南昌三中
張金生
?
構(gòu)造“好”函數(shù),巧證不等式
——對(duì)2016年全國(guó)1卷(乙卷)理科數(shù)學(xué)第21題反思
南昌三中
張金生
函數(shù)、導(dǎo)數(shù)與不等式是中學(xué)數(shù)學(xué)中最重要的內(nèi)容,近年來(lái)函數(shù)導(dǎo)數(shù)不等式題型常作為高考?jí)狠S題,對(duì)考生來(lái)說(shuō)如何根據(jù)所要證的不等式構(gòu)造恰當(dāng)?shù)暮瘮?shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,借助單調(diào)性比較函數(shù)值的大小,以期達(dá)到證明不等式的目的是一個(gè)難點(diǎn).本文以今年全國(guó) 1 卷 (乙卷) 理科數(shù)學(xué)第21題和幾道模擬試題為例,說(shuō)明如何構(gòu)造一個(gè)好函數(shù),求導(dǎo)研究函數(shù)的性質(zhì),利用函數(shù)的單調(diào)性和極值等性質(zhì)去解決問(wèn)題,希望能拋磚引玉.
例1(2016 年全國(guó) 1 卷 (乙卷) 理科數(shù)學(xué)第21題)已知函數(shù)f(x)=(x-2)ex+a(x-1)2有兩個(gè)零點(diǎn).(1)求a的取值范圍;(2)設(shè)x1,x2是f(x)的兩個(gè)零點(diǎn),證明:x1+x2<2
分析:該題第 (1) 小題是典型的零點(diǎn)個(gè)數(shù)問(wèn)題,可用分離變量法,建立一個(gè)新函數(shù),求導(dǎo)研究函數(shù)圖象和性質(zhì),考查了函數(shù)與方程、分類(lèi)討論與數(shù)形結(jié)合思想;第 (2) 小題是典型的極值點(diǎn)偏移的問(wèn)題,根據(jù)對(duì)稱(chēng)化構(gòu)造一個(gè)函數(shù)即可.
(2)由(1),不妨設(shè)x1<1 該題并不陌生,目前全國(guó)各地的模擬題中頻繁出現(xiàn)極值點(diǎn)偏移的試題,比如下面例題2: 例2(南昌市2015-2016重點(diǎn)中學(xué)高三月考21題) 所以2016 年全國(guó) 1 卷 (乙卷) 理科數(shù)學(xué)第21題對(duì)學(xué)習(xí)能力強(qiáng)知識(shí)面廣的考生較有利. 構(gòu)造函數(shù)在解決不等式等問(wèn)題中之所以顯示出這么大的作用,根源在于函數(shù)思想的巨大威力,正如大數(shù)學(xué)家笛卡兒所說(shuō):一切問(wèn)題都可以轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,一切數(shù)學(xué)問(wèn)題又可以轉(zhuǎn)化為函數(shù)問(wèn)題.而構(gòu)造函數(shù)正是將問(wèn)題轉(zhuǎn)化為函數(shù)問(wèn)題的首要一步,如何學(xué)會(huì)構(gòu)造恰當(dāng)?shù)暮瘮?shù),應(yīng)用函數(shù)的性質(zhì)去解決問(wèn)題請(qǐng)繼續(xù)看以下例題. ∴以Q為坐標(biāo)原點(diǎn),分別以QA,QB,QP為x,y,z軸建立如圖所示空間直角坐標(biāo)系o-xyz. 解:(Ⅰ)切線(xiàn)方程y=2x-1. 例4已知函數(shù)f(x)=ln(1+x)-x,g(x)=xlnx.(1)求函數(shù)f(x)的最大值; 通過(guò)以上典例的分析,可以看出構(gòu)造一個(gè)“好”函數(shù)不但是一種解題的好方法,也是掌握函數(shù)與方程思想的一條好途徑.將證明或求解的不等式轉(zhuǎn)化為函數(shù)的問(wèn)題,然后利用求導(dǎo)去研究函數(shù)性質(zhì)證明不等式,關(guān)鍵在于轉(zhuǎn)化為什么樣的函數(shù).這就要求從被證(解)的不等式的形狀,特點(diǎn)入手,發(fā)生聯(lián)想.本著“縱向深入,橫向聯(lián)系”的原則,合理的構(gòu)造函數(shù)模型.達(dá)到啟發(fā)學(xué)生思維,開(kāi)拓解題途徑的效果.二、引入新變量,構(gòu)造“好”函數(shù)
二、巧設(shè)主元,構(gòu)造“好”函數(shù)