劉桂芬, 蔡景怡, 楊 楨,2,李 鑫, 仝澤仁
(1.遼寧工程技術(shù)大學(xué) 電氣與控制工程學(xué)院,遼寧 葫蘆島 125105;2.遼寧工程技術(shù)大學(xué) 安全科學(xué)與工程學(xué)院,遼寧 阜新 123000)
基于AEEMD與IWT的電磁輻射信號(hào)去噪研究*
劉桂芬1, 蔡景怡1, 楊 楨1,2,李 鑫1, 仝澤仁1
(1.遼寧工程技術(shù)大學(xué) 電氣與控制工程學(xué)院,遼寧 葫蘆島 125105;2.遼寧工程技術(shù)大學(xué) 安全科學(xué)與工程學(xué)院,遼寧 阜新 123000)
為在復(fù)合煤巖受載破裂電磁輻射(EME)特性研究中更加精準(zhǔn)地采集電磁輻射信號(hào),提出了自適應(yīng)集合經(jīng)驗(yàn)?zāi)B(tài)分解(AEEMD)與改進(jìn)小波閾值(IWT)相結(jié)合的電磁輻射信號(hào)去噪算法,彌補(bǔ)了傳統(tǒng)小波去噪對(duì)小波基存在選擇性的不足。分別采用IWT算法、EMD結(jié)合改進(jìn)小波閾值(EMD-IWT)算法及自適應(yīng)EEMD結(jié)合改進(jìn)小波閾值 (AEEMD-IWT) 算法對(duì)Bumps和Quadchirp兩種加噪信號(hào)進(jìn)行去噪仿真;將三種去噪算法嵌入自主研發(fā)新型煤巖電磁輻射采集系統(tǒng)中,采集復(fù)合煤巖受載破裂電磁輻射信號(hào)并去噪,仿真與實(shí)驗(yàn)結(jié)果證明:AEEMD-IWT電磁輻射去噪算法去噪性能優(yōu)越、使用范圍廣、實(shí)用性強(qiáng)。
電磁輻射; 自適應(yīng)集合經(jīng)驗(yàn)?zāi)B(tài)分解; 改進(jìn)小波閾值; 去噪
煤巖受載變形破裂的過程中釋放具有規(guī)律性的電磁輻射(EME)信號(hào),且電磁輻射的測(cè)量具有非接觸性,電磁輻射預(yù)警技術(shù)成為煤巖動(dòng)力災(zāi)害預(yù)測(cè)預(yù)報(bào)技術(shù)的發(fā)展方向。電磁輻射信號(hào)的準(zhǔn)確采集是電磁輻射預(yù)警技術(shù)的關(guān)鍵,然而實(shí)驗(yàn)室和應(yīng)用現(xiàn)場(chǎng)電磁背景復(fù)雜,實(shí)際測(cè)得的電磁輻射信號(hào)定會(huì)被環(huán)境噪聲污染,有效處理電磁信號(hào)從而獲取真實(shí)信號(hào)特征的問題亟待解決。
目前,電磁輻射信號(hào)去噪主要使用小波閾值[1,2]方法,但其作為非線性、非平穩(wěn)信號(hào)隨機(jī)性強(qiáng),小波算法因小波基選擇性的問題導(dǎo)致其在實(shí)際應(yīng)用中效果差。經(jīng)驗(yàn)?zāi)B(tài)分解(empirical mode decomposition,EMD)能夠?qū)Ψ蔷€性、非平穩(wěn)信號(hào)進(jìn)行線性化和平穩(wěn)化處理,彌補(bǔ)了小波算法選擇小波基的不足;它可以將復(fù)雜的信號(hào)分解成若干個(gè)按頻率高低排列的本征模態(tài)函數(shù)(intrinsic mode function,IMF),可無損失地有效重構(gòu)原始信號(hào),適合處理背景環(huán)境復(fù)雜的電磁輻射信號(hào);但當(dāng)信號(hào)中存在間斷信號(hào)、脈沖干擾以及噪聲時(shí),IMF會(huì)出現(xiàn)模態(tài)混疊現(xiàn)象[3],導(dǎo)致非平穩(wěn)信號(hào)無法分解為平穩(wěn)信號(hào)。
本文針對(duì)傳統(tǒng)小波去噪方法的不足及EMD模態(tài)混疊現(xiàn)象,提出采用自適應(yīng)集合經(jīng)驗(yàn)?zāi)B(tài)分解(adaptive ensemble empirical mode decomposition,AEEMD)與改進(jìn)的小波閾值(improved wavelet threshold,IWT)相結(jié)合的方法,充分發(fā)揮兩種算法的優(yōu)點(diǎn),并應(yīng)用到新型煤巖電磁輻射采集系統(tǒng)的開發(fā)中。
1.1 AEEMD算法
1.1.1 EEMD算法
EEMD算法是在原信號(hào)中加入若干次白噪聲,對(duì)組合信號(hào)進(jìn)行EMD,EEMD算法流程圖如圖1,其中EMD過程見文獻(xiàn)[4]。因?yàn)榘自肼暤哪芰亢统叨确謩e均勻分布在頻域和時(shí)域,且白噪聲具有零均值噪聲的特性,對(duì)多次分解的IMF分量求平均值,噪聲最終將被最大限度地抵消,最后得到逼近真實(shí)信號(hào)的模量。
Huang N E[5]總結(jié)出EEMD中集合平均次數(shù)服從下式
(1)
式中 N為集合平均次數(shù);α為添加輔助白噪聲的幅值標(biāo)準(zhǔn)差σn與原始信號(hào)幅值標(biāo)準(zhǔn)差σ0的比值,即α=σn/σ0;εn為期望的信號(hào)相對(duì)誤差最大值,即輸入信號(hào)與EEMD后IMFs的相對(duì)誤差。
圖1 EEMD算法流程圖Fig 1 Flow chart of EEMD algorithm
1.1.2 AEEMD算法
EEMD中α和N是決定EEMD算法消除模態(tài)混疊現(xiàn)象效果及抵消輔助白噪聲的關(guān)鍵參數(shù)。通常大多數(shù)文獻(xiàn)選擇N=100,α=0.2,但此數(shù)值設(shè)置對(duì)不同信號(hào)的分解效果不一,AEEMD方法能夠根據(jù)實(shí)測(cè)電磁輻射波形特點(diǎn)計(jì)算得到最佳的N,α值,提高信號(hào)分解的準(zhǔn)確性。AEEMD方法流程圖參見圖2。
圖2 AEEMD算法流程圖Fig 2 Flow chart of AEEMD algorithm
其中,使用原始信號(hào)EMD得到的IMF1近似地作為原始信號(hào)高頻成分,文獻(xiàn)[6]證明即使IMF1中出現(xiàn)模態(tài)混疊現(xiàn)象,此方法對(duì)計(jì)算σh的影響是微乎其微的。文獻(xiàn)[7]得出添加輔助白噪聲的準(zhǔn)則
(2)
ε=σh/σ0
(3)
式中 σh為合成信號(hào)中高頻成分的幅值標(biāo)準(zhǔn)差。
1.2IWT算法
IWT算法見式(4)
(4)
算法存在以下優(yōu)越性:1)隨著w的增大,使wj,k與w的差值逐漸減小;2)在噪聲和信號(hào)之間,保障過渡連續(xù)性的前提下,使過渡平滑;3)當(dāng)N→∞時(shí),為軟閾值函數(shù);當(dāng)N→0時(shí),為硬閾值函數(shù),通過N取值的變換來靈活選擇軟硬閾值函數(shù)。
1.3 AEEMD與IWT結(jié)合去噪算法
IWT與AEEMD結(jié)合去噪算法步驟如圖3所示,重構(gòu)信號(hào)計(jì)算
(5)
圖3 AEEMD與IWT結(jié)合算法Fig 3 AEEMD-IWT algorithm
生活中電磁輻射的背景噪聲頻率較高,IMF中高頻段的噪聲能量較多,伴隨著分解階數(shù)的提高,模態(tài)分量中的噪聲能量逐漸消減,前k個(gè)模態(tài)分量為噪聲主導(dǎo),而低頻信號(hào)成分較為純凈,為信號(hào)主導(dǎo),所以對(duì)前k個(gè)IMF進(jìn)行IWT去噪。由文獻(xiàn)[8]所述,將模態(tài)分量IMF能量的全局極小值位置作為噪聲起主導(dǎo)作用和信號(hào)起主導(dǎo)作用的分界點(diǎn),利用連續(xù)均方差準(zhǔn)則進(jìn)行計(jì)算,則
(6)
基于該準(zhǔn)則,分界值k的取值js可由下式求得
(7)
為驗(yàn)證AEEMD與IWT組合去噪算法的有效性,利用Matlab的自帶函數(shù)Bumps和Quadchirp生成信噪比不同的染噪信號(hào),其中Bumps污染信號(hào)信噪比較高,Quadchirp信號(hào)信噪比較低,長(zhǎng)度為1 024,分別采用IWT算法、EMD結(jié)合IWT(EMD-IWT)與AEEMD結(jié)合IWT(AEEMD-IWT)進(jìn)行去噪仿真,其中小波基函數(shù)均選用db6小波函數(shù),進(jìn)行3層分解,去噪仿真波形如圖4(a),(b)所示;計(jì)算去噪前后信號(hào)的信噪比和均方差,計(jì)算結(jié)果如表1所示。
圖4 加噪信號(hào)去噪Fig 4 Denoising on noisy signals
去噪方式Quadchirp加噪信號(hào)信噪比信號(hào)均方差 Quadchirp加噪信號(hào)信噪比信號(hào)均方差加噪信號(hào) 6.917510.3374 1.759813.6857IWT11.33253.81312.332511.8131EMD-IWT13.47842.232512.45623.3261AEEMD-IWT17.52210.588316.23580.7531
信噪比較高的Bumps信號(hào)經(jīng)IWT去噪后,信噪比得到明顯提升,而均方差得到明顯下降;信噪比較低的Quad-chirp信號(hào)經(jīng)過IWT去噪后信噪比和均方差改變幅度不大;兩信號(hào)經(jīng)EMD-IWT和AEEMD-IWT去噪后,信噪比均明顯提高而均方差明顯下降,且AEEMD-IWT對(duì)應(yīng)的計(jì)算數(shù)值顯示出了更好的去噪優(yōu)勢(shì)。通過計(jì)算結(jié)果對(duì)比可得:IWT對(duì)信噪比較高的信號(hào)去噪效果明顯,EMD-IWT和AEEMD-IWT在信噪比高和低情況下均具有比較穩(wěn)定的去噪效果,AEEMD-IWT對(duì)于信噪比高或低都能達(dá)到很好的去噪效果。
3.1 試驗(yàn)總體設(shè)計(jì)
為驗(yàn)證AEEMD-IWT去噪算法對(duì)電磁輻射去噪的優(yōu)越性和實(shí)用性,采用自主研發(fā)新型煤巖電磁輻射采集系統(tǒng)進(jìn)行復(fù)合煤巖受載破裂電磁輻射特性試驗(yàn)。新型煤巖電磁輻射采集系統(tǒng)由寬頻環(huán)形天線、信號(hào)調(diào)理電路和數(shù)據(jù)采集處理模塊構(gòu)成,體積小、采集速度快、抗干擾能力強(qiáng),環(huán)形天線的信號(hào)采集范圍為1 BZ~1 MBZ,信號(hào)調(diào)理電路完成信號(hào)放大和濾波,數(shù)據(jù)采集處理模塊由現(xiàn)場(chǎng)可編程門陣列(FPGA)作為控制核心,數(shù)字信號(hào)處理器(DSP)內(nèi)嵌去噪算法實(shí)現(xiàn)電磁輻射信號(hào)去噪。本次實(shí)驗(yàn)將IWT,EMD—IWT和AEEMD—IWT算法內(nèi)嵌入DSP中,對(duì)采集的電磁輻射信號(hào)用三種算法進(jìn)行去噪處理。試驗(yàn)系統(tǒng)如圖5所示。
圖5 試驗(yàn)系統(tǒng)Fig 5 Experimental system
3.2 試驗(yàn)結(jié)果分析
試驗(yàn)中電磁輻射信號(hào)與應(yīng)力對(duì)應(yīng)曲線如圖6所示。由前人的研究結(jié)論[9,10],根據(jù)應(yīng)力—時(shí)間曲線的變化特點(diǎn),將其分為AB段壓密階段、BC段彈性階段、CD段屈服階段、DE段塑性階段和破壞階段,各階段電磁輻射信號(hào)變化應(yīng)符合如下特點(diǎn):壓密階段、彈性階段、屈服階段電磁輻射強(qiáng)度微弱,整體較為穩(wěn)定,壓密階段信號(hào)強(qiáng)度略高于彈性階段和屈服階段;塑性階段信號(hào)強(qiáng)度明顯提升,信號(hào)波動(dòng)豐富并與應(yīng)力同步達(dá)到峰值;破壞階段信號(hào)與應(yīng)力同步驟降。
圖6 電磁輻射信號(hào)強(qiáng)度與應(yīng)力變化曲線圖Fig 6 EME signal strength and strain variation curve
由圖6可見,去噪前電磁輻射強(qiáng)度整體呈增長(zhǎng)趨勢(shì),但前三個(gè)階段信號(hào)波動(dòng)性較強(qiáng),塑性階段信號(hào)波動(dòng)性較弱,與前人的研究在信號(hào)細(xì)節(jié)變化上差別較大;經(jīng)過IWT和EMD—IWT去噪后,前三個(gè)階段信號(hào)波動(dòng)性有所減緩,塑性階段呈現(xiàn)出波動(dòng)性,且EMD—IWT去噪后的塑性階段波動(dòng)相對(duì)于IWT去噪后更為頻繁;經(jīng)AEEDM—IWT去噪后,前三個(gè)階段信號(hào)強(qiáng)度基本穩(wěn)定,塑性階段信號(hào)波動(dòng)強(qiáng)烈,信號(hào)的整體增長(zhǎng)趨勢(shì)和細(xì)節(jié)波動(dòng)變化均與前人的研究成果存在一致性。由此可見AEEDM—IWT去噪算法對(duì)電磁輻射信號(hào)的去噪效果明顯,能夠較為準(zhǔn)確的還原電磁輻射有效信號(hào)。
1)將AEEMD與IWT兩算法相結(jié)合用于電磁輻射信號(hào)去噪。該算法對(duì)電磁輻射信號(hào)進(jìn)行AEEMD,對(duì)噪聲主導(dǎo)模態(tài)分量進(jìn)行IWT去噪,最后各模態(tài)分量進(jìn)行信號(hào)重構(gòu),從算法理論上有效解決了EMD算法的模態(tài)混疊現(xiàn)象,克服了閾值去噪對(duì)小波基存在選擇性的不足。
2)使用Matlab對(duì)IWT、EMD—IWT和AEEMD—IWT算法的去噪效果進(jìn)行仿真對(duì)比研究,結(jié)果證明:AEEMD—IWT去噪算法對(duì)于信噪比高或低的含噪信號(hào)均適用,且去噪效果相對(duì)于其他兩種算法得到明顯提高。
3)采用自主研制的內(nèi)嵌IWT、EMD—IWT和AEEMD—IWT算法的新型煤巖電磁輻射采集系統(tǒng)采集復(fù)合煤巖受載破裂電磁輻射信號(hào)并去噪,發(fā)現(xiàn)AEEMD—IWT去噪后電磁輻射信號(hào)在整體變化趨勢(shì)和細(xì)節(jié)變化特征上與前人的理論及試驗(yàn)研究成果最為相符,此電磁輻射去噪算法的實(shí)用性較好。
[1] 聶百勝,何學(xué)秋,何 俊,等.電磁輻射信號(hào)的小波變換去噪研究[J].太原理工大學(xué)學(xué)報(bào),2006(5):557-560.
[2] 楊 楨,李 艷,李 鑫,等.改進(jìn)小波變換的煤巖電磁輻射信號(hào)去噪方法[J].遼寧工程技術(shù)大學(xué)學(xué)報(bào):自然科學(xué)版,2015,34(3):410-413.
[3] 孟繁林.集合經(jīng)驗(yàn)?zāi)B(tài)分解的理論及應(yīng)用研究[D].鎮(zhèn)江:江蘇科技大學(xué),2013.
[4] 王 婷.EMD算法研究及其在信號(hào)去噪中的應(yīng)用[D].哈爾濱: 哈爾濱工程大學(xué),2010.
[5] Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc R Soc Lond,1998,454:56-78.
[6] Yannis Kopsinis,Stephen McLaughlin.Development of EMD-based denoising methods inspired by wavelet thresholding[J].IEEE Transactions on Signal Processing,2009(4):1351-1362.
[7] 蔡艷萍,李艾華,徐 斌,等.集成經(jīng)驗(yàn)?zāi)B(tài)分解中加入白噪聲的自適應(yīng)準(zhǔn)則[J].振動(dòng)、測(cè)試與診斷,2011(6):709-714.
[8] Boudraa Abdel Ouahab,Cexus Jean-christophe.EMD-based signal filtering[J].IEEE Transactions on Instrumentation and Mea-surement,2007,56(6):2196-2202.
[9] 姚精明,閆永業(yè),尹光志,等.堅(jiān)硬頂板組合煤巖樣破壞電磁輻射規(guī)律及其應(yīng)用[J].重慶大學(xué)學(xué)報(bào),2011(5):71-75.
[10] 孫曉元,邢云峰,關(guān) 城,等.煤體靜載破壞過程中的微震信號(hào)特征研究[J].煤炭技術(shù),2014(12):195-198.
[11] 楊 楨,付 華,李 鑫.基于小波神經(jīng)網(wǎng)絡(luò)的煤巖破裂電磁輻射預(yù)測(cè)模型研究[J].煤礦機(jī)電,2012(5):19-21.
蔡景怡,通訊作者,E—mail:474114495@qq.com。
Study on EME signal denoising based on AEEMD-IWT algorithm*
LIU Gui-fen1, CAI Jing-yi1, YANG Zhen1,2, LI Xin1, TONG Ze-ren1
(1.College of Electrical and Control Engineering,Liaoning Technical University,Huludao 125105,China; 2.School of Mechanics and Engineering,Liaoning Technical University,Fuxin 123000,China)
In order to collect electromagnetic emission(EME)signals more accurately in EME characteristics study of composed coal-rock loaded deformation and fracture,propose a new EME signal denoising algorithm combined adaptive ensemble empirical mode decomposition(AEEMD)and with improved wavelet threshold(IWT),the new algorithm makes up for the deficiencies that traditional wavelet denoising to wavelet bases. Make denoising simulation on noisy signals of Bumps and Quadchirp using EMD-IWT algorithm which combined IWT algorithm with empirical mode decomposition(EMD)and using AEEMD-IWT algorithm which combined AEEMD with IWT.Three kinds of denoising algorithms is embedded into a new EME acquisition system developed independently,collect EME signals from composed coal-rock loaded deformation and fracture and then denoise,the simulation and experiment results prove that AEEMD-IWT algorithm has excellent denoising performance,extensive application area and good practicality.
electromagnetic emission(EME); adaptive ensemble empirical mode decomposition(AEEMD); improved wavelet threshold(IWT); denoising
10.13873/J.1000—9787(2016)07—0038—04
2015—10—28
國(guó)家自然科學(xué)基金資助項(xiàng)目(51204087,51274114)
TP 23
A
1000—9787(2016)07—0038—04
劉桂芬(1971-),女,黑龍江寧安人,副教授,碩士生導(dǎo)師,從事煤礦安全檢測(cè)與監(jiān)控。