陸興華
(廣東工業(yè)大學(xué) 華立學(xué)院,廣東 廣州 511325)
姿態(tài)融合濾波的無人機(jī)抗干擾控制算法*
陸興華
(廣東工業(yè)大學(xué) 華立學(xué)院,廣東 廣州 511325)
提出一種基于姿態(tài)融合濾波的無人機(jī)(UAV)抗干擾控制算法。分析無人機(jī)飛行的運動模型,構(gòu)建無人機(jī)在飛行的姿態(tài)參量約束下的運動方程,設(shè)計擴(kuò)展卡爾曼濾波器進(jìn)行干擾濾波,實現(xiàn)飛行姿態(tài)參量信息融合,以捷聯(lián)慣導(dǎo)傳輸?shù)綀?zhí)行器的姿態(tài)融合誤差為控制目標(biāo)進(jìn)行控制算法優(yōu)化。仿真實驗結(jié)果表明:采用該方法進(jìn)行無人機(jī)的姿態(tài)信息融合和控制,輸出的姿態(tài)信息參量具有較高的精度,誤差收斂到最小,控制性能較好,抗干擾能力較強(qiáng),保障了無人機(jī)的穩(wěn)定飛行。
無人機(jī); 飛行控制; 姿態(tài)角; 濾波
傳統(tǒng)方法中,對無人機(jī)(UAV)[1]飛行控制的算法研究主要有基于模糊PID神經(jīng)網(wǎng)絡(luò)控制的飛行控制算法、基于粒子群算法的無人機(jī)飛行控制算法,基于自適應(yīng)噪聲抵消的飛行控制算法和基于智能仿生群控制的飛行控制算法等[2~5]。上述方法在進(jìn)行無人機(jī)飛行控制設(shè)計中,只針對干擾強(qiáng)度較小的控制界面進(jìn)行擾動校正,對強(qiáng)干擾下的無人機(jī)姿態(tài)穩(wěn)定性控制的效果不好。對此,相關(guān)文獻(xiàn)進(jìn)行了算法改進(jìn)設(shè)計,其中,文獻(xiàn)[6]提出一種基于自適應(yīng)反演積分的無人機(jī)飛行控制擾動誤差修正算法。建立無人機(jī)的縱向運動模型,在速度坐標(biāo)系、體坐標(biāo)系、彈道坐標(biāo)系和地面坐標(biāo)系中進(jìn)行無人機(jī)的控制參量約束模型構(gòu)建,得到無人機(jī)縱向運動數(shù)學(xué)模型和控制模型,但是該控制算法計算開銷較大,姿態(tài)穩(wěn)定性控制受到不確定參量的影響較嚴(yán)重,需要進(jìn)行算法改進(jìn)設(shè)計;文獻(xiàn)[7]提出一種基于全局漸近跟蹤誤差補(bǔ)償和模糊PID變結(jié)構(gòu)控制的飛行器控制設(shè)計方法,算法有效提高飛行控制的導(dǎo)向性和自適應(yīng)制導(dǎo)性能,但該控制方法的誤差收斂性不好,抗干擾能力不強(qiáng)。
針對上述問題,本文提出一種基于姿態(tài)融合濾波的無人機(jī)抗干擾控制算法。首先構(gòu)建無人機(jī)飛行的運動方程和控制對象模型,進(jìn)行控制約束特征分析,以此為基礎(chǔ)構(gòu)建控制目標(biāo)函數(shù),分析無人機(jī)在飛行中受到的影響因素,設(shè)計擴(kuò)展卡爾曼濾波器(extended Kalman filter,EKF)進(jìn)行干擾濾波,實現(xiàn)姿態(tài)參量信息融合,達(dá)到抗干擾控制算法改進(jìn)設(shè)計的目的,最后通過仿真實驗進(jìn)行了性能測試,得出有效性結(jié)論。
1.1 無人機(jī)飛行的運動模型
(1)
無人機(jī)的空間運動是一個封閉的線性反饋過程,考慮模型的非線性特性和不確定性,使用歐拉角方法計算姿態(tài)角,通過對姿態(tài)特征進(jìn)行線性自回歸分解,采用四元素方法求無人機(jī)陀螺儀的操舵信息參數(shù),通過求得無人機(jī)飛行姿態(tài)角,在四元素組合下,構(gòu)建運動坐標(biāo)系,如下
(2)
同時,對系統(tǒng)某些參數(shù)進(jìn)行測量,無人機(jī)的滑翔狀態(tài)下的縱向運動控制參量滿足微分方程
(3)
采用四階Runge-kutta法求解微分方程,再加上自適應(yīng)律,計算無人機(jī)飛行運動的狀態(tài)特征更新值
(4)
式中h為自適應(yīng)迭代的步長。代入歐拉角公式得到無人機(jī)飛行運動的姿態(tài)信息運動方程
θ=arcsin(-T31)
(5)
(6)
(7)
通過對上述運動方程的構(gòu)建,在實際的運行過程中不斷地對系統(tǒng)某些參數(shù)進(jìn)行測量,以此為數(shù)據(jù)基礎(chǔ),進(jìn)行控制執(zhí)行機(jī)構(gòu)的設(shè)計。
1.2 無人機(jī)抗干擾控制對象描述
在上述對無人機(jī)飛行的運動方程構(gòu)建的基礎(chǔ)上,進(jìn)行被控對象描述,分析無人機(jī)控制參量約束模型構(gòu)建,將飛行的陀螺姿態(tài)角作為初始運動參量,受到干擾的偏差為ω(k),對應(yīng)無人機(jī)質(zhì)心加速度的過程噪聲協(xié)方差Q;將飛行控制的點源陣列流型向量作為實時測量角度,偏航操縱的偏差為v(k),對應(yīng)的協(xié)方差為測量噪聲協(xié)方差R。出可以得出,無人機(jī)的縱向運動方程是一組由非線性微分方程組成的動力系統(tǒng),無人機(jī)在進(jìn)行控制參量采集中,采用陀螺儀、加速度計進(jìn)行姿態(tài)信息融合和加速度信息采集[9],得到無人機(jī)飛行中每一個方向?qū)?yīng)姿態(tài)角θ(k)的狀態(tài)方程和測量方程Z(k)可以表示為
θ(k)=Aθ(k-1)+BU(k)+ω(k)
(8)
Z(k)=Hθ(k)+v(k)
(9)
式中A和B為自適應(yīng)加權(quán)相關(guān)參數(shù),H為無人機(jī)的控制測量參數(shù),U(k)為k時刻無人機(jī)的線性擾動控制量。無人機(jī)控制狀態(tài)是建立在狀態(tài)變量和誤差協(xié)方差估計的基礎(chǔ)上,通過對姿態(tài)信息的融合濾波,采用干擾抑制算進(jìn)行濾波器構(gòu)建,得到無人機(jī)飛行狀態(tài)的預(yù)測方程
θ(k/k-1)=Aθ(k-1/k-1)+BU(k)
(10)
式中 無人機(jī)姿態(tài)角的均方誤差方程表示為
P(k/k-1)=AP(k-1/k-1)AT+Q
(11)
式中P(k/k-1)為θ(k/k-1)對應(yīng)的無人機(jī)飛行控制的約束參量。無人機(jī)飛行控制狀態(tài)估計方程
θ(k/k)θ(k/k-1)+Kg(k)[Z(k)-Hθ(k/k-1) ]
(12)
式中Kg(k)為濾波增益。作用在無人機(jī)的總空氣動力的信道向量的增益方程
Kg(k)=(P(k/k-1)HT)/[HP(k/k-1)HT+R]
(13)
通過無人機(jī)飛行控制的約束參量分析,估計無人機(jī)航向的均方誤差方程
P(k/k)=[I-Kg(k)H]P(k/k-1)
(14)
(15)
假定系統(tǒng)在一定時間演變范圍內(nèi)是收斂的,由于干擾向量的分布函數(shù)形式已知,當(dāng)無人機(jī)處于任意姿態(tài)時,無人機(jī)飛行穩(wěn)定性控制下的加速度值為
Ab=[axayaz]T
(16)
[axayaz]T=
(17)
改進(jìn)算法的設(shè)計過程描述如下: 根據(jù)無人機(jī)的飛行狀態(tài),進(jìn)行姿態(tài)信息參量估計,則可計算出俯仰角和橫滾角
(18)
(19)
式中mx和my為離散系統(tǒng)差分信息在OXb軸、OYb軸上的分量;ψm為無人機(jī)在飛行過程中的磁北的航向角;Δψ為磁力計角度(磁偏角);ψ為累積誤差,在縱軸OXb相對于真北的航向角上進(jìn)行抗干擾抑制,得到輸出的控制執(zhí)行舵機(jī)的相位角為
ψ=ψm+Δψ
(20)
無人機(jī)飛行過程中姿態(tài)會不斷變化,存在俯仰角θ和橫滾角γ。對測量組合系統(tǒng)修正
(21)
通過融合更新計算得到捷聯(lián)慣導(dǎo)傳輸?shù)綀?zhí)行器的姿態(tài)融合誤差,在較大的噪聲誤差下,采用姿態(tài)融合和EKF設(shè)計,進(jìn)行誤差跟蹤補(bǔ)償,得到在縱向飛行滑膜面上的相鄰兩時刻角度估計的差值
(22)
(23)
將兩式相減,動態(tài)加速度恒定的情況下,得到無人機(jī)飛行的兩時刻融合的誤差
(24)
通過干擾抑制,在給定頻帶上求得噪聲干擾的協(xié)方差
Cov(f,f)=E[(f-Ef)(f-Ef) ]=E[(f-Ef)2]
(25)
(26)
(27)
通過上述分析,求得無人機(jī)飛行控制的姿態(tài)融合信息,得到飛行控制律優(yōu)化為
(28)
通過上式可見,采用本文設(shè)計的控制方法,經(jīng)過不斷的卡爾曼濾波系數(shù)調(diào)整,可以使得姿態(tài)角的誤差收斂為零,提高控制精度,算法的實現(xiàn)過程描述如圖1所示。
首先構(gòu)建無人機(jī)飛行控制仿真的硬件平臺,采用基于VXI總線的數(shù)據(jù)采集系統(tǒng),進(jìn)行飛行姿態(tài)數(shù)據(jù)采集,通過航向陀螺儀、執(zhí)行舵機(jī)傳感器等設(shè)備進(jìn)行原始的飛行姿態(tài)數(shù)據(jù)信息的采集,輸入到控制系統(tǒng)中進(jìn)行飛行控制系統(tǒng)的數(shù)字信號處理。控制算法采用Matlab編程,進(jìn)行控制程序設(shè)計和仿真,無人機(jī)飛行的俯仰角分別為Δ1=5°,Δ2=8°,假設(shè)擾動干擾的信噪比為0,快拍數(shù)為1 000,自適應(yīng)參數(shù)ε1=0.1,采用本文算法(改進(jìn)的EKF)和傳統(tǒng)的自適應(yīng)EKF控制算法和基本EKF融合算法,進(jìn)行性能對比,以無人機(jī)飛行控制的俯仰角、橫滾角、橫向角為測試指標(biāo),得到控制輸出結(jié)果如圖1所示。
圖1 無人機(jī)抗干擾控制輸出的性能測試Fig 1 Performance test of anti-disturbance control output of unmanned aerial vehicle
由圖可見:采用本文方法進(jìn)行無人機(jī)的姿態(tài)信息融合,輸出的姿態(tài)信息參量具有較高的精度,控制性能較好,抗干擾能力較強(qiáng)。為了定量分析本文方法的控制誤差,以未加入干擾和加入干擾后的無人機(jī)飛行姿態(tài)參量的誤差為測試指標(biāo),得到仿真結(jié)果如圖2所示。
圖2 控制參量誤差分析Fig 2 Error analysis of control parameters
從圖可見:采用本文算法進(jìn)行無人機(jī)飛行控制,誤差收斂到最小,控制品質(zhì)較高,保障了無人機(jī)的穩(wěn)定飛行。
構(gòu)建無人機(jī)飛行的運動方程和控制對象模型,進(jìn)行控制約束特征分析,構(gòu)建無人機(jī)飛行控制目標(biāo)函數(shù),設(shè)計EKF進(jìn)行干擾濾波,實現(xiàn)姿態(tài)參量信息融合,達(dá)到抗干擾控制算法改進(jìn)設(shè)計的目的,研究結(jié)果表明:該控制方法進(jìn)行無人機(jī)飛行控制的品質(zhì)較高,姿態(tài)參量的誤差較小,穩(wěn)定性較高,展示了較好的應(yīng)用價值。
[1]ZhaoShilei,GuoHong,LiuYupeng.Faulttolerantcontrolforlineartime-delaysystembasedontrajectorytracking[J].InformationandControl,2015,44(4):469-473.
[2]MingPingsong,LiuJianchang.Consensusstabilityanalysisofstochasticmulti-agentsystems[J].ControlandDecision,2016,31(3):385-393.
[3]LiT,ZhangJ.Consensusconditionsofmulti-agentsystemswithtime-varyingtopologiesandstochasticcommunicationnoises[J].IEEETransonAutomaticControl,2010,55(9):2043-2057.
[4]MahmoudEE.Complexcompletesynchronizationoftwononidenticalhyperchaoticcomplexnonlinearsystems[J].MathematicalMethodsintheAppliedSciences,2014,37(3):321-328.
[5]PalomaresI,MartinezL,HerreraF.Aconsensusmodeltodetectandmanagenon-cooperativebehaviorsinlargescalegroupdecisionmaking[J].IEEETransonFuzzySystem,2014,22(3):516-530.
[6]DongBo,LiuKeping,LiYuanchun.Decentralizedintegralsli-dingmodecontrolfortimevaryingconstrainedodularandreconfigurablerobotbasedonharmonicdrivetransmission[J].ControlandDecision,2016,31(3):441-447.
[7]ElowitzMB,LeiblerS.Asyntheticoscillatorynetworkoftranscriptionalregulators[J].Nature,2000,403(20):335-338.
[8]MTi微慣性航姿系統(tǒng)/GPS組合技術(shù)研究[D].哈爾濱:哈爾濱工程大學(xué),2009.
[9]TittertonDH.捷聯(lián)慣性導(dǎo)航技術(shù)[M].2版.王秀萍,等,譯.北京:國防工業(yè)出版社,2007.
[10] 秦永元.慣性導(dǎo)航[M].北京:科學(xué)出版社,2005.
Anti-interference control algorithm for UAV based on attitude fusion filtering*
LU Xing-hua
(Huali College,Guangdong University of Technology,Guangzhou 511325,China)
An anti-disturbance control algorithm for UAV based on attitude fusion filtering is proposed.Analyze UAV flight motion model,build equations of motion constrained by UAV flight attitude parameters,design extended Kalman filter for interference filtering,to achieve integration of flight attitude parameter information,taking attitude fusion error that strapdown inertial navigation transmitted to executor as control objectives to optimize control algorithm.Simulation experimental results show that using the method for UAV attitude information fusion and control and output attitude information parameters have high precision,error converges to the minimum,control performance is good,anti-interference ability is strong,which ensure stability of UAV flight.
UAV; flight control; attitude angle; filtering
10.13873/J.1000—9787(2016)07—0116—04
2016—05—06
2015年廣東省教育廳重點平臺及科研項目青年創(chuàng)新人才類項目(自然科學(xué)類)(2015KQNCX218);2012廣東省質(zhì)量工程項目(粵教高函[2012]204號)
TP 276
A
1000—9787(2016)07—0116—04
陸興華(1981-),男,遼寧遼陽人,碩士,講師,主要從事計算機(jī)控制算法、圖形圖像方向的研究。