類分析等方法,對黃土丘陵溝壑區(qū)人工林地土壤進(jìn)行抗蝕性評價;薛萐等[14]以時空互代法,研究黃土丘陵區(qū)不同年限人工灌木林的土壤抗蝕性演變特征;王儉成等[15]在北川地區(qū),以主成分分析方法對典型林分抗蝕性進(jìn)行了研究。筆者選擇作為重要景觀和水源涵養(yǎng)功能區(qū)的北京八達(dá)嶺地區(qū)為研究區(qū),通過選擇4種典型林分(油松(Pinus tabulifomis)林、針闊混交林、闊葉林和灌木林),采用主成分分析法研究不同植被類型對土壤抗蝕性影響,揭示不同林分林地土壤抗蝕性特征。研究結(jié)果對科學(xué)評價研究區(qū)不同林分的水土保持功能,具有重要實踐意義,對揭示土壤抗侵蝕機理,服務(wù)區(qū)域水土流失的防治,以及協(xié)調(diào)區(qū)域土地利用具有參考價值。
研究區(qū)位于北京市西北部延慶縣內(nèi)八達(dá)嶺林場(E 115°55′,N 40°17′)。林場總面積2 940 hm2,平均海拔780 m,相對高差788 m。屬大陸性季風(fēng)氣候,具半濕潤、半干旱暖溫帶氣候特點,年均氣溫10.8 ℃,年均降雨量454 mm。土壤主要有典型褐土、碳酸鹽褐土和淋溶褐土3種,典型褐土垂直和水平分布最廣,土層厚30 cm左右,各海拔及坡向均有分布[16-18]。該區(qū)自20世紀(jì)50年代實施封山育林與人工造林,目前森林覆蓋率達(dá)60.7%。闊葉林360 hm2,針葉林1 478 hm2,針闊混交林52.2 hm2,灌木林1 003.5 hm2,均為水源保護(hù)林,部分因沿長城分布,兼有游憩觀賞功能,較好反映該區(qū)森林的多效益性,是華北地區(qū)山地森林的典型代表[17]。 在該區(qū)選取油松林、針闊混交林、闊葉林和灌木林4種典型林分,進(jìn)行土壤抗蝕性研究。各林地基本情況見表1和表2。
表1 典型林分代表性標(biāo)準(zhǔn)樣地基本情況
表2 典型林分基本組成
2.1取樣方法
選擇具有典型性與代表性的4種林分,并分別在4種林分下,選擇坡向、坡度和海拔等條件基本一致的4個調(diào)查樣地(20 m×20 m),在每個樣地的上、中和下3個部分,以土壤深度為標(biāo)準(zhǔn),10 cm為一層,分3層挖掘土壤剖面,并將挖掘的3個土壤剖面作為3個重復(fù)。共開挖12個剖面,獲取36個土壤層及土壤樣本。
2.2土壤團(tuán)聚體指標(biāo)選取
多項研究表明,土壤自身性質(zhì)是土壤侵蝕的內(nèi)因,特別是土壤團(tuán)聚體穩(wěn)定性,它與土壤易蝕性間存在顯著負(fù)相關(guān)性[19-20]。土壤團(tuán)聚體水穩(wěn)性則是評價土壤可蝕性的重要指標(biāo)[21]。土壤團(tuán)聚體相關(guān)指標(biāo)計算方法如下:
>0.25 mm水穩(wěn)性團(tuán)聚體數(shù)量(Water Stable aggregates,WSA)可反映土壤結(jié)構(gòu)好壞,越大結(jié)構(gòu)越好[22]。
式中:WSA為>0.25 mm水穩(wěn)性團(tuán)聚體數(shù)量,%;i為土壤團(tuán)聚體的級數(shù),i=1,2,…,n;mi為第i級土壤團(tuán)聚體質(zhì)量,g;m為土壤團(tuán)聚體總質(zhì)量,g。
團(tuán)聚體破壞率(Percentage of Aggregate Destruction,PAD)
式中:PAD為團(tuán)聚體破壞率,%;Md為>0.25 mm干篩團(tuán)聚體質(zhì)量比例,%;Mw為>0.25 mm濕篩團(tuán)聚體質(zhì)量比例,%。
平均重量直徑(Mean Weight Diameter,MWD)。常用評定土壤結(jié)構(gòu)的指標(biāo)之一,愈大結(jié)構(gòu)性愈好[23]。
式中:wi為第i粒級中土壤團(tuán)聚體質(zhì)量分?jǐn)?shù),%;di為相鄰兩粒級土壤團(tuán)聚體的平均粒徑,mm。
團(tuán)聚體平均重量直徑變化(Mean Weight Diameter changes,MWDC):差值較小的,結(jié)構(gòu)穩(wěn)定性較好[23]。
MWDC=MWD干篩-MWD濕篩。
幾何平均直徑(Geometric Mean Diameter,GMD)[24]
2.3數(shù)據(jù)處理分析
主要利用統(tǒng)計分析軟件SPSS18.0,進(jìn)行相關(guān)性以及主成分分析。
3.1典型林分林地土壤理化性質(zhì)
土壤有機質(zhì)、氮磷鉀等質(zhì)量分?jǐn)?shù)可反映土壤肥力狀況,在一定程度上反映土壤結(jié)構(gòu)的好壞(表3)。在各典型林分林地土壤中,隨土層的加深,各林分土壤中有機質(zhì)、全氮、速效鉀及速效磷的質(zhì)量分?jǐn)?shù)均呈遞減趨勢。土壤有機質(zhì)中,含有植物生長所需要的多種營養(yǎng)元素,是土壤肥力的物質(zhì)基礎(chǔ)。各林分中土壤有機質(zhì)在土壤表層(0~10 cm)質(zhì)量分?jǐn)?shù)較高,各林分平均值為49.86 g/kg,質(zhì)量分?jǐn)?shù)最大的為闊葉林(60.58 g/kg),各典型林分林地有機質(zhì)質(zhì)量分?jǐn)?shù)順序為闊葉林>針闊混交林>油松林>灌木林。這可能與闊葉林枯落物較針葉林更易降解,或與不同樹種間的立地條件不同有關(guān)。土壤全氮反映土壤氮素總量,0~10 cm全氮質(zhì)量分?jǐn)?shù)平均值為1.51 g/kg,10~20 cm為0.908 g/kg,2土層均表現(xiàn)為針闊混交林質(zhì)量分?jǐn)?shù)最高,油松林和闊葉林次之,灌木林質(zhì)量分?jǐn)?shù)最少。不同林分的速效鉀質(zhì)量分?jǐn)?shù)有明顯差異,針闊混交林質(zhì)量分?jǐn)?shù)較高,灌木林質(zhì)量分?jǐn)?shù)較少。0~10 cm速效鉀質(zhì)量分?jǐn)?shù)平均值為143.3 mg/kg,10~20 cm為87.92 mg/kg,20~30 cm為66.99 mg/kg,各典型林分林地3個土壤層次中,速效鉀質(zhì)量分?jǐn)?shù)由高到低都表現(xiàn)為:針闊混交林>油松林>闊葉林>灌木林。磷是植物生長所需要元素之一,0~10 cm各林分速效磷質(zhì)量分?jǐn)?shù)平均值為42.18 mg/kg,針闊混交林速效磷質(zhì)量分?jǐn)?shù)明顯高于其他3種林分,油松林的速效磷質(zhì)量分?jǐn)?shù)最少。10~20 cm速效磷質(zhì)量分?jǐn)?shù)平均值為33.56 mg/kg,灌木林與針闊混交林質(zhì)量分?jǐn)?shù)較高,闊葉林質(zhì)量分?jǐn)?shù)最少。這表明各典型林分林地下,土壤有機質(zhì)、氮、磷及鉀等養(yǎng)分的質(zhì)量分?jǐn)?shù),具有較明顯差異。
3.2土壤團(tuán)聚體
3.2.1土壤團(tuán)聚體分布特征干篩時,各林分土壤團(tuán)聚體主要集中在5~2 mm粒徑范圍內(nèi),各層質(zhì)量分?jǐn)?shù)分別為:0~10 cm土壤層團(tuán)聚體質(zhì)量分?jǐn)?shù)平均值為31.14%,10~20 cm為34.57%,20~30 cm為34.31%。土壤團(tuán)聚體在0.5~0.25 mm粒徑范圍內(nèi)最少,在10~5 mm和2~1 mm內(nèi),分布較相似,幾乎都分布于10%~15%內(nèi)。濕篩后,各林分土壤團(tuán)聚體主要集中在<0.25 mm粒徑內(nèi),各林分0~10 cm質(zhì)量分?jǐn)?shù)平均值為28.27%,10~20 cm為30.03%,20~30 cm為33.3%。在10~5 mm粒徑范圍內(nèi),質(zhì)量分?jǐn)?shù)最少,在0~10 cm土層團(tuán)聚體質(zhì)量分?jǐn)?shù)為7.44%,10~20 cm為11.95%,20~30 cm為6.07%。濕篩時,5~2 mm粒徑范圍內(nèi),團(tuán)聚體質(zhì)量分?jǐn)?shù)相對于干篩時明顯減少,減少量達(dá)16%左右。可見濕篩后,大團(tuán)聚體數(shù)量明顯減少,而小團(tuán)聚體數(shù)量明顯增加,即土壤團(tuán)聚體具有干篩時大團(tuán)聚體數(shù)量多,而濕篩時小團(tuán)聚體數(shù)量多的特點,這是干燥的土壤團(tuán)聚體遇水分散的原因(圖1)。
表3 典型林分林地土壤有機質(zhì)及氮磷鉀質(zhì)量分?jǐn)?shù)
3.2.2土壤團(tuán)聚體穩(wěn)定性特征MWD與GMD是土壤團(tuán)聚體穩(wěn)定性重要指標(biāo)[24]。研究表明,MWD與GMD能較好反映團(tuán)聚體及水穩(wěn)性團(tuán)聚體分布和穩(wěn)定性特征,其值越大,團(tuán)聚體平均直徑團(tuán)聚度越高,穩(wěn)定性也就越強[25]。如圖2所示,MWD與GMD在各林分土壤層的分布趨勢具有一致性。油松林中,10~20 cm土壤層的團(tuán)聚度最高、穩(wěn)定性最好,20~30 cm次之,0~10 cm最低;針闊混交林中,20~30 cm土壤團(tuán)聚體穩(wěn)定性最好,0~10 cm土壤穩(wěn)定性最低;闊葉林中,土壤團(tuán)聚體的穩(wěn)定性隨深度增加而降低,0~10 cm土層團(tuán)聚體穩(wěn)定性最好,可能與該層有機質(zhì)質(zhì)量分?jǐn)?shù)較高(60.58 g/kg)有關(guān);灌木林10~20 cm層土壤穩(wěn)定性最好,0~10 cm土壤穩(wěn)定性最差??傮w來說,各典型林分中,10~20 cm土壤團(tuán)聚體的穩(wěn)定性最好,0~10 cm土層團(tuán)聚體穩(wěn)定性最差。土壤可蝕性與土壤團(tuán)聚體水穩(wěn)定性關(guān)系密切,WSA可在一定程度上反映出土壤結(jié)構(gòu)的好壞。PAD反映土壤團(tuán)聚體遇水的破壞程度,其值越小團(tuán)聚體穩(wěn)定性越好。圖2中WSA在各典型林分各土壤層的分布趨勢,與MWD和GMD一致,PAD值大小的分布情況與MWD、GMD和WSA值大小的分布情況正好相反;故PAD與WSA所反映的土壤團(tuán)聚體穩(wěn)定性與其他2個指標(biāo)相同。
MWD:mean weight diameter; GMD:geometric mean diameter; PAD:percentage of aggregate destruction; WSA:water-stable aggregate.The same below.圖2 各典型林分下不同穩(wěn)定性指標(biāo)大小分布圖Fig.2 Distribution diagram of each stability index of four typical forest stands
3.3土壤抗蝕性能
3.3.1抗蝕指標(biāo)的選定經(jīng)主成分分析確定,該區(qū)典型林分林地土壤抗蝕性的最佳指標(biāo)體系。3個主成分Y1、Y2和Y3的特征根累積貢獻(xiàn)率為85.882%>85%,可滿足主成分分析對信息損失量的要求;故可用第1、第2及第3主成分作為評價綜合指標(biāo),且評價可信度為85.882%。第1主成分貢獻(xiàn)率為47.080%,特征值為5.650;第2主成分貢獻(xiàn)率為24.628%,特征值為2.955;第3主成分貢獻(xiàn)率為14.173%,特征值為1.701(表4)。
表4 典型林分林地土壤抗蝕性指標(biāo)PCA分析的因子負(fù)荷量、特征值和貢獻(xiàn)率
注:X1:土壤密度;X2:有機質(zhì)質(zhì)量分?jǐn)?shù);X3:全氮質(zhì)量分?jǐn)?shù);X4:速效鉀質(zhì)量分?jǐn)?shù);X5:速效磷質(zhì)量分?jǐn)?shù);X6:MWD干篩;X7:MWD濕篩;X8:MWDC;X7:GMD干篩;X8:GMD濕篩;X11:PAD;X12:WSA; Y1:第1主成分;Y2:第2主成分;Y3:第3主成分。Note:X1:soil bulk density; X2:organic matter; X3:total nitrogen; X4:available potassium; X5:available phosphorus; X6:MWDDry seived; X7:MWDWet seived; X8:MWDWet sleved; Y1:the first principal component; Y2:the second principal component; Y3:the third principal component.
第1主成分與X6(MWD干篩)、X9(GMD干篩)、X8(MWDC)關(guān)系較密切,其中,X6因子負(fù)荷量最大(0.921),即MWD干篩是所有指標(biāo)中最重要的指標(biāo);第2主成分中負(fù)荷量較大的為X12(WSA)、X5(速效磷)、X7(MWD濕篩)、X11(PAD)與X10(GMD濕篩)。可見,WSA所占比例越大速效磷質(zhì)量分?jǐn)?shù)越多,MWD濕篩和GMD濕篩越大,PAD越小,土壤抗蝕性就越強;第3主成分中X11(PAD)與X2(有機質(zhì))指標(biāo)負(fù)荷量較大。以各因子負(fù)荷量主成分線性函數(shù),確定各典型林分林地土壤的第1、2、3主成分值,再根據(jù)各主成分提供信息量所占權(quán)重,得到各典型林分林地土壤抗蝕性綜合指數(shù)的計算方法:Y=0.548 2Y1+0.286 8Y2+0.165 0Y3,見表5。
表5 典型林分林地土壤抗蝕性綜合指數(shù)
經(jīng)相關(guān)分析土壤綜合抗蝕指數(shù)(Y)與GMD干篩(x)間存在較明顯線性關(guān)系(R2=0.928 6,n=12,P<0.01)。說明GMD干篩可代表該區(qū)典型林分的土壤抗蝕性能,故可選擇GMD干篩為該區(qū)最佳抗蝕指標(biāo)(表6)。
表6 典型林分林地土壤抗蝕性參數(shù)與土壤抗蝕性綜合指數(shù)之間的相關(guān)系數(shù)
注:MWDC=平均質(zhì)量直徑變化。Note:MWDC=mean weight cliameter changes.
3.3.2土壤抗蝕性能經(jīng)相關(guān)分析,GMD干篩可較好代表該區(qū)土壤抗蝕情況。表7中各林分土壤0~10 cm層GMD干篩較小,其余2層基本隨土層深度增加,GMD干篩逐漸遞減。灌木林變異系數(shù)(CV)最小(0.18),說明灌木林各層土壤間的抗蝕性差異最小;油松林的CV值最大(0.35),說明油松林各土壤層間抗蝕性差異較大。各林分林地土壤抗蝕性,在0~10 cm層具顯著差異,CV值最大(0.18),說明該地區(qū)土壤抗蝕性的差異主要體現(xiàn)在0~10 cm層。
0~10 cm層土壤抗蝕性表現(xiàn)為闊葉林(2.09 mm)>灌木林(1.53 mm)>針闊混交林(1.31 mm)>油松林(0.99 mm)。這可能與闊葉林表層有機質(zhì)質(zhì)量分?jǐn)?shù)較高有關(guān)。油松林的枯落物雖較厚,但較難分解,抗蝕性最差。生長多種灌木類型的灌木林有相對較多的枯落物,形成較厚的腐殖質(zhì)層,抗蝕性好于針闊混交林。在較深的土壤層中,除針闊混交林外,由10~20 cm土壤層至20~30 cm土壤層,隨著土層加深,土壤抗蝕性減弱。
表7 典型林分林地土壤干篩GMD
注:CV為變異系數(shù)。Note:CV:coefficient of variation.
0~10 cm土壤層,土壤抗蝕性綜合指數(shù)與最佳抗蝕指標(biāo)GMD干篩均表現(xiàn)為闊葉林>灌木林>針闊混交林>油松林,即0~10 cm的表層土壤,闊葉林的抗蝕性最好,其次為灌木林,油松林的抗蝕性最差;但在各層次平均值評價時,兩者出現(xiàn)了差異,土壤抗蝕性綜合指數(shù)表現(xiàn)為灌木林(1.705)>油松林(0.291)>針闊混交林(-0.707)>闊葉林(-1.300),而最佳土壤抗蝕指標(biāo)GMD干篩表現(xiàn)為灌木林(2.10)>針闊混交葉林(1.96)>油松林(1.92)>闊葉林(1.60)。二者均表現(xiàn)為灌木林抗蝕性最好,闊葉林抗蝕性最差。二者評價不同的關(guān)鍵在于油松林與針闊混交林;但因抗蝕性綜合指數(shù)受多因子制約,攜帶更多信息量,故更具可信度,因而以其平均為準(zhǔn)。考慮土壤侵蝕多發(fā)生于0~20 cm土層,兩者評價表現(xiàn)為灌木林(2.04)>油松林(1.95)>闊葉林(1.81)>針闊混交林(1.74);故GMD干篩可較好地反映各典型林地的土壤抗蝕性。
1)在各典型林地土壤中,隨土層加深,各林地的土壤有機質(zhì)、全氮、速效鉀及速效磷質(zhì)量分?jǐn)?shù)均呈遞減趨勢,養(yǎng)分物質(zhì)在不同的土壤層次表現(xiàn)不同的林分排列順序。干篩時,各林分林地土壤團(tuán)聚體主要分布在5~2 mm粒徑范圍內(nèi),在0.5~0.25 mm粒徑范圍內(nèi)最少;濕篩后,土壤團(tuán)聚體主要集中在<0.25 mm粒徑內(nèi),在10~5 mm粒徑范圍內(nèi)的質(zhì)量分?jǐn)?shù)最小。濕篩后大團(tuán)聚體數(shù)量明顯減少,小團(tuán)聚體數(shù)量明顯增加。除闊葉林外,各典型林分的MWD、GMD、WSA與PAD均反映10~20 cm土層的土壤團(tuán)聚體穩(wěn)定性最好,0~10 cm土層的穩(wěn)定性最差。
2)選取土壤理化性質(zhì)、土壤團(tuán)聚特征等12種指標(biāo),基于主成分分析,篩選出評價八達(dá)嶺地區(qū)土壤抗蝕性的最佳指標(biāo)體系:Y=0.548 2Y1+0.286 8Y2+0.165 0Y3,再經(jīng)相關(guān)分析,選定干篩條件下,GMD是該地區(qū)典型林分林地最佳土壤抗蝕指標(biāo)。在2種評價中,各典型林分0~10 cm土壤層抗蝕性由強到弱為闊葉林>灌木林>針闊混交林>油松林;易發(fā)生土壤侵蝕的0~20 cm土壤層,土壤抗蝕性強度為灌木林>油松林>闊葉林>針闊混交林;在各土壤層平均值綜合情況下,評價結(jié)果以抗蝕性綜合指數(shù)表示,抗蝕性由強到弱依次為灌木林>油松林>針闊混交林>闊葉林。
[1]王輝,王全九,邵明安.人工降雨條件下黃土坡面養(yǎng)分隨徑流遷移試驗[J].農(nóng)業(yè)工程學(xué)報,2006,22(6):39.
Wang Hui,Wang Quanjiu,Shao Ming′an.Laboratory experiments of soil nutrient transfer in the loess slope with surface runoff during simulated rainfall[J].Transactions of the CSAE,2006,22(6):39.(in Chinese)
[2]任秀文,李開明,劉愛萍,等.模擬降雨條件下紅壤坡面硝態(tài)氮流失特征研究[J].中國環(huán)境科學(xué),2013,33(S1):119.
Ren Xiuwen,Li Kaiming,Liu Aiping,et al.Characteristics of nitrate nitrogen loss on red soil slope under simulated rainfall conditions[J].China Environmental Science,2013,33(S1):119.(in Chinese)
[3]張超,劉國彬,薛萐,等.黃土丘陵區(qū)不同林齡人工刺槐林土壤抗蝕性演變特征[J].中國水土保持科學(xué),2010,8(2):1.
Zhang Chao,Liu Guobin,Xue Sha,et al.Evolution of soil anti-erodibility of Robinia pseudoacacia L.plantation at different ages in hilly-gully region of Loess Plateau[J].Science of Soil and Water Conservation,2010,8(2):1.(in Chinese)
[4]曲格平.保護(hù)水土資源,改善生態(tài)環(huán)境,造福子孫后代[J].中國水土保持,1996(8):4.
Qu Geping.To protect water and soil resources,improve the ecological environment and benefit the future generations[J].Soil and Water Conservation in China,1996(8):4.(in Chinese)
[5]程積民,萬惠娥,王靜.黃土丘陵區(qū)山桃灌木林地土壤水分過耗與調(diào)控恢復(fù)[J].土壤學(xué)報,2003,40(5):691.
Cheng Jimin,Wan Huie,Wang Jing.Excessive depletion of soil water and regulation and restoration of soil water regime in loess hilly region under Prunus davidiana vegetation[J].Acta Pedologica Sinica,2003,40(5):691.(in Chinese)
[6]于東升,史學(xué)正.低丘紅壤區(qū)旱地土壤滲透性與可蝕性定量關(guān)系的研究[J].土壤學(xué)報,2000,37(3):316.
Yu Dongsheng,Shi Xuezheng.Quantificational relationship between soil permeability of upland and soil erodibility in hilly red soil region[J].Acta Pedologica Sinica,2000,37(3):316.(in Chinese)
[7]周利軍,齊實,王云琦.三峽庫區(qū)典型林分林地土壤抗蝕抗沖性研究[J].水土保持研究,2006,13(1):186.
Zhou Lijun,Qi Shi,Wang Yunqi.Research on forest soil anti-erosion and anti-scour of typical forests in Three Gorges Reservoir areas[J].Research of Soil and Water Conservation,2006,13(1):186.(in Chinese)
[8]龔偉,顏曉元,蔡祖聰,等.長期施肥對華北小麥-玉米輪作土壤物理性質(zhì)和抗蝕性影響研究[J].土壤學(xué)報,2009,46(3):520.
Gong Wei,Yan Xiaoyuan,Cai Zucong,et al.Effects of long-term fertilization on soil physical properties and erosion-resistance under wheat-maize rotation system in North China plain[J].Acta Pedologica Sinica,2009,46(3):520.(in Chinese)
[9]薛萐,李占斌,李鵬,等.不同植被恢復(fù)模式對黃土丘陵區(qū)土壤抗蝕性的影響[J].農(nóng)業(yè)工程學(xué)報,2009,25(SI):69.
Xue Sha,Li Zhanbin,Li Peng,et al.Effects of different vegetation restoration models on soil anti-erodibility in loess hilly area[J].Transactions of the CSAE,2009,25(SI):69.(in Chinese)
[10]Cotler H,Ortega-Larrocea M P.Effects of land use on soil erosion in a tropical dry forest ecosystem,Chamla watershed,Mexico[J].Catena,2006,65(2):107.
[11]叢日亮,黃進(jìn),張金池,等.蘇南丘陵區(qū)主要林分類型土壤抗蝕性分析[J].生態(tài)環(huán)境學(xué)報,2010,19(8):1862.
Cong Riliang,Huang Jin,Zhang Jinchi,et al.Analysis of soil anti-erodibility of main forest types in the south hilly region of Jiangsu province[J].Ecology and Environmental Sciences,2010,19(8):1862.(in Chinese)
[12]孫劉平,錢吳永.基于主成分分析法的綜合評價方法的改進(jìn)[J].數(shù)學(xué)的實踐與認(rèn)知,2009,39(18):15.
Sun Liuping,Qian Wuyong.An improved method based on principal component analysis for the comprehensive evaluation[J].Mathematics in Practice and Theory,2009,39(18):15.(in Chinese)
[13]韓魯艷,郝乾坤,焦菊英.黃土丘陵溝壑區(qū)人工林地的土壤抗蝕性評價[J].水土保持通報,2009,29(3):159.
Han Luyan,Hao Qiankun,Jiao Juying.Soil anti-erodibility of artificial woodlands in the hilly-gullied region of the Loess Plateau[J].Bulletin of Soil and Water Conservation,2009,29(3):159.(in Chinese)
[14]薛萐,劉國彬,張超,等.黃土丘陵區(qū)人工灌木林土壤抗蝕性演變特征[J].中國農(nóng)業(yè)科學(xué),2010,43(15):3143.
Xue Sha,Liu Guobin,Zhang Chao,et al.Change of soil anti-erodibility of artificial shrubs in loess hilly area[J].Scientia Agricultura Sinica,2010,43(15):3143.(in Chinese)
[15]王儉成,楊建英,史常青,等.北川地區(qū)典型林分土壤抗蝕性分析[J].水土保持學(xué)報,2013,27(1):71.
Wang Jiancheng,Yang Jianying,Shi Changqing,et al.Analysis of soil anti-erodibility of different typical forests in Beichuan area[J].Journal of Soil and Water Conservation,2013,27(1):71.(in Chinese)
[16]楊君.北京八達(dá)嶺植物群落多樣性特征分析[J].吉林林業(yè)科技,2006,35(2):21.
Yang Jun.Analysis on species diversity of plant community in Badaling area of Beijing,China[J].Jilin Forestry Science and Technology,2006,35(2):21.(in Chinese)
[17]魯紹偉,陳吉虎,余新曉,等.北京市八達(dá)嶺林場森林健康經(jīng)營研究[J].水土保持通報,2007,27(3):127.
Lu Shaowei,Chen Jihu,Yu Xinxiao,et al.Forestry health management in Badaling Forest Farm of Beijing City[J].Bulletin of Soil and Water Conservation,2007,27(3):127.(in Chinese)
[18]高志亮,余新曉,陳國亮,等.北京市八達(dá)嶺林場森林健康評價研究[J].林業(yè)資源管理,2008,8(4):77.
Gao Zhiliang,Yu Xinxiao,Chen Guoliang,et al.Forest health assessment in Badaling Forest Farm of Beijing[J].Forest Resources Management,2008,8(4):77.(in Chinese)
[19]Reichert J M,Norton L D.Aggregate stability and rain-impacted sheet erosion of air-dried and rewetted clayey surface soils under intense rain[J].Soil Sci,1994,158(3):159.
[20]Le B Y,Arrouays D.Aggregate stability and assessment of soil crustability and erodibility:II.Application to humic loamy soils with various organic carbon contents[J].European Journal of Soil Science,1997,48(1):39.
[21]盧金偉,李占斌.土壤團(tuán)聚體研究進(jìn)展[J].水土保持研究,2002,9(1):81.
Lu Jinwei,Li Zhanbin.Advance in soil aggregate study[J].Research of Soil and Water Conservation,2002,9(1):81.(in Chinese)
[22]張保華,徐佩,廖朝林,等.川中丘陵區(qū)人工林土壤結(jié)構(gòu)性及對土壤侵蝕的影響[J].水土保持通報,2005,25(3):25.
Zhang Baohua,Xu Pei,Liao Chaolin,et al.Soil structure properties and its effect on soil erosion of artificial forest in purple hilly areas of Sichuan Province[J].Bulletin of Soil and Water Conservation,2005,25(3):25.(in Chinese)
[23]中國農(nóng)業(yè)百科全書編輯委員會.中國農(nóng)業(yè)百科全書:土壤卷[M].北京:北京農(nóng)業(yè)出版社,1996:315-317.
China’s Agricultural Encyclopedia Editorial Board.China’s agriculture encyclopedia:soil volume [M].Beijing:China Agriculture Press (in Chinese),1996:315-317.(in Chinese)
[24]陳正發(fā),史東梅,謝均強,等.紫色土旱坡地土壤團(tuán)聚體穩(wěn)定性特征對侵蝕過程的影響[J].中國農(nóng)業(yè)科學(xué),2011,44(13):2721.
Chen Zhengfa,Shi Dongmei,Xie Junqiang,et al.Aggregate stability of purple soil and its impacts on soil erosion of slope dry land[J].China.Scientia Agricultura Sinica,2011,44(13):2721.(in Chinese)
[25]Zhang Bin,Horn R.Mechanisms of aggregate stabilization in Ultisols from subtropical China[J].Geoderma,2001,99(1):123.
Analysis of anti-erodibility of forest soil at 4 typical forest stands in Beijing Badaling area
Zhou Wei1,2,Zha Tonggang1,2,Sun Huaining1,2,Huang Junwei1,2,Yang Han1,2
(1.School of Soil and Water Conservation,Beijing Forestry University,100083,Beijing,China;2.Forestry Ecological Engineering Research Center,Ministry of Education,100083,Beijing,China)
[Background] In order to study the impacts of different vegetation types in Badaling area on the soil anti-erodibility and further reveal the soil anti-erodibility under different vegetation types,researches were conducted on 4 forest stands of Pinus tabuliformis,mixed conifer and broadleaf,broadleaf and shrub.[Methods] Based on the data from adequate field investigation as well as sampling and laboratory analysis,principal components analysis (PCA) along with relevant analytical methods were adopted in the study.[Results] After dry sieving,the particle size of aggregates in Badaling area was mostly found in 5-2 mm and the least in 0.5-0.25 mm.By contrast,after wet sieving,most aggregates were in small particle size (<0.25 mm) while large-size (10-5 mm) aggregates accounted for the smallest proportion.The geometric mean diameter (GMD),mean weight diameter (MWD),percentage of aggregate destruction (PAD) as well as the content of soil water-stable aggregate (WSA) > 0.25 mm of P.tabuliformis forest,mixed conifer and broadleaf forest and shrub forest all showed that aggregates in 10-20 cm layer of the forestland were the most stable,while in 0-10 cm layer they were in the worst stability,however this was not applied to broadleaf forest.To make better comparisons about the capacity of soil anti-erodibility in the 4 types of forestland,12 indexes were defined,including the physical and chemical features of soil and aggregate characteristics.And based on the method of PCA,the best and most suitable index system was established for evaluating the soil anti-erodibility in Badaling area.Among all the indexes,the GMD of dry-sieved soil was then selected via analysis as the best one to describe the soil anti-erodibility of the different typical forestland.Analytically,in Badaling area,the topsoil (0-10 cm) of broadleaf forest showed the greatest resistance to soil erosion,followed by shrub forest,mixed conifer and broadleaf forest and P.tabulifomis forest.Analysis also showed the anti-erodibility of 0-20 cm layer,where erosion was most likely to take place,with the figures for the different types of vegetation,was shrub forest > P.tabulifomis forest > broadleaf forest > mixed conifer and broadleaf forest.Synthetically,considering the average conditions for each layer,the final result of the soil evaluation was presented in the form of comprehensive soil anti-erodibility index.And the comprehensive soil anti-erodibility of the 4 types of forestland was shrub forest > P.tabulifomis forest > mixed conifer and broadleaf forest > broadleaf forest.[Conclusions] The result has practical significance to the scientific evaluation of the soil and water conservation function of the different forest stand in the research area.Meanwhile,the results of the study has certain reference value for both regional soil and water conservation and the further study on the mechanism of soil erosion.Therefore,the research may contribute to the prevention and control of regional soil and water loss and the coordination of regional land use.
forest soil; soil aggregate; soil anti-erodibility; Badaling area
2015-06-12
2016-01-25
項目名稱:中央高校基本科研業(yè)務(wù)費專項資金資助“北京八達(dá)嶺地區(qū)典型林分土壤團(tuán)聚體穩(wěn)定性特征對土壤侵蝕過程的影響”(xs201404)
周瑋(1994—),女,本科生。主要研究方向:水土保持與荒漠化防治。E-mail:18310233068@163.com
簡介:查同剛(1972—),男,副教授,碩士研究生導(dǎo)師。主要研究方向:土壤退化與生態(tài)修復(fù)。E-mail:zhtg73@bifu.edu.cn
S157.1
A
1672-3007(2016)04-0084-10
10.16843/j.sswc.2016.04.011