潘章源,賀小云,劉秋月,胡文萍,王翔宇,郭曉飛,曹曉涵,狄 冉,儲(chǔ)明星
(中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,農(nóng)業(yè)部畜禽遺傳資源與種質(zhì)創(chuàng)新重點(diǎn)實(shí)驗(yàn)室,北京 100193)
?
綿羊GDF9基因mRNA、DNA和調(diào)控區(qū)序列克隆及其在11個(gè)品種中遺傳多態(tài)性檢測
潘章源,賀小云,劉秋月,胡文萍,王翔宇,郭曉飛,曹曉涵,狄冉*,儲(chǔ)明星*
(中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,農(nóng)業(yè)部畜禽遺傳資源與種質(zhì)創(chuàng)新重點(diǎn)實(shí)驗(yàn)室,北京 100193)
本研究旨在克隆綿羊生長分化因子9(Growth differentiation factor 9,GDF9)基因mRNA、DNA和調(diào)控區(qū)全序列,并檢測其在11個(gè)綿羊品種中的遺傳多態(tài)性,探究GDF9基因與綿羊多羔性狀的關(guān)系。首先應(yīng)用RACE和PCR技術(shù)克隆GDF9基因全長序列,其次利用SNaPshot分型技術(shù)檢測11個(gè)綿羊品種GDF9基因遺傳多態(tài)性。結(jié)果顯示,克隆獲得GDF9基因mRNA全長1 852 bp(GenBank序列號(hào):KR063137),編碼區(qū)兩側(cè)翼分別具有5′-UTR 58 bp(1~58 nt)和3′-UTR 432 bp(1 421~1 852 nt)。進(jìn)一步克隆獲得長為2 898 bp的DNA序列和2 304 bp的調(diào)控區(qū)序列,分析發(fā)現(xiàn)調(diào)控區(qū)序列比數(shù)據(jù)庫序列(NC_019462.1)多兩個(gè)長片段。序列比對發(fā)現(xiàn)了已知突變G260A(G1)和調(diào)控區(qū)新突變-2078C>G。分型結(jié)果顯示,11個(gè)綿羊品種均不含F(xiàn)ecGE、FecGH、FecGT、FecGF、FecGV突變,而G260A和-2078C>G廣泛存在于除草原型藏羊外的各綿羊品種中,G260A表現(xiàn)3種基因型(AA、BB和AB),首次在小尾寒羊和山谷型藏羊中檢測到BB型突變純合子。-2078C>G也存在3種基因型,基因型結(jié)果表明該位點(diǎn)與G260A完全連鎖。關(guān)聯(lián)分析結(jié)果顯示,小尾寒羊AB型產(chǎn)羔數(shù)顯著高于AA型(P<0.05)。本研究完善了綿羊GDF9 mRNA、DNA和調(diào)控區(qū)全長序列,為進(jìn)一步研究GDF9基因功能奠定了基礎(chǔ)。同時(shí)在不同綿羊品種中發(fā)現(xiàn)了G260A和-2078C>G突變,其中G260A作為潛在的有效遺傳標(biāo)記可用于提高綿羊的產(chǎn)羔數(shù)。
綿羊;GDF9基因;mRNA;調(diào)控區(qū);遺傳多態(tài)性
產(chǎn)羔數(shù)是綿羊最重要的繁殖性狀。作為轉(zhuǎn)化生長因子β超家族的一員,GDF9(Growth differentiation factor 9)通過旁分泌方式對卵泡的生長和分化起著重要作用[1-6],并在提高綿羊產(chǎn)羔數(shù)中扮演著重要角色。綿羊GDF9基因位于5號(hào)染色體[7],其包含2個(gè)外顯子和1個(gè)內(nèi)含子,編碼456個(gè)氨基酸,但其成熟蛋白僅由135個(gè)氨基酸殘基組成[8]。GDF9廣泛表達(dá)于湖羊的各個(gè)組織(下丘腦、垂體、卵巢、子宮、輸卵管、心、肝、脾、肺、腎)[9]。對于GDF9多態(tài)性與產(chǎn)羔數(shù)的關(guān)聯(lián)性研究,早在2004年,J.P.Hanrahan等[10]發(fā)現(xiàn)GDF9FecGH(G8)突變與愛爾蘭Cambridge和Belclare綿羊的高繁殖力密切相關(guān)。隨后發(fā)現(xiàn)了多個(gè)與綿羊產(chǎn)羔數(shù)相關(guān)的GDF9突變,包括在巴西Santa Ines綿羊中發(fā)現(xiàn)的FecGE突變[11-12];在冰島Thoka綿羊中發(fā)現(xiàn)的FecGT突變[13];在伊朗Moghani、Ghezel綿羊中發(fā)現(xiàn)的G1突變[14-15];在中國小尾寒羊中發(fā)現(xiàn)的G729T突變[16];以及最近在挪威White 和Finnish綿羊中證實(shí)與產(chǎn)羔數(shù)有關(guān)的FecGF(G7)突變[17-18]。由此可見GDF9基因?qū)d羊多羔性狀起著重要作用,然而通過查詢多個(gè)基因數(shù)據(jù)庫,發(fā)現(xiàn)綿羊GDF9 基因mRNA序列可能不完整,因?yàn)樽铋L一條mRNA(NM_001142888)從起始密碼子開始,且末端無ploy(A)尾,其轉(zhuǎn)錄起始位點(diǎn)和終止位點(diǎn)仍然未知;而DNA和調(diào)控區(qū)也無試驗(yàn)驗(yàn)證性序列,僅為綿羊De novo基因組序列[19],基因組在拼接過程可能出現(xiàn)一些錯(cuò)誤,還需通過多方面驗(yàn)證。同時(shí)針對該基因的多態(tài)性研究主要集中在外顯子區(qū),對于調(diào)控區(qū)鮮見報(bào)道。
本研究應(yīng)用RACE和PCR技術(shù)擴(kuò)增綿羊GDF9 mRNA、DNA和調(diào)控區(qū)序列全長,并檢測其遺傳多態(tài)性,分析其與產(chǎn)羔數(shù)的關(guān)聯(lián)性。為尋找與綿羊產(chǎn)羔數(shù)相關(guān)的分子遺傳標(biāo)記提供遺傳學(xué)依據(jù)。
1.1材料
選擇實(shí)驗(yàn)室前期采集保存于RNA Later(Qiagen,Hilden,Germany)中的小尾寒羊卵巢組織,用于提取總RNA。384只母羊血樣來自11個(gè)綿羊品種,其中小尾寒羊(92只)采自山東鄆城縣,策勒黑羊(30只)采自新疆策勒縣,湖羊(36只)采自江蘇徐州市,多賽特羊(25只)采自內(nèi)蒙古呼和浩特市,澳洲美利奴羊(30只)采自內(nèi)蒙古克什克騰旗,烏珠穆沁羊(29只)采自內(nèi)蒙古正藍(lán)旗,灘羊(35只)采自寧夏鹽池縣,巴音布魯克羊(30只)采自新疆和靜縣,山谷型藏羊(30只)采自西藏貢嘎縣,草原型藏羊(30只)采自西藏當(dāng)雄縣,歐拉羊(17只)采自青海黃南藏族自治州,所有血樣都將用于GDF9基因遺傳多態(tài)性檢測。以上11個(gè)綿羊品種中,小尾寒羊、策勒黑羊、湖羊、澳洲美利奴屬于多羔品種,而多賽特羊、烏珠穆沁羊、灘羊、巴音布魯克羊、山谷型藏羊、草原型藏羊、歐拉羊?yàn)閱胃崞贩N,同時(shí)小尾寒羊具有產(chǎn)羔記錄。
1.2RNA和DNA提取
使用Trizol Reagent (Invitrogen,USA)提取卵巢組織總RNA,溶解于RNase free ddH2O中,-80℃保存。使用血液DNA提取試劑盒(天根,北京)提取血樣DNA,ddH2O溶解,置于-20 ℃?zhèn)溆谩?/p>
1.3引物設(shè)計(jì)與合成
根據(jù)GenBank公布的綿羊GDF9基因序列(NM_001142888和NC_019462.1),利用 NCBI Primer-BLAST軟件分別設(shè)計(jì)RACE GSP引物、DNA擴(kuò)增引物和調(diào)控區(qū)擴(kuò)增引物(表1),以上引物均由生工生物工程(上海)股份有限公司合成。
表1GDF9基因RACE、DNA和調(diào)控區(qū)擴(kuò)增引物
Table 1Primers used for amplification of RACE,DNA,regulatory region ofGDF9 gene
引物Primer引物序列(5'→3')Primersequence退火溫度/℃Annealingtemperature目的片段/bpAmplifiedDNAfragment5'GSP-1GATTACGCCAAGCTTCATGGTGTGAACCGGAGAGCCATAC6512445'GSP-2GATTACGCCAAGCTTGCACTCTCCTGGTCTCTGCGGTGAC6510123'GSP-1GATTACGCCAAGCTTCACTGTTCGGCTCTTCACCCCCTGT6513133'GSP-2GATTACGCCAAGCTTTGTAAGATCGTCCCGTCACCGCAGA65719GDF9-E1-FGDF9-E1-RATGGGGAAATGTGTTCCTTGCTTCCCTCCACCCATTAACC61470GDF9-I1-FGDF9-I1-RTGAGGCTGAGACTTGGTCCTCAGCAGATCCACTGATGGAA581420GDF9-E2-FGDF9-E2-RGGGGAGAAAAGGGACAGAAGTCAATTAAAACCGCACACAGA611493TK-FTK-RCTTGCTGAAGTAGTGCGGGAAGGTAGAGGTGGCGTCTGTTGGATTT562357
1.4RACE擴(kuò)增GDF9全序列
選擇小尾寒羊卵巢RNA,根據(jù)SMARTer RACE 5′/3′ Kit (Clontech Laboratories,Inc.USA)說明書合成cDNA第一條鏈。以第一條鏈為模板,利用上述設(shè)計(jì)好的GSP引物(5′GSP-2和3′GSP-2產(chǎn)物全覆蓋GDF9 CDS序列),按照試劑盒操作說明,通過巢式PCR方法分別擴(kuò)增獲得5′和3′RACE PCR 產(chǎn)物,經(jīng)0.5%瓊脂糖凝膠電泳和DNA凝膠回收試劑盒(BBI,Canada)回收純化,連接至pMD-19T載體,提取質(zhì)粒并送生工生物工程(上海)股份有限公司測序。
1.5GDF9基因DNA和調(diào)控區(qū)序列克隆及其多態(tài)性檢測
利用3對DNA擴(kuò)增引物(GDF9-E1、I1和E2,表1)和1對調(diào)控區(qū)擴(kuò)增引物(TK,表1),根據(jù)TaKaRa ExTaq(TaKaRa,Dalian,China)試劑盒說明書,對10只小尾寒羊樣本基因組DNA進(jìn)行PCR擴(kuò)增,擴(kuò)增產(chǎn)物經(jīng)過DNA凝膠回收試劑盒(BBI,Canada)進(jìn)行回收和純化,連接至pMD-19T載體,提取質(zhì)粒并送生工生物工程(上海)股份有限公司測序。比對分析10只小尾寒羊序列,尋找SNP位點(diǎn)。
1.6SNaPshot分型
針對綿羊GDF9基因新發(fā)現(xiàn)的SNP位點(diǎn)和現(xiàn)有文獻(xiàn)報(bào)道的5個(gè)SNPs位點(diǎn)(FecGE、FecGH、FecGT、FecGF、FecGV),設(shè)計(jì)PCR擴(kuò)增引物和SNaPshot分型引物(表2)。SNaPshot是由美國應(yīng)用生物公司(ABI)開發(fā)的一種基于熒光標(biāo)記單堿基延伸原理的分型技術(shù),其可以快速地對多個(gè)位點(diǎn)進(jìn)行分型,目前已經(jīng)得到廣泛的使用[20-22]。按照SNaPshot分型操作說明,使用擴(kuò)增引物進(jìn)行PCR,擴(kuò)增后的產(chǎn)物通過使用SAP酶(Fermentas)和ExoⅠ酶(New England Biolabs)消化清除里面的殘余引物和dNTP;以純化后的PCR產(chǎn)物為底物,使用SNaPshot分型引物進(jìn)行延伸反應(yīng);延伸產(chǎn)物通過CIP酶(New England Biolabs)純化后,直接使用3730XL測序儀(ABI)檢測基因型。
1.7數(shù)據(jù)分析
對SNP分型結(jié)果統(tǒng)計(jì)基因型頻率、等位基因頻率??紤]到胎次對產(chǎn)羔數(shù)有影響,本研究配合固定效應(yīng)模型[16]進(jìn)行最小二乘分析,比較小尾寒羊產(chǎn)羔數(shù)在不同基因型之間的差異,利用 SPSS 15.0 軟件(SPSS Inc,Chicago,IL,USA)的廣義線性模型(GLM)過程完成。
表2SNaPshot擴(kuò)增和分型引物
Table 2The amplification and genotyping primers of SNaPshot
位點(diǎn)Site變異Variation擴(kuò)增引物AmplificationprimerSNaPshot分型引物SNaPshotgenotypingprimerG260A(G1)[G260A]F:GTTGGAATCTGAGGCTGAGACR:GTGTTGTAGAGGTGGCGTCTGCAGCCAGATGACAGAGCTTTGC-2078C>G[C(-2078)G]F:CGCCGCCAACCCGAGTCCTTR:GCGTCCGATCTACCGGAAGTTTTTTTTTTCGCGCTGTCTCGGGGACCCCTGFecGvFecGEFecGF(G7)FecGH(G8)FecGT[C943T][T1034G][G1111A][C1184T][A1279C]F:CTGAACGACACAAGTGCTCAR:AGGAGTCTGTTAACGACAGGTTGCTGAGGGTGTAAGATCGTCCTTTTTTTTTTTTTTTTTTTTCT-GAGTGAATACTTCAAACAGTGCTGAAGTGGGACAACTGGATTTTTTTTTTTTGCGGTCGGACATCGGTATGGCTTTTTTTTTTTTTTTTTTTACCTGC-CAAGTATAGCCCTTTG
2.1RACE擴(kuò)增GDF9 mRNA完整序列
M.DNA相對分子質(zhì)量標(biāo)準(zhǔn);1~3.5′GSP-2產(chǎn)物(1 095 bp);4~6.空白對照(水);7~10.3′GSP-2產(chǎn)物(929 bp)M.DL2000 DNA marker;1-3.Products of 5′GSP-2 (1 095 bp);4-6.Blank (water);7-10.Products of 3′GSP-2(929 bp)圖1 GDF9 5′RACE片段和3′RACE片段擴(kuò)增產(chǎn)物電泳Fig.1 Electrophoresis of 5′RACE mRNA and 3′RACE mRNA fragments of GDF9 gene
通過5′RACE 和3′RACE,獲得了5′ 端長為1 095 bp和3′ 端長為929 bp的片段(圖1)。序列拼接和比對結(jié)果表明,GDF9 mRNA全長1 852 bp(GenBank序列號(hào):KR063137),包含2個(gè)外顯子,編碼區(qū)為1 368 bp,編碼456個(gè)氨基酸。與GenBank綿羊GDF9 mRNA序列(NM_001142888)相比,5′ 端多58 bp,3′ 端多185 bp(圖2)。GDF9基因編碼區(qū)兩側(cè)翼分別具有5′-UTR 58 bp(1~58 nt)和3′-UTR 432 bp(1 421~1 852 nt)。本研究僅擴(kuò)增出單一條帶,表明GDF9基因在小尾寒羊卵巢中僅存在一種剪接體。
2.2GDF9基因DNA全序列擴(kuò)增及其多態(tài)性分析
利用3對引物分別獲得長為470、1 420和1 493 bp的片段(圖3),測序結(jié)果表明均為目的條帶。對3個(gè)產(chǎn)物片段進(jìn)行拼接,獲得一條長為2 898 bp的DNA序列,序列分析表明其與NC_019462.1數(shù)據(jù)庫序列一致。進(jìn)一步分析比對10只小尾寒羊序列,發(fā)現(xiàn)外顯子1存在一個(gè)錯(cuò)義突變(G260A)(圖4),該突變導(dǎo)致精氨酸變成組氨酸(CGC>CAC),此突變?yōu)橐阎蛔僄1[10]。
2.3GDF9基因5′調(diào)控區(qū)擴(kuò)增及其多態(tài)性分析
首先在小尾寒羊中通過調(diào)控區(qū)擴(kuò)增引物,獲得了長為2 636 bp的擴(kuò)增片段(圖5),覆蓋起始密碼子上游調(diào)控區(qū)2 304 bp,比預(yù)測PCR產(chǎn)物(2 357 bp)長279 bp。為了進(jìn)一步確認(rèn)該結(jié)果,本研究在不同綿羊品種DNA中進(jìn)行PCR擴(kuò)增,結(jié)果均一致。序列分析顯示,測序序列和數(shù)據(jù)庫序列部分一致,從起始密碼子ATG到上游-1 848 bp基本一致,但在-1 848~-2 336 bp間本研究測序結(jié)果比NC_019462.1多兩個(gè)長片段:1 10和1 69 bp(圖6)。10只小尾寒羊序列比對發(fā)現(xiàn),在-2 078 bp位點(diǎn)存在C>G突變(圖7)。
2.4GDF9在11個(gè)綿羊品種中遺傳多態(tài)性分布
對本研究發(fā)現(xiàn)的2個(gè)位點(diǎn)以及GDF9已知的功能位點(diǎn)進(jìn)行SNP分型,發(fā)現(xiàn)11個(gè)綿羊品種均不含F(xiàn)ecGE、FecGH、FecGT、FecGF、FecGV突變,G260A和-2078C>G突變廣泛存在于除了草原型藏羊外的其他各綿羊品種中。其中,首次發(fā)現(xiàn)山谷型藏羊、歐拉羊、策勒黑羊、澳洲美利奴羊和烏珠穆沁羊攜帶G260A突變(表3)。G260A包含AA、BB和AB 3種基因型,其中BB型僅存在于小尾寒羊和山谷型藏羊中。哈迪-溫伯格平衡檢驗(yàn)發(fā)現(xiàn)該位點(diǎn)各基因型頻率在各群體中處于非平衡狀態(tài)。進(jìn)一步分析發(fā)現(xiàn),-2078C>G突變在基因型上表現(xiàn)出與G260A完全連鎖,在基因型頻率和等位基因頻率上二者表現(xiàn)完全一致。通過分析小尾寒羊產(chǎn)羔數(shù)與基因型的關(guān)聯(lián)性(表4),發(fā)現(xiàn)BB突變純合子個(gè)體能繁殖,且產(chǎn)單羔,而AB雜合型的產(chǎn)羔數(shù)顯著高于AA型(P<0.05)。
圖2 GDF9 mRNA序列與NM_001142888序列比對Fig.2 Sequence alignment between GDF9 mRNA and NM_001142888
M.DNA相對分子質(zhì)量標(biāo)準(zhǔn);1~5.GDF9-E1產(chǎn)物(470 bp);6~10.GDF9-I1產(chǎn)物(1 420 bp);11~15.GDF9-E2產(chǎn)物(1 493 bp)M.DL2000 DNA marker;1-5.Products of GDF9-E1 (470 bp);6-10.Products of GDF9-I1 (1 420 bp);11-15.Products of GDF9-E2 (1 493 bp)圖3 GDF9 外顯子1、外顯子2、內(nèi)含子1 PCR擴(kuò)增產(chǎn)物電泳Fig.3 Electrophoresis of exon 1,exon 2,intron 1 of GDF9 gene
圖4 G260A基因型測序峰Fig.4 Sequencing profiles of G260A site
M.DNA相對分子質(zhì)量標(biāo)準(zhǔn);1~8.TK產(chǎn)物M.DL5000 DNA marker;1-8.Products of TK (2 636 bp)圖5 GDF9調(diào)控區(qū)擴(kuò)增產(chǎn)物電泳Fig.5 Electrophoresis of regulatory region of GDF9 gene
圖6 GDF9基因調(diào)控區(qū)與序列比對Fig.6 Sequence alignment between GDF9 regulatory region and NC_019462.1
圖7 調(diào)控區(qū)突變位點(diǎn)-2078C>G測序峰Fig.7 Sequencing profiles of -2078C>G site
表3不同綿羊品種GDF9基因G260A和-2078C>G位點(diǎn)基因型頻率及等位基因頻率
Table 3Allele and genotype frequencies of G260A and -2078C>G mutations ofGDF9 gene in different sheep breeds
品種Breed個(gè)體數(shù)NumberG260A基因型頻率Genotypefrequency等位基因頻率AllelefrequencyAAABBBAB小尾寒羊Small-tailHan920.935(86)0.054(5)0.011(1)0.9620.038策勒黑羊CeleBlack300.833(25)0.167(5)0.000(0)0.9170.083湖羊Hu360.917(33)0.083(3)0.000(0)0.9580.042多賽特羊Dorset250.920(23)0.080(2)0.000(0)0.9600.040澳洲美利奴羊AustralianMerino300.733(22)0.267(8)0.000(0)0.8660.134山谷型藏羊ValleyTibetan300.733(22)0.233(7)0.033(1)0.850.150草原型藏羊PrairieTibetan301.000(30)0.000(0)0.000(0)1.0000.000巴音布魯克羊Bayinbuluke300.800(24)0.200(6)0.000(0)0.9000.100烏珠穆沁Ujumqin290.897(26)0.103(3)0.000(0)0.9480.052歐拉羊Oula170.882(15)0.118(2)0.000(0)0.9410.059灘羊Tan350.914(32)0.086(3)0.000(0)0.9570.043品種Breed個(gè)體數(shù)Number-2078C>G基因型頻率Genotypefrequency等位基因頻率AllelefrequencyCCCDDDCD小尾寒羊Small-tailHan920.935(86)0.054(5)0.011(1)0.9620.038策勒黑羊CeleBlack300.833(25)0.167(5)0.000(0)0.9170.083湖羊Hu360.917(33)0.083(3)0.000(0)0.9580.042多賽特羊Dorset250.920(23)0.080(2)0.000(0)0.9600.040澳洲美利奴羊AustralianMerino300.733(22)0.267(8)0.000(0)0.8660.134山谷型藏羊ValleyTibetan300.733(22)0.233(7)0.033(1)0.8500.150草原型藏羊PrairieTibetan301.000(30)0.000(0)0.000(0)1.0000.000巴音布魯克羊Bayinbuluke300.800(24)0.200(6)0.000(0)0.9000.100烏珠穆沁Ujumqin290.897(26)0.103(3)0.000(0)0.9480.052歐拉羊Oula170.882(15)0.118(2)0.000(0)0.9410.059灘羊Tan350.914(32)0.086(3)0.000(0)0.9570.043
表4小尾寒羊GDF9基因G260A突變不同基因型個(gè)體的產(chǎn)羔數(shù)
Table 4The litter size of individuals with different genotypes ofGDF9 G260A mutation in Small-tail Han sheep (mean士SD)
突變位點(diǎn)Mutationsite基因型Genotype個(gè)體數(shù)Number產(chǎn)羔數(shù)LittersizeG260AAA862.16±0.318aAB52.80±0.248b
同列小寫字母不同表示差異顯著(P<0.05)
Data marked with the different superscripts within the same rank differ significantly (P<0.05)
本研究克隆了綿羊GDF9 mRNA序列,結(jié)果與前人研究一致[8],GDF9包含2個(gè)外顯子,一個(gè)內(nèi)含子,編碼區(qū)長1 368 bp,但相比前人研究,本研究拓展了該基因的5′-UTR 58 bp和3′-UTR 185 bp,確定其轉(zhuǎn)錄起始位點(diǎn)位于-58 bp,這對研究GDF9基因表達(dá)調(diào)控機(jī)制具有重要作用。進(jìn)一步克隆獲得2 898 bp的DNA序列和2 304 bp的調(diào)控區(qū)序列,序列比對發(fā)現(xiàn)DNA序列與NCBI數(shù)據(jù)庫序列一致,但是調(diào)控區(qū)序列出現(xiàn)了不一致的結(jié)果,在本研究的綿羊品種中擴(kuò)增產(chǎn)物長度均為2 636 bp,比NCBI數(shù)據(jù)的序列NC_019462.1多2個(gè)長片段,由于NC_019462.1為Texel羊的序列,是否在Texel羊中存在缺失還有待進(jìn)一步的證明。
目前GDF9基因在各綿羊品種中的遺傳多態(tài)性被廣泛研究,本研究發(fā)現(xiàn)的一個(gè)突變?yōu)镚260A,該突變在2004年由J.P.Hanrahan等[10]已經(jīng)對其報(bào)道,并命名為G1突變,但未將其作為效應(yīng)位點(diǎn)。然而隨后的研究發(fā)現(xiàn),G260A突變雜合子可增加Moghani和Ghezel母羊的產(chǎn)羔數(shù),且突變純合子母羊表現(xiàn)出正常的生殖能力[14],在97個(gè)個(gè)體中,5只G260A位點(diǎn)野生型的個(gè)體產(chǎn)雙羔(6.3%);13只G260A位點(diǎn)突變雜合型個(gè)體中7只產(chǎn)雙羔(53.8%);4只G260A位點(diǎn)突變純合型個(gè)體都能繁殖,且產(chǎn)單羔。最近伊朗的Afshari、Baluchi、Makui和Mehraban綿羊也表現(xiàn)出雜合子產(chǎn)羔數(shù)顯著高于野生型[15],這表明G260A確實(shí)對綿羊繁殖力具有一定效應(yīng)。當(dāng)前已經(jīng)在全世界多個(gè)綿羊品種中檢測到G260A位點(diǎn),包括Cambridge、Belclare[10],Moghani,Ghezel,Afshari,Baluchi,Makui,Mehraban[14,15],Garole,Bonpala[23-24],Chios,Karagouniki[25],Araucano Creole[26],德國肉用美利奴羊、巴音布魯克羊、小尾寒羊、湖羊、洼地綿羊、多賽特、特克塞爾、杜泊羊[27-29],其中僅在Moghani、Ghezel、Baluchi、Makui和Chios綿羊中檢測到突變純合子[14-15,25]。本研究首次在山谷型藏羊、歐拉羊、策勒黑羊、澳洲美利奴和烏珠穆沁羊中檢測到該位點(diǎn),且在小尾寒羊和山谷型藏羊中檢測到突變純合子BB型。該突變位點(diǎn)主要以雜合子形式存在,這可能與之前報(bào)道的純合子突變不利于其繁殖有關(guān)[14-15],小尾寒羊BB純合子表現(xiàn)出產(chǎn)單羔印證了這一點(diǎn)。本研究發(fā)現(xiàn)該位點(diǎn)雖然在多羔品種和單羔品種中不存在基因型分布差異,但是在小尾寒羊中G260A突變AB型個(gè)體產(chǎn)羔數(shù)顯著高于AA型(P<0.05),說明該位點(diǎn)可能僅在小尾寒羊中具有一定效應(yīng),或在小尾寒羊中該位點(diǎn)與致因位點(diǎn)存在搭車效應(yīng),且在本研究中AB型個(gè)體僅為5只,該位點(diǎn)是否為致因位點(diǎn)還待進(jìn)一步的研究。綜上所述,雖然G260A不能確認(rèn)為致因位點(diǎn),但該位點(diǎn)對一些綿羊多羔具有一定的效應(yīng),用于指導(dǎo)小尾寒羊多羔育種具有一定的意義,可作為潛在的有效遺傳標(biāo)記。
本研究同時(shí)將GDF9基因多態(tài)性研究聚焦在調(diào)控區(qū),并發(fā)現(xiàn)調(diào)控區(qū)新突變-2078C>G,且該位點(diǎn)和G260A位點(diǎn)完全連鎖。G260A雖改變了第87位氨基酸,但該位置并不涉及成熟蛋白的功能活性[10]。而最近的一些研究表明,調(diào)控區(qū)的突變將會(huì)直接影響基因的表達(dá)水平[30-32],新發(fā)現(xiàn)的-2078C>G突變位于5′調(diào)控區(qū),可能對GDF9基因表達(dá)具有調(diào)控作用,G260A突變的效應(yīng)是否為-2078C>G引起的,這值得進(jìn)一步深入研究。
克隆獲得綿羊GDF9基因mRNA全長序列1 852 bp、DNA序列2 898 bp和調(diào)控區(qū)序列2 304 bp,并發(fā)現(xiàn)了已知突變G260A(G1)和調(diào)控區(qū)新突變-2078C>G。11個(gè)綿羊品種均不含F(xiàn)ecGE、FecGH、FecGT、FecGF、FecGV突變,但G260A和-2078C>G廣泛存在于除草原型藏羊外的各綿羊品種中。G260A和-2078C>G均存在3種基因型,-2078C>G在基因型上表現(xiàn)出與G260A完全連鎖。在小尾寒羊中,G260A位點(diǎn)AB型個(gè)體產(chǎn)羔數(shù)顯著高于AA型(P<0.05)。
[1]GALLOWAY S M,MCNATTY K P,CAMBRIDGE L M,et al.Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner[J].NatGenet,2000,25(3):279-283.
[2]DAVIS G H.Major genes affecting ovulation rate in sheep[J].GenetSelEvol,2005,37(Suppl 1):S11-S23.
[3]KAIVO-OJA N,BONDESTAM J,KAMARAI-NEN M,et al.Growth differentiation factor-9 induces Smad2 activation and inhibin B production in cultured human granulosa-luteal cells[J].JClinEndocrinolMetab,2003,88(2):755-762.
[4]ELVIN J A,CLARK A T,WANG P,et al.Paracrine actions of growth differentiation factor-9 in the mammalian ovary[J].MolEndocrinol,1999,13(6):1035-1048.
[5]MCGRATH S A,ESQUELA A F,LEE S J.Oocyte-specific expression of growth/differentiation factor-9[J].MolEndocrinol,1995,9(1):131-136.
[6]DONG J,ALBERTINI D F,NISHIMORI K,et al.Growth differentiation factor-9 is required during early ovarian folliculogenesis[J].Nature,1996,383:531-535.
[7]SADIGHI M,BODENSTEINER K J,BEATTIE A E,et al.Genetic mapping of ovine growth differentiation factor 9 (GDF9) to sheep chromosome 5[J].AnimGenet,2002,33(3):244-245.
[8]BODENSTEINER K J,CLAY C M,MOELLER C L,et al.Molecular cloning of the ovine growth/differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries[J].BiolReprod,1999,60(2):381-386.
[9]胡冬利,李齊發(fā),徐業(yè)芬,等.湖羊生長分化因子9 (GDF9)基因組織表達(dá)特征、mRNA 表達(dá)水平與SNPs分析[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2010,18(3):533-538.
HU D L,LI Q F,XU Y F,et al.The tissue expression profile,mRNA expression level and SNPs analysis on GDF9 gene in Hu sheep[J].JournalofAgriculturalBiotechnology,2010,18(3):533-538.(in Chinese)
[10]HANRAHAN J P,GREGAN S M,MULSANT P,et al.Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovisaries)[J].BiolReprod,2004,70(4):900-909.
[11]MELO E O,SILVA B D M,CASTRO E A,et al.A novel mutation in the Growth and Differentiation Factor 9 (GDF9) gene is associated,in homozygosis,with increased ovulation rate in Santa Ines sheep[J].BiolReprod,2008,78:141,371.
[12]SILVA B D M,CASTRO E A,SOUZA C J H,et al.A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep[J].AnimGenet,2011,42(1):89-92.
[13]NICOL L,BISHOP S C,PONG-WONG R,et al.Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep[J].Reproduction,2009,138(6):921-933.
[14]BARZEGARI A,ATASHPAZ S,GHABILI K,et al.Polymorphisms in GDF9 and BMP15 associated with fertility and ovulation rate in Moghani and Ghezel sheep in Iran[J].ReprodDomestAnim,2010,45(4):666-669.
[15]JAVANMARD A,AZADZADEH N,ESMAILIZADEH A K.Mutations in bone morphogenetic protein 15 and growth differentiation factor 9 genes are associated with increased litter size in fat-tailed sheep breeds[J].VetResCommun,2011,35(3):157-167.
[16]CHU M X,YANG J,F(xiàn)ENG T,et al.GDF9 as a candidate gene for prolificacy of Small Tail Han sheep[J].MolBiolRep,2011,38(8):5199-5204.
[17]VAGE D I,HUSDAL M,KENT M P,et al.A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep[J].BMCGenet,2013,14:1.
[18]MULLEN M P,HANRAHAN J P.Direct evidence on the contribution of a missense mutation in GDF9 to variation in ovulation rate of Finnsheep[J].PLoSOne,2014,9(4):e95251.
[19]JIANG Y,XIE M,CHEN W,et al.The sheep genome illuminates biology of the rumen and lipid metabolism[J].Science,2014,344(6188):1168-1173.
[20]TOUATI A,BLOUIN Y,SIRAND-PUGNET P,et al.Molecular epidemiology of mycoplasma pneumoniae:genotyping using single nucleotide polymorphisms and SNaPshot technology[J].JClinMicrobiol,2015,53(10):3182-3194.
[21]DANIEL R,SANTOS C,PHILLIPS C,et al.A SNaPshot of next generation sequencing for forensic SNP analysis[J].ForensicSciIntGenet,2015,14:50-60.
[22]YANG L,SUN H Y,CHEN D Z,et al.Application of multiplex SNaPshot assay in measurement of PLAC4 RNA-SNP allelic ratio for noninvasive prenatal detection of trisomy 21[J].PrenatalDiag,2014,34(2):139-144.
[23]POLLEY S,DE S,BRAHMA B,et al.Polymorphism of BMPR1B,BMP15 and GDF9 fecundity genes in prolific Garole sheep[J].TropAnimHealthPro,2010,42(5):985-993.
[24]ROY J,POLLEY S,DE S,et al.Polymorphism of fecundity genes (FecB,F(xiàn)ecX,and FecG) in the Indian Bonpala sheep[J].AnimBiotechnol,2011,22(3):151-162.
[25]LIANDRIS E,KOMINAKIS A,ANDREADOU M,et al.Associations between single nucleotide polymorphisms of GDF9 and BMP15 genes and litter size in two dairy sheep breeds of Greece[J].SmallRuminantRes,2012,107(1):16-21.
[26]PAZ E,QUINONES J,BRAVO S,et al.Identification of G1 and G8 polymorphisms of GDF9 gene in Araucano creole sheep[J].ArchMedVet,2014,46(2):327-331.
[27]左北瑤,錢宏光,劉佳森,等.德國肉用美利奴羊BMPR-IB、BMP15和GDF9基因10個(gè)突變位點(diǎn)的多態(tài)性檢測分析[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,35(3):114-120.
ZUO B Y,QIAN H G,LIU J S,et al.Detection of the 10 mutations of BMPR-IB,BMP15 and GDF9 gene in German Mutton Merino sheep[J].JournalofNanjingAgriculturalUniversity,2012,35(3):114-120.(in Chinese)
[28]ZUO B Y,QIAN H G,WANG Z Y,et al.A study on BMPR-IB genes of Bayanbulak sheep[J].AsianAustralJAnim,2013,26(1):36-42.
[29]古麗格娜,艾買提·買買提,於建國,等.7種綿羊和4種山羊GDF9基因G1突變檢測[J].中國草食動(dòng)物科學(xué),2015,35(4):1-4.
GULIGENA,AIMAITI·MAIMAITI,YU J G,et al.Detection of the G1 mutation of the GDF9 gene in seven sheep and four goat breeds[J].ChinaHerbivoresScience,2015,35(4):1-4.(in Chinese)
[30]PARK C K,LEE S H,KIM J Y,et al.Expression level of hTERT is regulated by somatic mutation and common single nucleotide polymorphism at promoter region in glioblastoma[J].Oncotarget,2014,5(10):3399-3407.
[31]MAHAJAN M,YADAV S K.Gain of function mutation in tobacco MADS box promoter switch on the expression of flowering class B genes converting sepals to petals[J].MolBiolRep,2014,41(2):705-712.
[32]HUANG J,DANG R,TORIGOE D,et al.Genetic variation in the GDNF promoter affects its expression and modifies the severity of Hirschsprung’s disease (HSCR) in rats carrying Ednrb mutations[J].Gene,2016,575(1):144-148.
(編輯郭云雁)
Cloning and Genetic Polymorphism Analysis of mRNA,DNA and Regulatory Region of OvineGDF9 Gene in 11 Breeds
PAN Zhang-yuan,HE Xiao-yun,LIU Qiu-yue,HU Wen-ping,WANG Xiang-yu,GUO Xiao-fei,CAO Xiao-han,DI Ran*,CHU Ming-xing*
(KeyLaboratoryofFarmAnimalGeneticResourcesandGermplasmInnovationofMinistryofAgriculture,InstituteofAnimalScience,ChineseAcademyofAgriculturalSciences,Beijing100193,China)
The aim of this study was to clone the mRNA,DNA and regulatory region sequence of ovineGDF9 gene,detect its genetic polymorphism in 11 sheep breeds,and search for the molecular genetic markers related to sheep litter size.The RACE and PCR technologies were used to clone full-length sequence of ovineGDF9 gene,and SNaPshot was performed to detect the polymorphisms ofGDF9 gene in 11 breeds.A 1 852 bp full-length mRNA of ovineGDF9 gene (GenBank No.:KR063137) was obtained,which contains 58 bp 5′-UTR and 432 bp 3′-UTR.In addition,2 898 bp of DNA sequence and 2 304 bp of regulatory region sequence were amplified.Compared with the sequence of NC_019462.1,the result had 2 more fragments in regulatory region.The genetic polymorphism analysis showed that a known mutation G260A (G1) and a novel mutation -2078C>G within regulatory region were identified.The genotyping results showed that 11 sheep breeds were free ofFecGE,F(xiàn)ecGH,F(xiàn)ecGT,F(xiàn)ecGF,F(xiàn)ecGVmutations,while the G260A and -2078C>G were widespread in all sheep except Prairie Tibetan sheep.G260A contained 3 genotypes AA,BB and AB,but the BB genotype only presented in Small-tail Han sheep and Valley Tibetan sheep.-2078C>G also included 3 genotypes,in which the genotype and allele frequencies were exactly the same with G260A.It seems that -2078C>G was complete linkage with G260A.Association analysis in Small-tail Han sheep showed that the litter size of individuals with AB genotype was significantly higher than that of AA genotype (P<0.05).We improved the mRNA,DNA and regulatory region sequences of ovineGDF9,which provided a foundation for further functional study ofGDF9 gene.Meanwhile,G260A and -2078C>G mutations were found in different sheep breeds,and G260A site could be a potential genetic marker for improving litter size in sheep.
sheep;GDF9 gene;mRNA;regulatory region;genetic polymorphism
10.11843/j.issn.0366-6964.2016.08.005
2015-12-14
中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ASTIP-IAS13);國家肉羊產(chǎn)業(yè)技術(shù)體系專項(xiàng)(CARS-39);國家自然科學(xué)基金項(xiàng)目(31472078);國家轉(zhuǎn)基因科技重大專項(xiàng)(2016ZX08009-003-006;2016ZX08010-005-003);內(nèi)蒙古自治區(qū)戰(zhàn)略性新興產(chǎn)業(yè)發(fā)展專項(xiàng)資金計(jì)劃
潘章源(1986-),男,江西贛州人,博士,主要從事動(dòng)物遺傳育種與繁殖研究,E-mail:pzq170450077@163.com
狄 冉,副研究員,E-mail:dirangirl@163.com;儲(chǔ)明星,研究員,E-mail:mxchu@263.net
S826;S821.2
A
0366-6964(2016)08-1555-10