茅彩萍,仲婷婷,陳 楠,姜 珊,張象威,曹 莉,
(1. 蘇州大學(xué)藥學(xué)院藥理學(xué)教研室,江蘇 蘇州 215123;2. 蘇州大學(xué)附屬第一醫(yī)院胎兒醫(yī)學(xué)研究所、生殖醫(yī)學(xué)中心,江蘇 蘇州 215006)
?
宮內(nèi)缺氧對(duì)子代大鼠血漿及肝臟RAS的影響
茅彩萍2,仲婷婷1,陳楠1,姜珊2,張象威1,曹莉1,2
(1. 蘇州大學(xué)藥學(xué)院藥理學(xué)教研室,江蘇 蘇州215123;2. 蘇州大學(xué)附屬第一醫(yī)院胎兒醫(yī)學(xué)研究所、生殖醫(yī)學(xué)中心,江蘇 蘇州215006)
目的研究宮內(nèi)缺氧(PH)對(duì)子代大鼠血液循環(huán)系統(tǒng)和肝臟局部腎素-血管緊張素系統(tǒng)(RAS)的影響,以探討PH導(dǎo)致子代脂肪肝易感性增加的可能機(jī)制,尋找藥物干預(yù)靶點(diǎn)。方法利用飼養(yǎng)艙飼養(yǎng)建立妊娠期宮內(nèi)缺氧大鼠模型,分別稱量孕21 d胎鼠、成年子代大鼠(5月齡)、成年子代大鼠缺氧應(yīng)激(7 d)后的體重、肝重,并計(jì)算肝重指數(shù),檢測(cè)大鼠血漿及肝臟中AngⅠ、AngⅡ和ACE的含量。結(jié)果與正常組相比,PH組胎鼠體重、肝臟重量及肝重指數(shù)明顯下降,成年后各組這些差別消失;但給予7 d缺氧應(yīng)激后,PH成年子代大鼠肝重及肝重指數(shù)較正常成年子代明顯升高。胎鼠兩組間和成年子代大鼠兩組間血漿及肝臟中AngⅠ和ACE含量均無顯著差異;PH成年子代肝臟中AngⅡ含量明顯高于正常子代。經(jīng)過7 d缺氧應(yīng)激后,大鼠肝臟中的AngⅠ含量和血漿及肝臟中AngⅡ含量均較未缺氧應(yīng)激組明顯升高;宮內(nèi)缺氧成年子代大鼠肝臟中ACE含量和血漿及肝臟中AngⅡ含量升高幅度均明顯大于正常成年子代組。結(jié)論P(yáng)H可引起子代胎兒期及成年后肝臟局部RAS組份含量增高,使得其子代成年后RAS在缺氧刺激后更易被激活,這可能是PH導(dǎo)致子代脂肪肝易感性增加的機(jī)制之一。
宮內(nèi)缺氧;子代;腎素-血管緊張素系統(tǒng);肝臟;胎兒;血漿
大量研究表明胎兒宮內(nèi)缺氧(prenatal hypoxia,PH)不僅會(huì)引起胎兒宮內(nèi)生長(zhǎng)受限,還會(huì)造成胎兒重要組織器官的發(fā)育不良,以及成年后的代謝異常[1]。我們以往的研究也表明:PH可引起子代成年后胰島素敏感性降低和肝臟胰島素信號(hào)通路異常,導(dǎo)致子代大鼠成年后非酒精性脂肪肝(nonalcoholic fatty liver disease,NAFLD)易感性增加[2]。腎素-血管緊張素系統(tǒng)(renin-angiotensin system,RAS)是一種重要的維持機(jī)體內(nèi)環(huán)境穩(wěn)態(tài)的激素內(nèi)分泌系統(tǒng),由血管緊張素原、腎素、血管緊張素轉(zhuǎn)化酶(angiotensin-converting enzyme,ACE)、血管緊張素Ⅰ(angiotensinⅠ, AngⅠ)、血管緊張素Ⅱ(angiotensinⅡ, AngⅡ)及其相應(yīng)的受體AT1、AT2構(gòu)成。近年來諸多研究報(bào)道RAS在胰島素抵抗(insulin resistance, IR)發(fā)生和發(fā)展的多個(gè)環(huán)節(jié)中發(fā)揮重要作用[3],并可通過介導(dǎo)氧化應(yīng)激誘發(fā)大鼠患非酒精性脂肪肝[4]。RAS阻斷劑可提高機(jī)體胰島素敏感性,有效逆轉(zhuǎn)肝臟的脂肪沉積及其導(dǎo)致的炎癥損傷[5]。RAS系統(tǒng)在胎兒期對(duì)機(jī)體組織器官的生長(zhǎng)發(fā)育產(chǎn)生重要影響,胎兒期缺氧可通過RAS介導(dǎo)的“印跡”機(jī)制增加出生后個(gè)體心腦血管發(fā)病的危險(xiǎn)性[6]。但PH是否亦可通過RAS系統(tǒng)改變以影響胎兒肝臟,目前國(guó)內(nèi)外尚未見報(bào)道。本文在以往研究的基礎(chǔ)上,觀察了PH對(duì)子代大鼠血液循環(huán)系統(tǒng)和肝臟局部RAS的影響,探討PH導(dǎo)致子代NAFLD易感性增加的可能機(jī)制,以期尋找藥物早期干預(yù)的靶點(diǎn)。
1.1藥品與試劑水合氯醛(國(guó)藥集團(tuán)化學(xué)試劑有限公司);EDTA(Sigma,美國(guó));氮?dú)?、液?蘇州長(zhǎng)橋氣體公司);AngⅠ、AngⅡ、ACE放免試劑盒(北京華英生物技術(shù)研究所);生理鹽水(江蘇鵬鷂藥業(yè)有限公司)。
1.2實(shí)驗(yàn)儀器Centrifuge 5417R高速冷凍離心機(jī)(德國(guó)Eppendorf公司);氧氣含量監(jiān)測(cè)儀(S-450,美國(guó)IST-AIM公司);Architect c8000全自動(dòng)血液生化分析儀(美國(guó)Abbott公司);冰凍切片機(jī)(德國(guó)Leica公司);AH-2光學(xué)顯微鏡、數(shù)碼相機(jī)(日本Olympus公司);r-911全自動(dòng)放免計(jì)數(shù)儀(中國(guó)科技大學(xué)實(shí)業(yè)總公司生產(chǎn))。
2.1建立動(dòng)物模型及分組將♀♂大鼠以1 ∶1合籠,次日晨檢測(cè)陰栓判斷為妊娠時(shí),記為妊娠d 1(GD 1),孕鼠隨機(jī)分為對(duì)照組及缺氧組,每組10只。將缺氧組孕鼠于GD 4~21放入缺氧艙(體積:140L,O2含量(10±0.5)%,對(duì)照組放于氧含量正常的等體積飼養(yǎng)艙中飼養(yǎng)(O2含量21%)。GD 21行剖宮產(chǎn),每窩隨機(jī)取2只胎鼠,交予 “奶媽”母鼠正常喂養(yǎng),其余胎鼠按母鼠妊娠期是否受缺氧刺激分為正常組(FC)和PH組(FH)。將子代成年大鼠分為4組,每組10只(♀♂各半):① 正常子代組(O-FC-C);② 宮內(nèi)缺氧子代組(O-FH-C);③ 正常子代成年缺氧應(yīng)激組(O-FC-H);④宮內(nèi)缺氧子代成年缺氧應(yīng)激組(O-FH-H)。5月齡后將成年后缺氧應(yīng)激組給予短期缺氧刺激,方法同上,時(shí)間為7 d。動(dòng)物處死前均稱量體重。
2.2血樣采集及血漿制備對(duì)胎鼠采用斷頭取血法,將血樣收集到含EDTA的抗凝試管中,1 000 r·min-14℃離心10 min,分離血漿。子代成年大鼠禁食不禁水10 h后,腹腔注射水合氯醛麻醉,腹主動(dòng)脈取血,分離血漿,-20℃保存待檢。
2.310%肝臟組織勻漿液制備分離完整的胎鼠及子代成年大鼠肝臟,稱重,并計(jì)算肝重指數(shù);肝重指數(shù)=肝重/體重。稱取0.3 g肝組織加液氮研磨成細(xì)粉后,加入生理鹽水至3 mL,充分混勻,1 000 r·min-1離心10 min,分離上清液,-20℃保存待檢。
2.4肝組織冰凍切片的制備及蘇丹Ⅲ染色快速分離子代大鼠肝臟,切下直徑約2 cm的肝組織(胎鼠取整個(gè)肝臟),放入-15℃冰箱冷凍。將已冷凍的組織放在組織支承器上,滴上包埋劑,冰凍,切出8 μm厚的冰凍切片,福爾馬林中固定10 min,稍水洗后,用乙醇稍洗,蘇丹III染液浸染2 min,乙醇洗去多余染液,繼而流水沖洗。用蘇木精染液復(fù)染細(xì)胞核,鹽酸酒精分化,水洗10 min藍(lán)化,把切片貼于載玻片上,甘油明膠封蓋,光學(xué)顯微鏡下觀察,拍照。
2.5血漿及肝勻漿中總膽固醇(TC)和甘油三酯(TG)的檢測(cè)將血漿和10%肝組織勻漿分別上全自動(dòng)生化分析儀檢測(cè)。
2.6血漿及肝勻漿中AngⅠ、AngⅡ、ACE的檢測(cè)由北京華英生物技術(shù)研究所用放免法代為檢測(cè)。
3.1PH對(duì)子代大鼠體重、肝重及肝重指數(shù)的影響FH組胎鼠較FC組體重、肝重及肝重指數(shù)均明顯降低(P<0.05)。子代成年O-FC-C組與O-FH-C組之間體重、肝重及肝重指數(shù)均無差別。子代成年大鼠給予短期缺氧刺激后,O-FH-H組肝重指數(shù)較O-FH-C組明顯升高(P<0.05),O-FH-H組大鼠肝臟重量及肝重指數(shù)明顯高于O-FC-H組(P<0.01),見Tab 1。
Tab 1 Effect of prenatal hypoxia on body weight, liver weight and liver weight to body weight ratio in fetus and offspring ±s,n=10)
ΔΔP<0.01vsFC;#P<0.05vsO-FH-C;*P<0.05,**P<0.01vsO-FC-H
3.2PH對(duì)子代成年大鼠和胎鼠肝組織脂肪沉積的影響O-FC-C組大鼠的肝組織未見明顯的紅染脂滴,O-FH-C組和O-FC-H組大鼠的肝組織中見少量紅染脂滴。O-FH-H組大鼠肝組織出現(xiàn)大量紅染脂滴。GD21胎鼠,F(xiàn)C組肝組織中有少量紅染脂滴。FH組胎鼠的肝組織結(jié)構(gòu)松散,因而冰凍切片出現(xiàn)大塊空斑,并見大量紅染脂滴,見Fig 1。
3.3PH對(duì)胎鼠和子代成年大鼠血漿及肝組織中TG、TC含量的影響子代成年大鼠各組間血漿中TG、TC含量均未見差異(P>0.05);FH組胎鼠與FC組比較,血漿中TG、TC含量也均未見差異(P>0.05)。子代成年大鼠各組間及FH組胎鼠與FC組之間,肝組織中TC含量也均未見差異(P>0.05)。TG含量,O-FH-C組和O-FC-H組大鼠與O-FC-C組相比雖有所增高,但差異均無統(tǒng)計(jì)學(xué)意義(P>0.05)。而O-FH-H組大鼠肝組織TG含量較O-FH-C組和O-FC-H組明顯增高(P<0.05)。FH組胎鼠肝組織TG含量比FC組明顯增高(P<0.01),見Tab 2。
3.4PH對(duì)子代大鼠血漿中AngⅠ、AngⅡ及ACE含量的影響兩組胎鼠間血漿中無論是AngⅠ、AngⅡ,還是ACE的含量均未見差異;子代成年大鼠O-FH-C組與O-FC-C組兩組相比,血漿中AngⅠ、AngⅡ和ACE含量也均無差異(P>0.05)。子代成年大鼠給予缺氧刺激后,血漿中AngⅠ和ACE含量未見改變;但AngⅡ含量升高,PH子代O-FH-H組大鼠血漿中AngⅡ含量明顯高于O-FC-H組和O-FH-C組(P<0.05),見Fig 2。
Tab 2 Effect of prenatal hypoxia on TC and TG in plasma and liver of fetus and offspring ±s,n=10)
ΔΔP<0.01vsFC;#P<0.05vsO-FH-C;**P<0.01vsO-FC-H
Fig 1 Light microscopic micrographs for liver tissues staining with Sudan Ⅲ
A: FC; B:FH; C:O-FC-C; D:O-FH-C;E:O-FC-H;F:O-FH-H
3.5PH對(duì)子代大鼠肝臟組織中AngⅠ、AngⅡ及ACE含量的影響FH組胎鼠較FC組肝勻漿中AngⅡ含量有所增高,但差異無統(tǒng)計(jì)學(xué)意義(P>0.05),兩組胎鼠肝勻漿中AngⅠ、ACE含量也均無差異。子代成年O-FH-C組大鼠肝組織中AngⅡ含量與O-FC-C組相比明顯增高(P<0.05),AngⅠ、ACE含量雖有所不同,但兩組差異無顯著性(P>0.05)。子代成年大鼠給予缺氧刺激后,AngⅠ、AngⅡ含量較缺氧前明顯升高(O-FC-HvsO-FC-C;O-FH-HvsO-FH-C);(P<0.05);O-FH-H組大鼠肝勻漿中AngⅡ含量較O-FC-H組明顯增高(P<0.05),AngⅠ含量也有增高趨勢(shì),但差異無統(tǒng)計(jì)學(xué)意義(P>0.05);肝組織中ACE含量,O-FC-H組與O-FC-C組相比有所降低,但差異無顯著性(P>0.05),O-FH-H組與O-FC-H組和O-FH-C組相比均明顯增高(P<0.05),見Fig 3。
妊娠期母體的多種疾患及環(huán)境因素都可引起胎兒宮內(nèi)缺氧(PH)[7-8]。我們以往的研究結(jié)果表明:PH可造成子代成年后胰島素敏感性降低和肝臟胰島素信號(hào)通路異常,致使子代大鼠成年后NAFLD易感性增加[2]。本研究結(jié)果顯示:PH胎鼠的體重、肝重及肝重指數(shù)均明顯低于正常胎鼠,這說明PH不僅造成胎鼠的宮內(nèi)生長(zhǎng)受限,而且還抑制了其肝臟的生長(zhǎng)發(fā)育。PH子代大鼠5月齡(成年)時(shí),經(jīng)過“追趕生長(zhǎng)”,其與同齡正常子代體重、肝重及肝重指數(shù)差異均消失。這種“追趕生長(zhǎng)”是在PH子代出生前特殊的代謝應(yīng)答模式基礎(chǔ)上完成的,它常伴有胰島素及瘦素的抵抗、脂質(zhì)水平改變[9],成為子代成年后NAFLD易感性增加的原因之一。
Fig 2 Effect of prenatal hypoxia on plasma AngⅠ, AngⅡ
1: FC; 2: FH; 3: O-FC-C; 4: O-FH-C; 5: O-FC-H; 6: O-FH-H.*P<0.05vsO-FC-H;#P<0.05vsO-FH-C.
Fig 3 Effect of prenatal hypoxia on 10%(wt/vol) liver homogenate AngⅠ,AngⅡ and ACE concentration in fetus and offspring ±s,n=10)
1: FC; 2: FH; 3: O-FC-C; 4: O-FH-C; 5: O-FC-H; 6: O-FH-H.ΔP<0.05vsO-FC-C;*P<0.05vsO-FC-H;#P<0.05vsO-FH-C.
腎素-血管緊張素系統(tǒng)(RAS)在血壓、體液、電解質(zhì)平衡中起重要作用。多種因素可促使腎小球旁器中的球旁細(xì)胞釋放腎素,腎素作用于肝臟和脂肪組織產(chǎn)生的血管緊張素原,使其生成AngⅠ;AngⅠ在ACE作用下裂解轉(zhuǎn)化為AngⅡ[10]。AngⅡ是RAS的關(guān)鍵因子[11]。以往認(rèn)為[12-13],RAS是屬于循環(huán)內(nèi)分泌系統(tǒng),后來諸多研究表明,在心、腎、肺、肝和胰腺中都存在著局部RAS,在這些組織中AngⅡ可以不釋放到血液中,可通過自分泌、旁分泌或胞內(nèi)分泌等方式局部發(fā)揮作用。近年來,研究者發(fā)現(xiàn)胰島素信號(hào)與RAS之間存在著復(fù)雜的調(diào)控網(wǎng)絡(luò),并嘗試用RAS調(diào)節(jié)劑來治療和預(yù)防肝臟疾病。對(duì)循環(huán)系統(tǒng)及肝臟局部RAS的調(diào)控均有利于預(yù)防NAFLD和肝纖維化的發(fā)生[14]。本研究觀察了PH對(duì)子代大鼠血液循環(huán)系統(tǒng)和肝臟中AngⅠ、AngⅡ及ACE含量的影響。結(jié)果顯示:PH雖未表現(xiàn)出對(duì)胎鼠及子代成年的循環(huán)系統(tǒng)AngⅠ、AngⅡ及ACE含量的直接影響,但卻對(duì)其成年后肝臟局部RAS產(chǎn)生了“印跡”效應(yīng),PH成年子代肝臟中AngⅡ含量均明顯高于正常對(duì)照組。給予缺氧刺激后,PH子代成年大鼠機(jī)體RAS受到激活,且肝臟局部RAS的激活強(qiáng)于循環(huán)系統(tǒng)RAS。這說明PH不僅可造成子代成年大鼠肝臟的高AngⅡ狀態(tài),還可使成年子代的RAS在缺氧刺激后更易被激活。有研究報(bào)道:給成年大鼠輸注AngⅡ可促進(jìn)肝臟合成TG,進(jìn)而增加血漿中TG含量[15],并可通過介導(dǎo)氧化應(yīng)激損傷線粒體誘發(fā)大鼠患NAFLD[16]。這說明PH子代成年延續(xù)自胎兒期的肝臟高AngⅡ水平是PH增加子代脂肪肝易感性的機(jī)制之一。肝臟局部RAS可能是藥物早期干預(yù)PH,導(dǎo)致子代NAFLD易感性增加的新靶點(diǎn)。
(本實(shí)驗(yàn)在蘇州大學(xué)附屬第一醫(yī)院胎兒醫(yī)學(xué)研究所完成。感謝徐智策教授的指導(dǎo)與幫助!)
[1]Rueda-Clausen C F, Dolinsky V W, Morton J S,et al. Hypoxia-induced intrauterine growth restriction increases the susceptibility of rats to high-fat diet-induced metabolic syndrome[J].Diabetes,2011,60(2):507-16.
[2]Cao L, Mao C, Li S,et al. Hepatic insulin signaling changes: possible mechanism in prenatal hypoxia-increased susceptibility of fatty liver in adulthood[J].Endocrinology,2012,153(10):4955-65.
[3]Kalupahana N S, Moustaid-Moussa N. The renin-angiotensin system: a link between obesity, inflammation and insulin resistance[J].ObesRev,2012,13(2):136-49.
[4]張曉平,張峰,陸茵,等. 肝纖維化中腎素-血管緊張素的作用研究進(jìn)展[J]. 中國(guó)藥理學(xué)通報(bào),2011,27(7):897-900.
[4]Zhang X P, Zhang F, Lu Y,et al. Research progress on the role of renin-angiotensin system in hepatic fibrosis[J].ChinPharmacolBull, 2011,27(7):897-900.
[5]Toblli J E, Munoz M C, Cao G,et al. ACE inhibition and AT1 receptor blockade prevent fatty liver and fibrosis in obese Zucker rats[J].Obesity(SilverSpring),2008,16(4):770-6.
[6]Xue Q, Dasgupta C, Chen M, Zhang L. Foetal hypoxia increases cardiac AT(2)R expression and subsequent vulnerability to adult ischaemic injury[J].CardiovascRes,2011,89(2):300-8.
[7]Moazzen H, Lu X, Liu M, Feng Q. Pregestational diabetes induces fetal coronary artery malformation via reactive oxygen species signaling[J].Diabetes,2015,64(4):1431-43.
[8]Rueda-Clausen C F, Stanley J L, Thambiraj D F,et al. Effect of prenatal hypoxia in transgenic mouse models of preeclampsia and fetal growth restriction[J].ReprodSci,2014,21(4):492-502.
[9]Coupe B, Grit I, Darmaun D, Parnet P. The timing of "catch-up growth" affects metabolism and appetite regulation in male rats born with intrauterine growth restriction[J].AmJPhysiolRegulIntegrCompPhysiol,2009,297(3):R813-24.
[10]Cabello-Verrugio C, Morales M G, Rivera J C,et al. Renin-angiotensin system: an old player with novel functions in skeletal muscle[J].MedResRev,2015,35(3):437-63.
[11]田超,范方田,陳文星,等. 血管緊張素Ⅱ及其Ⅰ型受體在腫瘤血管生成中的作用研究[J]. 中國(guó)藥理學(xué)通報(bào),2014,30(5):608-11.
[11]Tian C, Fan F T,Chen W X, et al. Research progress on the function of angiotensin Ⅱ and its type Ⅰ receptor in tumor angiogenesis[J].ChinPharmacolBull,2014,30(5):608-11.
[12]陳京紅. 局部腎素血管緊張素系統(tǒng)的生理學(xué)和藥理學(xué)意義[J]. 中國(guó)藥理學(xué)通報(bào),1990,6(6):344-6.
[12]Chen J H. Physiology and pharmacology of local renin-angiotensin systems[J].ChinPharmacolBull, 1990,6(6):344-6.
[13]Ohashi N, Yamamoto T, Huang Y,et al. Intrarenal RAS activity and urinary angiotensinogen excretion in anti-thymocyte serum nephritis rats[j].AmJPhysiolRenalPhysiol,2008, 295(5): F1512-1518.
[14]Geogescu E F. Angiotensin receptor blockers in the treatment of NASH/NAFLD: could they be a first-class option[J]?AdvTher,2008,25(11):1141-74.
[15]Ran J, Hirano T, Adachi M. Chronic ANG Ⅱ infusion increases plasma triglyceride level by stimulating hepatic triglyceride production in rats[J].AmJPhysiolEndocrinolMetab,2004,287(5):E955-61.
[16]Moreira de Macedo S, Guimaraes T A, Feltenberger J D, Sousa Santos S H. The role of renin-angiotensin system modulation on treatment and prevention of liver diseases[J].Peptides,2014,62:189-96.
Effects of prenatal hypoxia on renin-angiotensin system in plasma and liver of offspring rats
MAO Cai-ping2,ZHONG Ting-ting1,CHEN Nan1, JIANG Shan2, ZHANG Xiang-wei1,CAO Li1,2
(1.CollegeofPharmaceuticalSciences,SoochowUniversity,SuzhouJiangsu215123,China; 2.InstituteforFetology&ReproductiveMedicineCenter,theFirstAffiliatedHospitalofSoochowUniversity,SuzhouJiangsu215006,China)
AimTo study the effects of prenatal hypoxia on the risk of fatty liver disease to search the drug targets.MethodsIntrauterine hypoxia rats model was established. The bodies and livers of fetal rats of 21 days, and adult offspring rats of 5 months with and without anoxic treatment were all weighed. The liver index was calculated and the concentrations of renin-angiotensin system components in circulation system and livers of offspring rats were measured.ResultsThe weight of the bodies, livers and index of liver weight to body weight(liver index) were significantly decreased in the PH group compared with the normal group. These differences disappeared in adulthood. However, the liver index of adult offsprings in the PH group after hypoxia stress for 7 days was significantly increased compared with that of adult offsprings in normal group. There were no significant differences in the concentrations of AngⅠ, AngⅡ and ACE in plasma and livers between the two groups of fetal rats and the two groups of adult offspring rats separately. The concentrations of AngⅡ in the livers of adult rats in PH group were significantly higher than those in normal group. The concentrations of AngⅠ in livers and the concentrations of AngⅡ in plasma and livers in the group treated with hypoxia stress for 7 days were significantly higher than those without hypoxia stress. The concentrations of ACE in livers and the concentrations of AngⅡ in plasma and livers in PH adult offsprings were significantly higher than those of normal adult offsprings.ConclusionPH can induce the increase of RAS content in the livers of fetus and adult rats, RAS is more likely to be activated after hypoxia stimulation in the following adulthood. PH is a potential mechanism that mediates offspring susceptibility of fatty liver.
prenatal hypoxia; offspring; renin-angiotensin system; liver; fetus; plasma
2016-02-16,
2016-04-20
國(guó)家自然科學(xué)基金資助項(xiàng)目(No 30902018);江蘇省博士后基金項(xiàng)目(No 1302063C);蘇州大學(xué)大學(xué)生創(chuàng)新計(jì)劃項(xiàng)目(No 2013xj059)
茅彩萍(1968-),女,博士,教授,研究方向:圍產(chǎn)生理藥理,E-mail:maocaiping@suda.edu.cn;仲婷婷(1994-),女,本科生,研究方向:內(nèi)分泌藥理,E-mail:841108240@qq.com;曹莉(1976-),女,博士,副教授,研究方向:內(nèi)分泌藥理學(xué),通訊作者,E-mail:caoli8545@sohu.com
10.3969/j.issn.1001-1978.2016.07.018
A
1001-1978(2016)07-0975-05
R-332;R322.47;R331;R714.5;R845.22
網(wǎng)絡(luò)出版時(shí)間:2016-6-20 11:49網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/34.1086.R.20160620.1149.036.html