王成軍, 章天雨, 李 龍, 陳金燕, 孟祥瑞
(1. 安徽理工大學(xué) 礦業(yè)工程博士后流動(dòng)站, 安徽 淮南 232001; 2. 安徽理工大學(xué) 機(jī)械工程學(xué)院, 安徽 淮南 232001)
?
潮濕原煤顆粒在三自由度混聯(lián)振動(dòng)篩中篩分效率研究
王成軍1,2, 章天雨2, 李龍2, 陳金燕2, 孟祥瑞1
(1. 安徽理工大學(xué) 礦業(yè)工程博士后流動(dòng)站, 安徽 淮南 232001; 2. 安徽理工大學(xué) 機(jī)械工程學(xué)院, 安徽 淮南 232001)
為研究潮濕難篩分原煤顆粒在兩平移一轉(zhuǎn)動(dòng)三自由度混聯(lián)振動(dòng)篩中的篩分效率變化規(guī)律,基于三維離散元法,運(yùn)用EDEM軟件模擬潮濕原煤顆粒的篩分過程.自主設(shè)計(jì)了兩平移一轉(zhuǎn)動(dòng)三自由度混聯(lián)振動(dòng)篩,以研究各振動(dòng)參數(shù)對(duì)原煤顆粒篩分效率的影響;綜合采用動(dòng)態(tài)篩分效率和阻礙粒排出率作為模擬篩分效率的評(píng)定指標(biāo),得出各自由度振動(dòng)組合中的最佳激振模式及振動(dòng)方向?qū)Τ睗裨侯w粒在篩面運(yùn)動(dòng)的作用;以動(dòng)態(tài)篩分效率為參考值,采用正交實(shí)驗(yàn)方法,分析各因素對(duì)篩分效率的影響,得出影響因素分別為:外在水分、振動(dòng)自由度、頻率、振幅;用優(yōu)選的篩分方案進(jìn)行離散元模擬實(shí)驗(yàn),驗(yàn)證了多維振動(dòng)有利于潮濕難篩分原煤顆粒的分散、透篩及防堵.
潮濕原煤顆粒; 三自由度混聯(lián)振動(dòng)篩; 振動(dòng)模式; 篩分效率; 離散元法; 正交實(shí)驗(yàn)
隨著采煤機(jī)械化程度提高,因防塵噴霧、煤層滲水等原因,造成開采出的原煤水分偏高,特別是細(xì)粒級(jí)含量達(dá)70%以上的原煤,其外在水分往往高達(dá)7%~14%[1].在傳統(tǒng)振動(dòng)篩篩分作業(yè)時(shí),原煤中的潮濕細(xì)顆粒在外在水分作用下相互粘聚成團(tuán)或粘附于篩面上,嚴(yán)重影響篩分效率,惡化篩分過程.因此,實(shí)現(xiàn)3~6 mm粒級(jí)潮濕原煤顆粒篩分對(duì)提高企業(yè)的經(jīng)濟(jì)效益和國(guó)際競(jìng)爭(zhēng)力至關(guān)重要.新型高效的潮濕細(xì)粒物料篩分機(jī)成為研究熱點(diǎn).篩分過程粘附理論方面:Rumpf,Pietch等人提出了理想的球形顆粒在表面水的作用下粘附力的計(jì)算方法,Hollinderbaumber和Hoberg教授計(jì)算了靜止壁面上細(xì)粒物料的粘附量和壁面傾角的關(guān)系,陳惜民、趙躍民等用Rumpf,Pietch模型解釋了細(xì)粒物料在篩分機(jī)上難以透篩的原因[2-3];篩分機(jī)方面:波蘭、德國(guó)分別研制了適用于潮濕細(xì)粒煤篩分用的等厚篩、馳張篩,中國(guó)先后成功研制煤用概率分級(jí)篩、等厚篩、馳張篩、節(jié)肢振動(dòng)篩[4],沈惠平等提出了并聯(lián)振動(dòng)篩的設(shè)計(jì)與研究[5-6].
現(xiàn)有顆粒物料篩分的數(shù)值模擬大都基于軟干球模型發(fā)展而來,研究?jī)?nèi)容側(cè)重于難篩分顆粒分層、運(yùn)動(dòng)狀態(tài)等特點(diǎn)[7-8],以及振幅、振動(dòng)強(qiáng)度、篩面傾角等對(duì)篩分效率的影響[9];對(duì)復(fù)雜形狀顆粒的篩分,只有少數(shù)學(xué)者進(jìn)行了模擬研究[10-12];但對(duì)于潮濕難篩分原煤顆粒數(shù)值模擬,國(guó)內(nèi)外學(xué)者還少有研究,且目前其篩分效率的模擬研究大都針對(duì)直線振動(dòng)篩的一維運(yùn)動(dòng)狀態(tài),多維振動(dòng)對(duì)潮濕難篩分原煤顆粒篩分效率影響方面的研究未見報(bào)道.
論文在自主設(shè)計(jì)兩平移一轉(zhuǎn)動(dòng)三自由度振動(dòng)篩的基礎(chǔ)上,利用三維離散元法對(duì)復(fù)雜形狀的潮濕難篩分原煤顆粒的多維振動(dòng)篩分過程進(jìn)行模擬研究,討論振動(dòng)自由度、頻率、振幅、外在水分對(duì)篩分效率的影響規(guī)律,為深入理解和進(jìn)一步揭示潮濕難篩分顆粒在多維振動(dòng)篩中的運(yùn)動(dòng)規(guī)律和篩分機(jī)理提供參考依據(jù).
1—篩架;2—篩框;3—X向激振裝置向激振裝置;5—Z向激振裝置;6—Y向輔助裝置.圖1 三自由度混聯(lián)振動(dòng)篩機(jī)械結(jié)構(gòu)示意圖Fig.1 The mechanical structure diagram of 3-DOF hybrid vibrating screen
2.1原煤顆粒模型
為使顆粒模型更具有代表性,經(jīng)過對(duì)大量原煤顆粒尺寸測(cè)量分析后,提出一種棱形五觸點(diǎn)顆粒,作為原煤顆粒的基本形狀.該顆粒是主軸型顆粒,即軸向尺寸大于徑向尺寸,其模型如圖2所示.
圖2 原煤顆粒模型Fig.2 The model of a raw coal particle
由圖2(a)可以看出,該原煤顆粒由5個(gè)大小不一的球體疊加合成橢球體,并在該橢球體中部均布3個(gè)大小相同的球體.因此該復(fù)合幾何體能夠利用傳統(tǒng)分析方法進(jìn)行碰撞檢測(cè)和模型接觸力計(jì)算.其幾何參數(shù)如圖2(b)所示,其中:d為原煤顆粒直徑,l為原煤顆粒長(zhǎng)度,顆粒細(xì)長(zhǎng)程度可由長(zhǎng)徑比d/l表示.
2.2顆粒接觸模型
對(duì)于干燥顆粒間碰撞模擬,常用Oda改進(jìn)離散元法(modified distinct element method,MDEM)的軟干球接觸模型模擬振動(dòng)篩顆粒之間的碰撞作用[13],數(shù)學(xué)模型如圖3所示[14],其中:kn和dn分別為法向剛度和阻尼,kt和dt為切向剛度和阻尼,kr和dr為滾動(dòng)剛度和阻尼.
圖3 顆粒接觸模型Fig.3 Contact model of particles
排除范德華力和靜電力作用,顆粒運(yùn)動(dòng)方程表示為[15]
(1)
(2)
式中:mi,Ii分別為小球的質(zhì)量和轉(zhuǎn)動(dòng)慣量;ni為與小球i接觸的顆??倲?shù);vi為位移速度;法向作用力Fn,ij和切向作用力Ft,ij以及切向力矩Tt,ij和滾動(dòng)摩擦力矩Tr,ij均可根據(jù)離散元法求得[16].
對(duì)于濕顆粒間的碰撞,接觸顆粒間在外在水分的作用下會(huì)形成一個(gè)液橋力.因此,采用線性粘聚接觸模型對(duì)濕顆粒進(jìn)行模擬,該模型是在MDEM的軟干球模型基礎(chǔ)上添加一個(gè)法向粘聚力[17].液橋力的計(jì)算公式如下[18]:
Fcoh=kA,
(3)
式中:A為軟球模型中顆粒的接觸面積;k為粘聚能量密度,J/m3.
2.3振動(dòng)篩模型
為突出不同激振模式下篩面運(yùn)動(dòng)形式對(duì)潮濕原煤顆粒篩分的影響,在用EDEM模擬實(shí)驗(yàn)中,對(duì)自主設(shè)計(jì)的混聯(lián)振動(dòng)篩進(jìn)行了簡(jiǎn)化,僅保留篩框部分的基本特征,通過直接在EDEM中調(diào)節(jié)篩面運(yùn)動(dòng)參數(shù),實(shí)現(xiàn)篩面各運(yùn)動(dòng)形式,并且忽略了氣流等因素的影響.簡(jiǎn)化的振動(dòng)篩三維模型如圖4所示.振動(dòng)篩篩面尺寸為280 mm×140 mm,篩孔尺寸a=5 mm,開孔率為35%.
圖4 三自由度混聯(lián)振動(dòng)篩仿真模型Fig.4 Simulation model of 3-DOF hybrid vibrating screen
2.4模擬參數(shù)
原煤顆粒和篩面的材料特性及接觸參數(shù)如表1[14]所列.入料顆粒由20 000個(gè)棱形五觸點(diǎn)顆粒組成,d/l=0.7,粒徑d=1~7.5 mm,其中:粒級(jí)比(d/a)為0.2~0.7的易篩原煤顆粒含量為80%,質(zhì)量含量為45%;粒徑比為0.7~1.0的難篩原煤顆粒含量為15%,質(zhì)量含量為30%;粒徑比為1.0~1.5的阻礙粒[14]含量為5%,質(zhì)量含量為25%.篩面傾角為5°,仿真時(shí)間為10 s,入料時(shí)間為2 s,k=20 000 J/m3.
表1原煤顆粒和篩面的材料特性及接觸特性參數(shù)
Table 1Material properties and contact characteristic parameters of the raw coal particles and screening surface
參數(shù)密度/(kg·m-3)彈性恢復(fù)系數(shù)靜摩擦系數(shù)滾動(dòng)摩擦系數(shù)泊松比剪切模量/GPa原煤顆粒13000.50.60.050.301.00篩面78610.50.40.050.2979.92
3.1激振參數(shù)
為探究不同激振模式下的篩分效率,振動(dòng)篩模擬實(shí)驗(yàn)的各項(xiàng)參數(shù)如表2所示.
表2 模擬實(shí)驗(yàn)激振參數(shù)
3.2激振模式對(duì)篩分效率的影響
篩分效率是反映篩分效果的重要指標(biāo),它受物料的外在水分、激振模式、振幅、頻率等諸多因素的影響.原煤顆粒的實(shí)際篩分過程分為入料、透篩、運(yùn)送和排料四個(gè)連續(xù)動(dòng)態(tài)過程,篩分效率隨時(shí)間的變化而變化,不能用現(xiàn)有的靜態(tài)篩分效率公式來表征.故需采用動(dòng)態(tài)篩分效率[14]作為振動(dòng)篩的實(shí)際篩分效果的考察指標(biāo),其公式為
(4)
式中:ηt為t時(shí)刻的動(dòng)態(tài)篩分效率;At為t時(shí)刻篩下物總質(zhì)量,kg;St為t時(shí)刻物料中所含可篩物料總質(zhì)量,kg.
因?qū)嶋H篩分是一個(gè)連續(xù)入料的過程,篩分過程中堆積在篩面上的阻礙粒若不能及時(shí)排出,則必然影響篩分效率.特別是潮濕原煤顆粒,因其具有易粘聚和易堆積特性,阻礙粒持續(xù)滯留,更易造成篩網(wǎng)堵塞.為研究不同激振模式下物料中阻礙粒的排出規(guī)律,論文提出用阻礙粒排出率來考察該篩分過程,該值是一個(gè)動(dòng)態(tài)指標(biāo),其公式可表示為
(5)
式中:nt為t時(shí)刻的阻礙粒排出率;Bt為t時(shí)刻排料物總質(zhì)量,kg;Zt為t時(shí)刻物料中所含阻礙粒的總質(zhì)量,kg.
在模擬實(shí)驗(yàn)過程中,通過對(duì)篩下物顆粒及排料物中的阻礙粒進(jìn)行動(dòng)態(tài)統(tǒng)計(jì),得到篩分效率和阻礙粒排出率隨時(shí)間變化規(guī)律,如圖5所示.
圖5 動(dòng)態(tài)篩分效率、阻礙粒排出率變化規(guī)律Fig.5 The variation law of dynamic screening efficiency and hindering particles excretion rate
由圖5(a)可以看出,在振動(dòng)頻率、振幅及振動(dòng)傾角相同的條件下:初始時(shí),篩分效率與入料量基本呈線性遞增,隨著篩分過程的進(jìn)行,篩上物料量逐漸增多,篩分效率逐漸趨于穩(wěn)態(tài).2 s時(shí)停止入料,篩分效率又恢復(fù)線性增加,并在4.04 s左右工況5,6,7均趨于穩(wěn)定,工況1在2 s即入料結(jié)束后趨于穩(wěn)定,工況3在3.65 s后即進(jìn)入穩(wěn)定階段,工況2,4在4.04—10 s篩分效率仍緩慢增長(zhǎng).另外,工況2至7的篩分效率差距較?。涸谝蛔杂啥裙r中,工況2的終篩分效率最好,為77.50%;在兩自由度工況中,工況5的終篩分效率最好,為72.550%;三自由度中,工況7的終篩分效率為58.78%.工況1的終篩分效率最差:初始時(shí),篩分效率上升較快,在1.19 s之后由于入料量增加、激振不足,導(dǎo)致篩面上物料堆積嚴(yán)重,篩分效率明顯下降,2 s入料停止后,篩分效率呈小幅上升并趨于穩(wěn)定,僅為27.52%,如圖5(a)及圖6(a)所示.
由圖5(b)可以看出,在其它振動(dòng)參數(shù)不變的條件下,各振動(dòng)模式下振動(dòng)篩的阻礙粒排出率差距顯著.工況1的阻礙粒排出率基本為零,工況2的阻礙粒排出率較小,至仿真結(jié)束,只有26.65%,工況1和工況2的阻礙粒排出效果如圖6(a),6(b)所示,篩面存在大量原煤顆粒堆積現(xiàn)象,且工況1比工況2的篩面原煤顆粒運(yùn)動(dòng)狀態(tài)更差.工況3、工況4的篩出效率在仿真的時(shí)間內(nèi)基本呈線性增加,其在10 s時(shí)的終篩出效率分別為72.55%,47.45%,其終篩出效果如圖6(c)、6(d)所示,篩面原煤顆粒運(yùn)動(dòng)均較為緩慢.工況5、工況6、工況7的篩出效率隨著時(shí)間呈明顯線性增加,并在7.95 s左右趨于穩(wěn)定,其終篩出效率分別為77.65%,88.25%,95.25%,篩出效果如圖6(e)、6(f)、6(g)所示,篩面物料基本篩出.
圖6 各工況終篩分、排出示意圖Fig.6 Final screening and excretion diagrams under various working conditions
4.1因子水平的確定及實(shí)驗(yàn)方案
潮濕難篩分原煤顆粒的篩分效率除了受激振模式的影響外,還與篩面的振幅、頻率和原煤顆粒的外在水分等因素有關(guān).為驗(yàn)證各影響因素的敏感性,減少模擬實(shí)驗(yàn)次數(shù),采用正交實(shí)驗(yàn)的方法確定各因素的顯著水平.結(jié)合三自由度混聯(lián)振動(dòng)篩的工作能力,選取不同自由度中最優(yōu)激振模式,確定正交實(shí)驗(yàn)的因子水平,如表3所示.實(shí)驗(yàn)方案采用正交表L9(34),如表4所示.
表3 因子水平表
表4 實(shí)驗(yàn)設(shè)計(jì)方案(L9(34))及結(jié)果
4.2正交實(shí)驗(yàn)結(jié)果及分析
表4列出了潮濕難篩分原煤顆粒的多維振動(dòng)篩分效率正交實(shí)驗(yàn)的結(jié)果,分析可知:影響篩分效率的因子依次為外在水分、自由度、頻率、振幅,各因子對(duì)篩分效率影響的水平程度如表5所示.
表5 方差分析表
就單因素而言,因素A(DOF)對(duì)篩分效率影響順序?yàn)锳2,A1,A3;因素B(頻率)對(duì)篩分效率影響順序?yàn)锽1,B2,B3;因素C(振幅)對(duì)篩分效率影響順序?yàn)镃2,C1,C3;因素D(粘聚能量密度)對(duì)篩分效率的影響順序?yàn)镈3,D2,D1.綜合以上分析,得到篩分效率最佳組合為A2B1C2D3,即:DOF為X/Z,頻率為5 Hz,振幅為8 mm,粘聚能量密度為6×104J·m-3.
4.3優(yōu)選方案的數(shù)值模擬
為了分析最終優(yōu)選方案的篩分、篩出效果,按照優(yōu)選的最佳方案對(duì)多維振動(dòng)篩的三維模型各項(xiàng)參數(shù)進(jìn)行設(shè)置,得到如圖7所示的實(shí)驗(yàn)結(jié)果.
圖7 優(yōu)選方案篩分效率、阻礙粒排出率變化規(guī)律Fig.7 The variation law of screening efficiency and hindering particles excretion rate in the optimum scheme
從圖7中可以看出,最佳優(yōu)選方案的動(dòng)態(tài)篩分、篩出效率隨著入料量的增加上升平穩(wěn),2 s后篩分、篩出效率增加迅速,并分別在4.37 s,6.35 s篩分、篩出效率趨于穩(wěn)定.終篩分效率為70.28%,阻礙粒排出率為79.52%.篩分和篩出效率均衡,有利于原煤顆粒透篩及物料排出,有效防堵.
2)對(duì)各自由度的最佳激振模式、頻率、振幅、外在水分進(jìn)行正交實(shí)驗(yàn).得到篩分效率對(duì)外在水分因素最敏感,自由度次之,振幅最弱.并對(duì)優(yōu)選的最佳組合方案進(jìn)行模擬實(shí)驗(yàn),得出其篩分效率、阻礙粒排出率均衡,有利于實(shí)際生產(chǎn)中潮濕原煤顆粒的透篩及物料排出,有效防堵.
3)運(yùn)用三維離散法能夠比較精確地模擬并預(yù)測(cè)篩分過程中瞬時(shí)篩分效率、阻礙粒排出率.研究結(jié)果為多維振動(dòng)篩分理論研究以及新型多維振動(dòng)篩分設(shè)備的研制提供了參考.
[1] 趙躍民,劉初生.干法篩分理論及應(yīng)用[M].北京:科學(xué)出版社,1999:72-78.
ZHAO Yue-min,LIU Chu-sheng.Theory and application of dry screening [M].Beijing:Science Press,1999:72-78.
[2] 陳惜明,趙躍民,朱紅,等.潮濕細(xì)粒物料的篩分粘附模型研究[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2002,31(5):407-410.
CHEN Xi-ming,ZHAO Yue-min,ZHU Hong,et al.Adhesive model of moist fine material[J].Journal of China University of Mining and Technology,2002,31(5):407-410.
[3] 陳惜明,趙躍民,朱紅,等.潮濕細(xì)粒物料篩分過程中粘附理論的研究[J].江蘇煤炭,2003(4):38-40.
CHEN Xi-ming, ZHAO Yue-min, ZHU Hong,et al.Study on adhesive mechanism in screening fine moist material[J].Jiangsu Coal,2003(4):38-40.
[4] 陳惜明,朱紅,趙躍民,等.潮濕細(xì)粒煤用篩分機(jī)械的現(xiàn)狀及發(fā)展[J].煤炭加工與綜合利用,2000(3):6-9.
CHEN Xi-ming,ZHU Hong,ZHAO Yue-min,et al.Present status & progress of screening machines for wetted coal fines[J].Coal Processing & Comprehensive Utilization,2000(3):6-9.
[5] 沈惠平,張會(huì)芳,何寶祥,等.一種新型并聯(lián)運(yùn)動(dòng)振動(dòng)篩及其運(yùn)動(dòng)學(xué)研究與研制[J].機(jī)械設(shè)計(jì),2007,24(6):34-36.
SHEN Hui-ping,ZHANG Hui-fang,HE Bao-xiang,et al.A kind of novel parallel movement vibration sieve and its kinematic research and development[J].Journal of Machine Design,2007,24(6):34-36.
[6] 何寶祥,沈惠平,薛國(guó)新,等.并聯(lián)運(yùn)動(dòng)振動(dòng)篩的篩分特性研究[J].工程設(shè)計(jì)學(xué)報(bào),2011,18(5):365-368.
HE Bao-xiang,SHEN Hui-ping,XUE Guo-xin,et al.Research on the screening characteristics of parallel vibration sieves[J].Chinese Journal of Engineering Design,2011,18(5):365-368.
[7] 趙啦啦,劉初升,閆俊霞,等.顆粒分層過程三維離散元法模擬研究[J].物理學(xué)報(bào),2013,59(3):1870-1875.
ZHAO La-la,LIU Chu-sheng,YAN Jun-xia,et al.Numerical simulation on segregation process of particles using 3D discrete element method[J].Acta Physica Sinica,2013,59(3):1870-1875.
[8] 趙啦啦,劉初升,閆俊霞,等.不同振動(dòng)模式下顆粒分離行為的數(shù)值模擬[J].物理學(xué)報(bào),2010,59(4):2582-2587.
ZHAO La-la,LIU Chu-sheng,YAN Jun-xia,et al.Numerical simulation of particle segregation behavior in different vibration modes[J].Acta Physica Sinica,2010,59(4):2582-2587.
[9] 趙啦啦,劉初升,閆俊霞,等.顆粒篩分過程的三維離散元法模擬[J].煤炭學(xué)報(bào),2010,35(2):307-311.
ZHAO La-la,LIU Chu-sheng,YAN Jun-xia,et al.Numerical simulation of particle screening process based on 3D discrete element method[J].Journal of China Coal Society,2010,35(2):307-311.
[10] CLEARY P W,SINNOTT M D,MORRISON R D.Separation performance of double deck banana screens:part 1:flow and separation for different accelerations[J].Minerals Engineering,2009,22(14):1218-1229.
[11] KRUGGEL-EMDEN H,ELSKAMP F.Modeling of screening processes with the discrete element method involving non-spherical particles[J].Chemical Engineering & Technology,2014,37(5):847-856.
[12] ELSKAMP F,KRUGGEL-EMDEN H,HENNIG M,et al.Benchmarking of process models for continuous screening based on discrete element simulations[J].Minerals Engineering,2015,83(3):78-96.
[13] ODA M,IWASHITA K,KAKIUCHI T.Importance of particle rotation in the mechanics of granular materials[M].Florida:CRC Press,1997:207-214.
[14] 趙啦啦,劉初升,閆俊霞,等.振動(dòng)篩面顆粒流三維離散元法模擬[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2010,39(3):414-419.
ZHAO La-la,LIU Chu-sheng,YAN Jun-xia,et al.Numerical simulation of particles flow on the vibrating screen plate using a 3D discrete element method[J].Journal of China University of Mining & Technology,2010,39(3):414-419.
[15] 高紅利,陳友川,趙永志,等.薄滾筒內(nèi)二元濕顆粒體系混合行為的離散單元模擬研究[J].物理學(xué)報(bào),2011,60(12):124501.
GAO Hong-li,CHEN You-chuan,ZHAO Yong-zhi,et al.Simulation of mixing process for size-type binary wet particulate systems in a rotating horizontal drum by discrete element method[J].Acta Physica Sinica,2011,60(12):124501.
[16] 趙永志,程易.水平滾筒內(nèi)的二元顆粒體系徑向分離模式的數(shù)值模擬研究[J].物理學(xué)報(bào),2008,57(1):322-328.
ZHAO Yong-zhi,CHENG Yi.Numerical simulation of radial segregation patterns of binary granular systems in a rotating horizontal drum[J].Acta Physica Sinica,2008,57(1):322-328.
[17] 趙啦啦,趙躍民,劉初升,等.濕顆粒堆力學(xué)特性的離散元法模擬研究[J].物理學(xué)報(bào),2014,63(3):034501.
ZHAO La-la,ZHAO Yue-min,LIU Chu-sheng,et al.Discrete element simulation of mechanical properties of wet granular pile[J].Acta Physica Sinica,2014,63(3):034501.
[18] MITARAI N,NORI F.Wet granular materials[J].Advances in Physics,2006,55(1/2):1-45.
Study on screening efficiency of moist raw coal particles on3-DOF hybrid vibrating screen
WANG Cheng-jun1,2, ZHANG Tian-yu2, LI Long2, CHEN Jin-yan2, MENG Xiang-rui1
(1. Post-doctoral Mobile Station of Mining Engineering, Anhui University of Science and Technology, Huainan 232001, China;2. School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China)
To study the variation law of screening efficiency of difficult screened moist raw coal particles on the 3-DOF hybrid vibrating screen with two translational and one rotational degree of freedom which was designed independently to research the influence of various vibration parameters, EDEM software was used to simulate the screening process of particles based on DEM. Dynamic screening efficiency and hindering particles excretion rate were used as evaluation indices in simulation screening effect. Then the optimal excitation mode in each combination with all freedom was obtained as well as the effect of vibration direction on moist raw coal particle motion on screen surface. Orthogonal experiment was used in analyzing the effect of various factors on screening efficiency with dynamic screening efficiency as reference value. It was found that the Influence factors were external moisture, vibrational freedom, frequency and amplitude. The optimal screening scheme was used for the simulation experiment and the results verified that multi-dimensional vibration was beneficial to the screening process of difficult screened particles and could prevent jamming the screen holes.
moist raw coal particle; 3-DOF hybrid vibrating screen; vibration mode; screening efficiency; discrete element method (DEM); orthogonal experiment
2015-10-30.
中國(guó)博士后科學(xué)基金資助項(xiàng)目(2013M540507).
王成軍(1978—),男,江蘇漣水人,博士,副教授,碩士生導(dǎo)師,從事并聯(lián)機(jī)構(gòu)、多維振動(dòng)篩分理論與技術(shù)等方面的研究,E-mail:cumt1279@163.com.http://orcid.org//0000-0003-1258-574X
10.3785/j.issn. 1006-754X.2016.03.011
TH 123.1; TD 452
A
1006-754X(2016)03-0264-05
本刊網(wǎng)址·在線期刊:http://www.journals.zju.edu.cn/gcsjxb