吳 爽,呂 亮
(安徽大學(xué) 物理與材料科學(xué)學(xué)院,安徽 合肥 230601)
?
分布式布拉格反射光纖激光器自混合尾纖調(diào)制技術(shù)
吳爽,呂亮*
(安徽大學(xué) 物理與材料科學(xué)學(xué)院,安徽 合肥 230601)
摘要:激光自混合干涉技術(shù)是一種新型測(cè)量技術(shù),其具有結(jié)構(gòu)簡(jiǎn)單、緊湊、易準(zhǔn)直等優(yōu)點(diǎn),因而廣泛應(yīng)用于振動(dòng)測(cè)量領(lǐng)域.采用壓電陶瓷尾纖調(diào)制技術(shù),對(duì)分布式布拉格反射光纖激光器自混合干涉系統(tǒng)進(jìn)行調(diào)制,最終實(shí)現(xiàn)了對(duì)外界物體振動(dòng)信號(hào)的重構(gòu).重構(gòu)結(jié)果表明,當(dāng)外界振動(dòng)物體峰峰值在λ/4到2λ范圍時(shí),重構(gòu)振動(dòng)信號(hào)的峰峰值誤差低于0.3%.
關(guān)鍵詞:自混合;外腔;調(diào)制
利用基于光反饋的激光自混合干涉技術(shù)[1-2]可實(shí)現(xiàn)振動(dòng)、位移、速度及距離的測(cè)量等[3-8].激光自混合干涉技術(shù),因其具有自注入、反饋、調(diào)制等特點(diǎn),已廣泛應(yīng)用于各種領(lǐng)域.相比于傳統(tǒng)的雙光束干涉技術(shù),其具有不依賴激光器的相干長(zhǎng)度、結(jié)構(gòu)簡(jiǎn)單緊湊、易準(zhǔn)直、成本低、分辨率高等優(yōu)點(diǎn),在干涉測(cè)量領(lǐng)域具有巨大的應(yīng)用潛力,已成為光學(xué)測(cè)量領(lǐng)域的研究熱點(diǎn).在早期激光自混合干涉技術(shù)中,主要采用半導(dǎo)體激光器作為自混合干涉系統(tǒng)的光源,但半導(dǎo)體激光器存在光束質(zhì)量差、遠(yuǎn)距離傳輸時(shí)發(fā)散角大等問(wèn)題,不能完全滿足高精度、高靈敏度的測(cè)量要求.近年,光纖激光器以其光束質(zhì)量好、散熱快、光電轉(zhuǎn)換效率高等優(yōu)勢(shì),在激光自混合干涉測(cè)量領(lǐng)域得到廣泛應(yīng)用[9-10].其中,分布式布拉格反射(distributed Bragg reflector,簡(jiǎn)稱DBR)光纖激光器以其超短腔長(zhǎng)、高靈敏度、易于解調(diào)等優(yōu)勢(shì),逐漸得到研究者的關(guān)注.DBR光纖激光器采用一對(duì)中心波長(zhǎng)匹配的布拉格光纖光柵組成激光器的諧振腔,此激光器的腔長(zhǎng)較短,較短腔長(zhǎng)能夠保證較大的縱模間隔,使激光器實(shí)現(xiàn)少的起振模式或單縱模輸出[11-13].采用DBR光纖激光器作為激光自混合傳感系統(tǒng)光源,能夠大幅度提高激光自混合干涉測(cè)量的測(cè)量距離、探測(cè)靈敏度和測(cè)量精度[14].基于DBR光纖激光器的自混合干涉測(cè)量系統(tǒng),結(jié)合外腔調(diào)制技術(shù)可實(shí)現(xiàn)對(duì)外界信號(hào)頻率及振幅的準(zhǔn)確獲取.相比于傳統(tǒng)的條紋計(jì)數(shù)法[15],采用外腔調(diào)制技術(shù)的DBR光纖激光器自混合干涉測(cè)量系統(tǒng)能更精確地重構(gòu)外界物體的振動(dòng)信號(hào).
常見(jiàn)的外腔調(diào)制技術(shù)包括電流調(diào)制技術(shù)、外腔折射率調(diào)制技術(shù)和外腔長(zhǎng)度調(diào)制技術(shù).電流調(diào)制主要針對(duì)半導(dǎo)體激光器作為光源的激光自混合干涉系統(tǒng),存在溫漂大、邊模抑制比低、波長(zhǎng)連續(xù)調(diào)制范圍小等缺點(diǎn)而采用的技術(shù)[16].在光纖激光器自混合干涉系統(tǒng)中,目前主要采用外腔折射率調(diào)制技術(shù)對(duì)自混合干涉信號(hào)進(jìn)行調(diào)制.外腔折射率調(diào)制技術(shù)是通過(guò)在外腔放置一個(gè)電光調(diào)制器(electro-optic modulator,簡(jiǎn)稱EOM)來(lái)實(shí)現(xiàn),相比其他調(diào)制技術(shù),由于對(duì)入射光偏振態(tài)敏感且電光晶體價(jià)格昂貴,因此該技術(shù)純相位調(diào)制的難度大及成本高[17].為了解決EOM外腔折射率調(diào)制帶來(lái)的問(wèn)題,筆者采用壓電陶瓷(piezoelectric,簡(jiǎn)稱PZT)尾纖調(diào)制技術(shù).該尾纖調(diào)制技術(shù)具有結(jié)構(gòu)簡(jiǎn)單、成本低、易操作的優(yōu)點(diǎn),可通過(guò)PZT拉伸光纖以改變外腔長(zhǎng)度,最終實(shí)現(xiàn)對(duì)DBR光纖激光器自混合干涉系統(tǒng)的外腔長(zhǎng)度調(diào)制.
1DBR光纖激光器自混合干涉系統(tǒng)尾纖調(diào)制、解調(diào)原理
基于DBR光纖激光器的自混合干涉尾纖調(diào)制模型,如圖1所示.DBR光纖激光器[18-19]使用一對(duì)中心波長(zhǎng)匹配的光纖布拉格光柵構(gòu)成激光器的諧振腔,使用鉺鐿共摻光纖( erbium ytterbium co-doped fiber,簡(jiǎn)稱EYDF)作為激光器的有源介質(zhì).泵浦光進(jìn)入DBR光纖激光器諧振腔后,稀土離子的能級(jí)躍遷使其光放大,在諧振腔中產(chǎn)生激光輸出,輸出的激光經(jīng)外界振動(dòng)物體反射或散射后,其中一部分返回激光器內(nèi)腔和腔內(nèi)的原始激光發(fā)生干涉,產(chǎn)生激光自混合現(xiàn)象.
圖1 基于DBR光纖激光器的激光自混合PZT尾纖調(diào)制模型Fig.1 The model of laser self-mixing pigtail fiber modulation by PZT based on DBR fiber laser
圓柱形PZT經(jīng)DBR光纖激光器尾纖纏繞后作為外腔長(zhǎng)度調(diào)制器,通過(guò)加載一個(gè)電壓驅(qū)動(dòng)信號(hào)到PZT上,實(shí)現(xiàn)對(duì)激光器外腔長(zhǎng)度調(diào)制.在DBR光纖激光器功率輸出及速率方程[20-21]的基礎(chǔ)上,反饋光引起的DBR光纖激光器的功率波動(dòng)可表示為
(1)
存在反饋時(shí),反饋光以種子光形式引入并影響線形腔DBR光纖激光器的邊界條件.種子光的功率Pseed為
(2)
其中:η為目標(biāo)物到準(zhǔn)直器的耦合效率;λ為激光器發(fā)射波長(zhǎng);Lext為外界振動(dòng)物體到激光器出射端面的距離.
由式(1)可知,激光器的輸出功率包含了外界反饋物體的運(yùn)動(dòng)信息.對(duì)DBR光纖激光器自混合干涉測(cè)量系統(tǒng)實(shí)施尾纖調(diào)制,可實(shí)現(xiàn)外界反饋物體振動(dòng)信號(hào)的整體重構(gòu).在數(shù)值模擬中,尾纖調(diào)制是通過(guò)加載一個(gè)正弦電壓到PZT上,拉伸DBR光纖激光器尾纖產(chǎn)生一個(gè)正弦信號(hào)Lm(t)=Amsin(2πfmt+θ)的外腔長(zhǎng)度調(diào)制,瞬時(shí)外腔長(zhǎng)Lext(t)可表示為
(3)
DBR光纖激光器的輸出功率為
(4)
其中:L0是初始外腔長(zhǎng)度,Lm(t)為調(diào)制函數(shù),Am為調(diào)制振幅,θ為調(diào)制初始相位,fm為調(diào)制頻率;Lr(t)為外界反饋面的振動(dòng)信號(hào)函數(shù),Ar為振動(dòng)信號(hào)的振幅,φ0為振動(dòng)信號(hào)的初始相位,fr為振動(dòng)信號(hào)的頻率.
觀察調(diào)制后輸出功率表達(dá)式(4),可以看出激光器輸出功率隨著調(diào)制信號(hào)的引入會(huì)出現(xiàn)相應(yīng)波動(dòng).考慮到激光自混合干涉系統(tǒng)一般在弱反饋條件下工作,因此可忽略外腔的多次反饋,此時(shí)利用DBR激光器的振蕩條件可得激光器的輸出功率[22]為
(5)
對(duì)公式(5)按貝塞爾函數(shù)展開(kāi)可得
(6)
干涉光強(qiáng)的交流部分可以展開(kāi)為n次諧波的形式,由此可得光強(qiáng)信號(hào)的一次諧波和二次諧波分量.采用傅里葉分析法對(duì)自混合干涉信號(hào)進(jìn)行諧波分析,可得相位為
(7)
其中:Jn(4πAm/λ)為關(guān)于調(diào)制振幅的貝塞爾函數(shù);A1(t),A2(t)分別為一次諧波和二次諧波的振幅.
2數(shù)值模擬
根據(jù)DBR光纖激光器自混合干涉系統(tǒng)尾纖調(diào)制、解調(diào)原理,對(duì)不同振幅的外界物體振動(dòng)信號(hào)進(jìn)行數(shù)值模擬,并對(duì)調(diào)制后的自混合信號(hào)進(jìn)行解調(diào),重構(gòu)外界物體振動(dòng)信號(hào).為了和條紋計(jì)數(shù)法進(jìn)行比較,分別對(duì)外界物體振動(dòng)信號(hào)峰峰值在半個(gè)波長(zhǎng)范圍以內(nèi)和以外的兩種情況進(jìn)行研究.
2.1外界物體振動(dòng)信號(hào)峰峰值不超過(guò)λ/2情況下的數(shù)值模擬
DBR光纖激光器中心波長(zhǎng)為1 550 nm,外界物體的振動(dòng)信號(hào)振幅Ar為λ/4 (信號(hào)峰峰值不超過(guò)λ/2),頻率fr為200 Hz,初始相位φ0為π.調(diào)制信號(hào)Lm的調(diào)制振幅Am為400 nm,調(diào)制頻率fm為10 kHz, 調(diào)制初相位θ為0.圖2a, b分別為解包裹前的相位信號(hào)和重構(gòu)的振動(dòng)信號(hào).
圖2 自混合尾纖調(diào)制模擬結(jié)果Fig.2 Simulated results of self-mixing pigtail modulation
由圖2可知,筆者重構(gòu)出了外界物體的振動(dòng)信號(hào),重構(gòu)的振動(dòng)信號(hào)峰峰值分別為775.08,775.09 nm,和外界物體振動(dòng)信號(hào)峰峰值775 nm的誤差分別為0.08,0.09 nm.
2.2外界物體振動(dòng)信號(hào)峰峰值超過(guò)λ/2情況下的數(shù)值模擬
外界物體振動(dòng)信號(hào)振幅Ar為λ/2 (信號(hào)峰峰值超過(guò)λ/2),頻率fr為200 Hz,初始相位φ0為π.調(diào)制信號(hào)Lm的調(diào)制振幅Am為800 nm,調(diào)制頻率fm為10 kHz,θ為0.圖3a,b分別為解包裹前的相位信號(hào)和重構(gòu)的振動(dòng)信號(hào).
圖3 自混合尾纖調(diào)制模擬結(jié)果Fig.3 Simulated results of self-mixing pigtail modulation
由圖3可知,筆者也重構(gòu)出了外界物體的振動(dòng)信號(hào).重構(gòu)的振動(dòng)信號(hào)圖形與外界物體振動(dòng)信號(hào)圖形保持一致,未發(fā)生畸變.重構(gòu)出的振動(dòng)信號(hào)峰峰值分別為1 550.33,1 550.35 nm,和外界物體振動(dòng)信號(hào)峰峰值1 550 nm的誤差分別為0.33,0.35 nm.
2.3外界物體振動(dòng)信號(hào)峰峰值在(λ/4,2λ)范圍的數(shù)值模擬及誤差分析
為了進(jìn)一步研究PZT尾纖調(diào)制技術(shù)對(duì)不同峰峰值的外界物體振動(dòng)信號(hào)的重構(gòu)效果,筆者對(duì)外界物體振動(dòng)信號(hào)峰峰值從λ/4到2λ,每隔λ/4對(duì)外界物體振動(dòng)信號(hào)引起的激光自混合干涉信號(hào)進(jìn)行數(shù)值模擬及振動(dòng)信號(hào)重構(gòu),并對(duì)重構(gòu)誤差進(jìn)行分析.圖4為重構(gòu)信號(hào)峰峰值及重構(gòu)誤差,圖中直方圖為重構(gòu)誤差.
圖4 重構(gòu)的信號(hào)峰峰值及重構(gòu)誤差Fig.4 The peak-to-peak value of reconstructed signal and reconstruction error
由圖4可知,在λ/4到2λ范圍內(nèi)外界物體振動(dòng)信號(hào)峰峰值和重構(gòu)的振動(dòng)信號(hào)峰峰值基本一致,重構(gòu)誤差整體低于0.3%.該誤差主要來(lái)源于采樣點(diǎn)數(shù)、調(diào)制頻率、采樣頻率等因素.因此,對(duì)DBR光纖激光器自混合干涉測(cè)量系統(tǒng)采用PZT尾纖調(diào)制技術(shù),可高精度還原外界物體的振動(dòng)信號(hào),且測(cè)量的分辨率遠(yuǎn)高于傳統(tǒng)條紋計(jì)數(shù)法的半個(gè)波長(zhǎng)分辨率.
3結(jié)束語(yǔ)
筆者采用壓電陶瓷尾纖調(diào)制技術(shù),對(duì)分布式布拉格反射光纖激光器自混合干涉系統(tǒng)進(jìn)行調(diào)制,并對(duì)激光自混合信號(hào)進(jìn)行了數(shù)值模擬及外界物體振動(dòng)信號(hào)的重構(gòu).數(shù)值模擬結(jié)果表明,采用壓電陶瓷尾纖調(diào)制技術(shù)后的光纖自混合干涉測(cè)量系統(tǒng),當(dāng)外界物體振動(dòng)信號(hào)峰峰值在λ/4到2λ范圍時(shí),能夠無(wú)畸變地重構(gòu)外界物體的振動(dòng)信號(hào),振動(dòng)信號(hào)峰峰值誤差低于0.3%,分辨率大于半個(gè)波長(zhǎng).該壓電陶瓷尾纖調(diào)制技術(shù)可推廣到采用光纖激光器作為光源的激光自混合干涉測(cè)量系統(tǒng),能提高激光自混合干涉測(cè)量系統(tǒng)的測(cè)量范圍和分辨率.
參考文獻(xiàn):
[1]RANDONE E M, DONATI S. Self-mixing interferometer: analysis of the output signals[J]. Opt Express, 2006, 14: 9188-9196.
[2]LIM Y L, NIKOLIC M, KLIESEET R, et al. Self-mixing flow sensor using a monolithic VCSEL array with parallel readout[J]. Opt Express, 2010, 18: 11720-11727.
[3]WANG L, LUO X, WANG X, et al. Obtaining high fringe precision in self-mixing interference using a simple external reflecting mirror[J]. IEEE Photonics Journal, 2013, 5: 6500207.
[4]KLIESE R, LIM Y L, BOSCH T, et al. GaN laser self-mixing velocimeter for measuring slow flows[J]. Opt Lett, 2010, 35 (6): 814-816.
[5]FAN Y, YU Y, XI J, et al. Improving the measurement performance for a self-mixing interferometry-based displacement sensing system[J]. App Opt, 2011, 50 (26): 5064-5072.
[6]GUO D M, WANG M. Self-mixing interferometry based on a double-modulation technique for absolute distance measurement[J]. App Opt, 2007, 46 (9): 1486-1491.
[7]BERNAL O D, ZABIT U, BOSCH T M. Robust method of stabilization of optical feedback regime by using adaptive optics for a self-mixing micro-interferometer laser displacement sensor[J]. IEEE J Q E, 2015, 21: 5300108.
[8]ALEXANDROVA A S, TZOGANIS V, WELSCH C P. Laser diode self-mixing interferometry for velocity Measurements[J]. Opt Eng, 2015, 54: 034104.
[9]BAGNOLI P E, BEVERINI N, FALCIAI R, et al. Development of an erbium-doped fibre laser as a deep-sea hydrophone[J]. Appl Opt, 2006, 8: 535-539.
[10]XIAO H, LI F, LIU Y L. Crosstalk analysis of a fiber laser sensor array system based on digital phase generated carrier scheme[J]. Lighwave Tech, 2008, 26: 1249-1255.
[11]LAROCHE M, KERVEVAN L, GILLES H, et al. Doppler velocimetry using self-mixing effect in a short Er-Yb-doped phosphate glass fiber laser[J]. Applied Physics B, 2005, 80: 603-607.
[12]OTSUKA K. Effects of external perturbations on LiNdP4O12lasers[J]. IEEE J Q E, 1979, 15: 655-663.
[13]LU L, YANG J Y, ZHAI L H, et al. Self-mixing interference measurement system of a fiber ring laser with ultra-narrow linewidth[J]. Opt Express, 2012, 20: 8598-8607.
[14]LU L, CAO Z G, DAI J J, et al. Self-mixing signal in Er3+-Yb3+codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km[J]. IEEE Photonic Tech Lett, 2012, 24: 392-394.
[15]BEHEIM G,F(xiàn)RITSCH K. Range finding using frequency-modulated laser diode[J]. App Opt, 1986, 25: 1439-1442.
[16]SERVAGENT N, BOSCH T, LESCURE M. Design of a phase-shifting optical feedback interferometer using an electro-optic modulator[J].Topics Quantum Electron, 2000, 6: 798-802.
[17]XIA W, WANG M, YANG Z Y, et al. High-accuracy sinusoidal phase-modulating self-mixing interferometer using an electro-optical modulator: development and evaluation[J]. App Optics B, 2013, 52 (4): 52-58.
[18]LAROCHE M, KERVEVAN L, GILLES H, et al. Doppler velocimetry using self-mixing effect in a short Er-Yb doped phosphate glass fiber laser[J]. App Phys B, 2005, 80 (4/5): 603-607.
[19]YAHEL E, HARDY A A. Modeling and optimization of short Er3+-Yb3+codoped fiber lasers[J]. IEEE J Q E, 2003, 39 (11): 1444-1451.
[20]KARASEK M. Optimum design of Er3+-Yb3+codoped fibers for large-signal high-pump power applications[J].IEEE J Q E, 1997, 33 (10): 1699-1705.
[21]BüTTNER L, PFISTER T, CZARSKE J. Fiber-optic laser Doppler turbine tip clearance probe[J]. Opt Lett, 2006, 31 (9): 1217-1219.
[22]WANG W M, BOYLE W J O, GRATTAN K T V, et al. Self-mixing interference in a diode laser: experimental observations and theoretical analysis[J]. Applied Optics, 1993, 32 (9): 1551-1558.
(責(zé)任編輯鄭小虎)
doi:10.3969/j.issn.1000-2162.2016.04.008
收稿日期:2015-10-23
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(61307098,61275165);安徽大學(xué)本科教育質(zhì)量提升計(jì)劃項(xiàng)目(ZLTS2015033)
作者簡(jiǎn)介:吳爽(1992-),女,安徽滁州人,安徽大學(xué)碩士研究生;*呂亮(通信作者),安徽大學(xué)教授,博士生導(dǎo)師,E-mail:lianglu@ahu.edu.cn.
中圖分類(lèi)號(hào):O436.1
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1000-2162(2016)04-0044-06
Pigtail modulation technology of distributed Bragg reflector fiber laser self-mixing interference system
WU Shuang, LYU Liang*
(School of Physics and Materials Science, Anhui University, Hefei 230601, China)
Abstract:The laser self-mixing interference technology is a novel measurement technology, which has been widely applied in vibration measurement on account of its distinct advantages of simplicity, compactness and self-collimating. In this paper, the piezoelectric pigtail fiber modulation technology was used to modulate the distributed Bragg reflector fiber laser self-mixing interference system. Finally, the reconstruction of external object vibration signal was achieved. The reconstruction results showed that the error of reconstructed vibration signal peak value was less than 0.3%, when the external target peak value was in the range of λ/4 to 2λ.
Keywords:self-mixing interference; external cavity; modulation