王 軍,李旖旎,莊 田,趙紅波,朱 珊,覃文慶,邱冠周
黃銅礦精礦中等嗜熱微生物浸出過程及其優(yōu)化
王 軍1, 2,李旖旎1, 2,莊 田1, 2,趙紅波1, 2,朱 珊1, 2,覃文慶1, 2,邱冠周1, 2
(1. 中南大學(xué) 資源加工與生物工程學(xué)院,長沙 410083;
2. 中南大學(xué) 生物冶金教育部重點實驗室,長沙 410083)
采用 3種中等嗜熱微生物:喜溫硫桿菌(Acidithiobacillus caldus,A.c)、嗜鐵鉤端螺旋菌(Leptospirillum ferriphilu,L.f)、嗜熱氧化硫化桿菌(Sulfobacillus thermosulfidooxidans,S.t)對黃銅礦精礦進(jìn)行浸出。探討浸出過程中的微生物生長優(yōu)化及攪拌反應(yīng)器浸出條件優(yōu)化。微生物最佳生長條件如下:生長溫度為45 ℃、初始pH為1.5。馴化過的浸礦細(xì)菌的生長及浸出率明顯高于未馴化的,馴化后浸出率在礦漿濃度為50 g/L時達(dá)到最大,為94.00%;當(dāng)?shù)V漿濃度達(dá)到100 g/L時,銅的浸出率穩(wěn)定在80%左右。攪拌反應(yīng)器的最優(yōu)化浸出條件如下:攪拌速度350 r/min,充氣強度500 mL/min。在此條件下,對黃銅礦精礦進(jìn)行浸出,浸出時間為30 d時,最終銅離子濃度為17.36 g/L,銅的浸出率為85.60%。
黃銅礦;中等嗜熱菌;生物浸出
黃銅礦(CuFeS2)是一種重要的銅礦資源,在世界的硫化銅礦中約占 70%[1-2]。從黃銅礦中提取銅的傳統(tǒng)方法是火法冶金,但是焙燒會釋放大量SO2等有害物質(zhì)導(dǎo)致環(huán)境污染,相比之下采用生物冶金的方法提取銅是一種很好的手段[3],而如何有效地用生物浸出方法從黃銅礦中提取銅是人們所關(guān)注的[4-5]。然而,在浸出過程中,在黃銅礦表面會形成鈍化膜,阻礙了浸出的進(jìn)行[6]。
在生物浸出過程中,浸礦菌種的選擇是影響浸礦效果的一個關(guān)鍵因素。在中溫菌浸出中,會在礦物表面形成大量元素硫、中間硫化產(chǎn)物和黃鉀鐵礬等物質(zhì),從而導(dǎo)致礦物的表面鈍化,使銅的浸出率較低[7-12];并且在堆浸過程中,由于浸礦菌種自身的新陳代謝關(guān)系,會造成溫度的積累,使反應(yīng)體系局部溫度升高,因此常溫菌很難存活。而極端高溫菌沒有細(xì)胞壁,耐金屬離子濃度、礦漿濃度較低,在較高的剪切力下較難存活[13-14]。中等嗜熱菌有堅固的細(xì)胞壁結(jié)構(gòu),在槽浸中能耐受較高的礦漿濃度和金屬離子濃度,在堆浸中能耐受45 ℃的相對高溫。使用中等嗜熱菌浸出黃銅礦,不僅可以顯著改善浸出的反應(yīng)動力學(xué),加快反應(yīng)速率,縮短浸出周期,而且浸出過程中產(chǎn)生的硫化產(chǎn)物則會溶解,從而提高銅的浸出速率和浸出率[15-19]。另有研究表明[20-25],與單菌浸出相比用混合菌進(jìn)行浸出極大地提高了浸出率。攪拌浸出具有能快速有效地進(jìn)行反應(yīng)、易于調(diào)控、金屬回收率高等優(yōu)點。但對攪拌速率、通氣強度等有較高要求,一般適用于處理小批量礦石或精礦[26]。
溫度、pH值、礦漿濃度、攪拌速率、充氣強度等都對浸出有影響[27-29],本文作者通過對黃銅礦精礦浸出過程中的細(xì)菌生長條件(溫度、初始pH值、對高礦漿濃度的馴化)及攪拌反應(yīng)器條件(攪拌速率、充氣強度)進(jìn)行優(yōu)化,達(dá)到提到浸出率的目的。
1.1 礦樣
實驗中用的礦樣來自中國云南省蒙自白牛廠礦區(qū),樣品進(jìn)行了粉碎、磨礦并篩至粒徑小于 0.0074 mm。X射線衍射(XRD)和化學(xué)元素分析顯示礦樣由61.70%的CuFeS2、12.60%的閃鋅礦(ZnS)、6.70%的氧化錫(SnO2)、3.90%的硫化鉛(PbS)和 3.70%的硫酸鉛(PbSO4)組成,主要元素組成如下:Cu 21.46%、S 35.39%、Fe 23.90%、Zn 8.40%、Pb 5.02%(質(zhì)量分?jǐn)?shù))。
1.2 微生物
本試驗中采用的是3種中等嗜熱菌:喜溫硫桿菌(Acidithiobacillus caldus,A.c)、嗜鐵鉤端螺旋菌(Leptospirillum ferriphilu,L.f)、嗜熱氧化硫化桿菌(Sulfobacillus thermosulfidooxidans,S.t)。這3種細(xì)菌是來自中國湖南長沙中南大學(xué)生物冶金菌種室。其中,A.c為硫氧化菌,L.f為亞鐵氧化菌,S.t可同時氧化亞鐵和硫。3株菌種使用改良9K培養(yǎng)基:((NH4)2SO43.0 g/L, Na2SO42.1 g/L, MgSO4?7H2O 0.5 g/L, K2HPO40.05 g/L, KCl 0.1 g/L 和Ca(NO3)20.01 g/L),另外添加20 g/L的硫酸亞鐵(FeSO4)或5 g/L的單質(zhì)硫(S0)為能源物質(zhì)。3種中等嗜熱菌混合培養(yǎng)(分別取1.5mL 菌濃度為1×108mL-1的3種菌液,混合后接種到100 mL改良9K培養(yǎng)基中),形成共培養(yǎng)體系,隨后試驗都在此體系中進(jìn)行。
1.3 菌種生長條件的優(yōu)化
1.3.1 菌種最適生長溫度的確定
將處于對數(shù)生長期的混合菌接種到改良9K培養(yǎng)基中,接種量為5%,設(shè)置溫度梯度為37 ℃、41 ℃、45 ℃、49 ℃和53 ℃,將菌種置于此溫度梯度的搖床中培養(yǎng),轉(zhuǎn)速為160 r/min。定時取樣檢測,采用血球計數(shù)板法,在光學(xué)顯微鏡(CX31RTSF)下觀察微生物的數(shù)量,觀察不同溫度下細(xì)菌的生長情況。
1.3.2 菌種最適初始pH值的確定
用 1:1(濃硫酸與水體積比)的硫酸(H2SO4)調(diào)節(jié)改良9K培養(yǎng)基的pH值,分別為1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4 和 2.5。將處于對數(shù)生長期的混合菌接種到此培養(yǎng)基中,接種量為5%(體積分?jǐn)?shù)),置于45 ℃,160 r/min轉(zhuǎn)速的搖床中培養(yǎng)3天后,定時取樣檢測,觀察不同初始pH值對浸礦菌生長的影響。
1.3.3 菌種對高黃銅礦精礦礦漿濃度的馴化
馴化攪拌反應(yīng)器(JHS-1)示意圖如圖1所示。將處于對數(shù)生長期的浸礦菌種接入到改良9K培養(yǎng)基中,接種量為10%,另加入20 g/L的FeSO4、5 g/L的S0和15 g/L的黃銅礦精礦。
保持?jǐn)嚢璨蹔A套水溫為 45 ℃,在馴化初期采用1:1(濃硫酸與水體積比)的 H2SO4使溶液 pH保持在1.5。定期取樣,用血球計數(shù)板法,在光學(xué)顯微鏡下觀察微生物數(shù)量,當(dāng)培養(yǎng)液中菌體濃度達(dá)到以 1×108mL-1時,過濾礦渣,收集浸出液,加入到改良9K培養(yǎng)基中,不加FeSO4和S0,按馴化的礦漿濃度梯度進(jìn)行。在各礦漿濃度梯度下,用電感耦合等離子發(fā)射光譜儀(Inductively coupled plasma optical emission spectrometer,ICP-OES)檢測浸出液中Cu2+濃度,當(dāng)浸出液中銅離子濃度趨于穩(wěn)定時,視為浸出實驗結(jié)束。
圖1 黃銅礦生物攪拌浸出反應(yīng)器模型圖Fig. 1 Stirred tank bioreactor used for bioleaching of chalcopyrite concentrate: 1—Tank reactor; 2—Insulation sandwich; 3—Stirring paddle; 4—Heated water bath; 5—Air pump; 6—Air vent; 7—Baffle
1.4 攪拌反應(yīng)器浸出條件優(yōu)化
黃銅礦精礦的生物浸出試驗在10 L攪拌反應(yīng)器(見圖 1)中進(jìn)行,反應(yīng)器外圍中空可充水夾套恒溫45 ℃,浸出初始pH值為1.5,接種量10%,礦漿濃度為100 g/L。生物浸出過程中用1:1的H2SO4或10 mol/L的NaOH維持pH值的穩(wěn)定。
1.4.1 攪拌速率對生物浸出黃銅礦的影響
保持空氣充入強度為 500 mL/min(在充氣管間接入空氣過濾膜濾掉粉塵),而攪拌速度設(shè)為250、300、350和400 r/min。每隔3 d進(jìn)行檢測,用ICP-OES檢測浸出液中銅離子濃度。
1.4.2 充氣強度對生物浸出黃銅礦的影響
保持?jǐn)嚢璺磻?yīng)器攪拌速度為350 r/min,而充氣強度設(shè)置梯度為300、400、500和600 mL/min。每隔3 d進(jìn)行檢測,用ICP-OES檢測浸出液中銅離子濃度。
1.5 優(yōu)化后的生物攪拌浸出試驗
在如圖1所示攪拌槽進(jìn)行浸出試驗。控制反應(yīng)溫度為45 ℃,攪拌速度為350 r/min,空氣泵充氣強度為500 mL/min,礦漿濃度為10%,接種量為10%,接種后的細(xì)菌濃度達(dá)到2.5×108mL-1,浸出時間為30 d。
在浸出過程中,定期記錄 pH值和電位的變化,以及溶液中的銅的濃度、鐵離子和細(xì)菌濃度。采用pH酸度計(BPP-922)測量pH值;以鉑電極為工作電極,Ag/AgCl電極為參比電極的電位計(BPH-221),測量浸出液中的氧化還原電位;采用ICP-OES方法檢測浸出液中銅、總鐵離子濃度;采用硫酸鈰滴定法測定浸出液內(nèi)的亞鐵離子濃度;浸出液中浸礦菌濃度通過血球計數(shù)板法在光學(xué)顯微鏡下觀察微生物的數(shù)量。
2.1 菌種生長條件優(yōu)化
2.1.1 菌種最適生長溫度的確定
在45 ℃的培養(yǎng)條件下,11 d后微生物進(jìn)入生長穩(wěn)定期,最高菌濃度達(dá)到4.5×108mL-1(見圖2);在41 和 49 ℃的培養(yǎng)條件下,微生物的最高菌濃度約為45 ℃條件下的一半;而在37和53 ℃培養(yǎng)條件下,細(xì)菌生長明顯受到影響,最高菌濃度僅為4.0×107mL-1左右,且其進(jìn)入生長穩(wěn)定期的時間較久,分別 16和15 d。因而,得出混合菌最適生長溫度為45 ℃。
2.1.2 菌種最適初始pH值的確定
圖3所示為不同初始pH下中等嗜熱菌群的最高菌濃度。由圖3可知,其繪制曲線類似于正態(tài)分布,當(dāng)初始pH為1.5時,浸礦菌的生長情況最好,最高菌濃度達(dá)到4.5×108mL-1;當(dāng)初始pH增高或降低時,最高菌濃度均會降低;且當(dāng)pH高于一定值時,細(xì)菌生長明顯受到影響,如當(dāng)初始pH值為2.2時,最高菌濃度不到1.0×108mL-1,細(xì)菌生長受到抑制。因而,得出混合菌最適生長初始 pH值為 1.5,馬鵬程等[30]也做過類似的研究,他們得出在初始pH值為1.4時,浸出體系中細(xì)菌的活性最好,礦物的氧化速率最快。
圖3 不同初始pH條件下中等嗜熱菌群的最高菌濃度Fig. 3 Cell densities in stable phase of moderate thermophiles under different initial pH values
2.1.3 菌種對高黃銅礦精礦礦漿濃度的馴化
圖4所示為中等嗜熱菌群經(jīng)數(shù)代馴化后的細(xì)菌濃度。浸礦菌第一代馴化礦漿濃度為15 g/L,第二代馴化礦漿濃度為30 g/L,第三代的為50 g/L,第四代的為75 g/L,第五代至第九代的均為100 g/L。由此可知,隨著高礦漿濃度對浸礦菌的馴化,其活性逐漸能穩(wěn)定在7.0×108mL-1,表明其對高礦漿濃度的抗性增強,能在高黃銅礦礦漿濃度下達(dá)到較高的生長活性[31]。
圖4 中等嗜熱菌群經(jīng)數(shù)代馴化后的細(xì)菌濃度Fig. 4 Cell densities of moderate thermophiles during adaptive experiments
圖5所示為中等嗜熱菌群在不同馴化代數(shù)下的浸出率。由圖5可以看出,隨著馴化代數(shù)的增加,浸礦菌對黃銅礦的浸出能力逐漸增強,對浸出液中高濃度銅離子的耐受能力也隨之增強。銅的浸出率在礦漿濃度為50 g/L(即條柱上標(biāo)注5.0%)達(dá)到最大,為94.00%;隨著礦漿濃度的增加,浸出率有下降趨勢,礦漿濃度達(dá)到100 g/L時,銅的浸出率穩(wěn)定在80%左右。
可能是高礦漿濃度會造成反應(yīng)體系中的剪切力過大,不利于微生物生長,從而影響到浸出率[32],當(dāng)?shù)V漿濃度超過50 g/L時,浸出率略微下降;且高礦漿濃度下,溶液中銅離子濃度過高會影響到微生物生長,從而也會影響到浸出率[33-34]。由此可知,對浸礦菌進(jìn)行馴化能提高其對高礦漿濃度的抗性及對高銅離子濃度的耐受能力,從而能提高浸出效率。馬鵬程等[35]就從多個礦坑、煤堆廢水中富集中度嗜熱浸礦菌,并在攪拌反應(yīng)器中經(jīng)過兩年的長期馴化,獲得了能耐受高礦漿濃度和具有抗砷性的浸礦混合菌。
圖5 中等嗜熱菌群在不同馴化代數(shù)下的浸出率Fig. 5 Copper extraction using moderate thermophiles domesticated for different times
2.2 攪拌反應(yīng)器條件優(yōu)化
2.2.1 攪拌速率對生物浸出黃銅礦的影響
由圖6可知,當(dāng)攪拌速度為350 r/min時,30 d內(nèi)銅的浸出率最高,浸出銅離子濃度為17.36 g/L。當(dāng)攪拌速度低于350 r/min時,攪拌速率不夠,導(dǎo)致體系混合不均勻,溶氧不充分,會出現(xiàn)黃銅礦礦粉沉積,細(xì)菌沒有與礦物充分作用,導(dǎo)致銅浸出率下降。當(dāng)攪拌速度高于350 r/min時,銅浸出率降低,可能是攪拌速率過高,產(chǎn)生的剪切力過大,影響到細(xì)菌的生長繁殖,從而降低銅浸出速率[36]。由此可知,中度嗜熱菌群攪拌浸出黃銅礦時最佳攪拌速度為350 r/min。
2.2.2 充氣強度對生物浸出黃銅礦的影響
圖7所示為反應(yīng)器中不同充氣強度對黃銅礦精礦生物浸出的影響。由圖 7可知,在充氣強度為 500 mL/min時,30 d內(nèi)銅的浸出率最高,浸出銅離子濃度為17.36 g/L。當(dāng)充氣強度低于500 mL/min時,浸礦菌對黃銅礦的浸出速度較慢,尤其是在充氣強度為300 mL/min時尤為明顯,浸礦菌浸出速率特別低,可能是充氣強度過低影響到了浸礦菌的生長和繁殖,從而影響到了浸出速率[37]。當(dāng)充氣強度為 600 mL/min時,銅的浸出率反而降低,可能是充氣強度過高,產(chǎn)生大量氣泡,氣泡破碎產(chǎn)生巨大剪切力影響到浸礦菌的生長繁殖,導(dǎo)致浸出率下降[36]。由此可知,中度嗜熱菌群攪拌浸出黃銅礦時最佳充氣強度為 500 mL/min。
黃銅礦的生物浸出可分為兩部分作用,化學(xué)作用及微生物作用,可表示為[38-39]:
化學(xué)作用中主要是O2的氧化作用,因而充氣強度會影響到浸出率。當(dāng)微生物作用時,微生物充當(dāng)催化劑的角色,即不斷將亞鐵離子氧化重新生成三價鐵離子,并提供適宜的酸性環(huán)境;三價鐵在酸性條件下是一種很有效的礦物氧化劑和浸出劑,能對黃銅礦具有較好的浸出作用;而在黃銅礦氧化分解過程中會釋放亞鐵離子,后者又是微生物代謝的能源物質(zhì),微生物又將其氧化為三價鐵離子,如此構(gòu)成一個循環(huán),不斷對黃銅礦浸出。O2在生物反應(yīng)中會影響到細(xì)菌的生長代謝,CO2是此類微生物的碳源,用以合成自身生長所需的有機(jī)物,因此,充足的 O2和CO2才能保證浸礦細(xì)菌的良好生長,從而保證浸礦效率。
圖6 反應(yīng)器中攪拌速度對生物浸出黃銅礦精礦的影響Fig. 6 Effects of stirring rate on bioleaching of chalcopyrite in tank reactor
圖7 反應(yīng)器中不充氣強度對黃銅礦精礦生物浸出的影響Fig. 7 Effects of aeration intensities on the bioleaching of chalcopyrite in the tank reactor
2.3 優(yōu)化后的生物攪拌浸出試驗
圖8所示為中等嗜熱菌浸出過程中的生長曲線。由圖8可知,馴化后的浸礦菌很好的適應(yīng)了攪拌浸出黃銅礦的浸出環(huán)境,溶液中浸礦菌能迅速進(jìn)入對數(shù)生長期,在 14 d進(jìn)入穩(wěn)定期,菌濃度穩(wěn)定在 1.1×109mL-1。而未馴化的浸礦菌生長受到抑制,這是由于其未經(jīng)過馴化因而會受到高濃度礦漿的抑制,最高菌濃度僅為 4.2×108mL-1,遠(yuǎn)低于馴化后的浸礦菌濃度[31]。
圖8 中等嗜熱菌浸出過程中的生長曲線Fig. 8 Growth curves of moderate thermophiles in tank reactor
圖9所示為中等嗜熱菌浸出黃銅礦精礦過程中銅離子濃度的變化。由圖9可知,馴化后的浸礦菌的浸出率明顯提高,30 d后,浸出液中銅離子濃度達(dá)到17.36 g/L,浸出率為85.60%;相比之下,未經(jīng)過馴化的浸礦菌,在30 d后,浸出液中銅離子濃度僅為5 g/L,浸出率不到30%。這是由于馴化過后,浸礦菌能很好地適應(yīng)高礦漿濃度,能很好地生長繁殖,從而得到較高的浸出率。
圖 9 中等嗜熱菌浸出黃銅礦精礦過程中銅離子濃度的變化Fig. 9 Copper extraction during bioleaching of chalcopyrite by moderate thermophiles in tank reactor
在中等嗜熱菌群對黃銅礦精礦浸出過程,初始浸出速率很高,銅離子濃度迅速增加,而到第8 d后,進(jìn)入一個平臺期,直到第16 d后,又進(jìn)入一個迅速浸出期,銅離子濃度再次迅速增加。很可能是在那段平臺期,黃銅礦表面形成了一層鈍化膜,阻礙了浸礦菌與黃銅礦的作用效果。許多學(xué)者都對此現(xiàn)象展開了研究[40-46]。一般認(rèn)為,鈍化膜形成主要是由于,浸礦微生物吸附到礦物表面后,會產(chǎn)生胞外多聚物,其能富集三價鐵離子,從而氧化分解黃銅礦,但同時黃銅礦分解釋放的單質(zhì)硫也會附著在胞外多聚物上面,而隨著反應(yīng)的進(jìn)行,溶液中的氧化還原電位和三價鐵離子濃度逐步升高,會產(chǎn)生各種鐵礬沉淀,其也會覆蓋于礦物表面[8, 47-50]。
圖 10所示為中等嗜熱菌浸出黃銅礦精礦過程中鐵離子濃度的變化。由圖10可知,由圖10(a)可知,前8 d,三價鐵濃度迅速增高,而在8~12 d略有下降,這主要是由于生成了黃鉀鐵礬,隨后三價鐵離子濃度急劇升高,馬鵬程等[35]做的黃銅礦浸出試驗中就對亞鐵和三價鐵的行為進(jìn)行了詳細(xì)的研究。
對比圖10(a)和(b)可知,馴化過的浸礦菌對亞鐵離子氧化效果明顯高于未經(jīng)過馴化的,馴化過的在第14 d就將亞鐵離子氧化接近于 0,而未經(jīng)過馴化的直到28 d才接近于0。且比較其三價鐵含量,馴化過的浸出后期三價鐵含量明顯高于未經(jīng)過馴化的。綜合其生長曲線可知,其鐵離子濃度變化主要還是由于浸礦菌生長情況不同所造成的。
圖10 中等嗜熱菌浸出黃銅礦精礦過程中鐵離子濃度的變化Fig. 10 Variations of Ferrous and Ferric irons and total iron concentrations in chalcopyrite bioleaching experiment: (a)Domesticated bacteria; (b) Non-domesticated bacteria
1) 通過對中等嗜熱菌的最適生長條件(溫度、初始pH值)進(jìn)行優(yōu)化。得出最佳培養(yǎng)條件為:生長溫度為45 ℃、初始pH為1.5。
2) 使用黃銅礦礦漿濃度梯度對中等嗜熱菌進(jìn)行馴化,在礦漿濃度為 50 g/L時,銅的浸出率達(dá)到94.00%;在礦漿濃度為100 g/L時,浸出率穩(wěn)定在80%左右。相對于未經(jīng)馴化的中等嗜熱菌,馴化后的浸礦菌在最高細(xì)菌濃度和銅的浸出率方面均有較大提高。
3) 對攪拌反應(yīng)器條件(攪拌速度、充氣強度)的優(yōu)化試驗,結(jié)果表明在攪拌反應(yīng)器中中等嗜熱菌攪拌浸出黃銅礦精礦的最適攪拌速度為350 r/min,最適充氣強度為500 mL/min。
4) 采用優(yōu)化后的菌種生長條件及攪拌反應(yīng)器條件,用中等嗜熱菌黃銅礦精礦進(jìn)行浸出,浸出時間為30 d,最終銅離子濃度為 17.36 g/L,銅的浸出率為85.60%。
REFERENCES
[1]DUTRIZAC J E. The kinetics of dissolution of chalcopyrite in ferric ion media[J]. Metallurgical Transactions B, 1978, 9(3): 431-439.
[2]LI Y, KAWASHIMA N, LI J, CHANDRA A P, GERSON A R. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite[J]. Advances in Colloid and Interface Science, 2013, 197: 1-32.
[3]王曉冬, 段東平, 周 娥, 陳思明. 硫化銅礦強化浸出研究進(jìn)展[J]. 中國有色冶金, 2014, 43(4): 38-41. WANG Xiao-dong, DUAN Dong-ping, ZHOU E, CHEN Si-ming. Research progress of intensified leaching of copper sulfide ore[J]. China Nonferrous Metallurgy, 2014, 43(4): 38-41.
[4]BRIERLEY C L, BRIERLEY J A. Progress in bioleaching: part B: Applications of microbial processes by the minerals industries[J]. Applied Microbiology and Biotechnology, 2013,97(17): 7543-7552.
[5]PANDA S, SANJAY K, SUKLA L B, PRADHAN N,SUBBAIAH T, MISHRA B K, PRASAD M S, RAY S K. Insights into heap bioleaching of low grade chalcopyrite ores: A pilot scale study[J]. Hydrometallurgy, 2012, 125: 157-165.
[6]TSHILOMBO A F. Mechanism and kinetics of chalcopyrite passivation and depassivation during ferric and microbial leaching[D]. New York: University of British Columbia, 2004.
[7]DUTRIZAC J. Elemental sulphur formation during the ferric sulphate leaching of chalcopyrite[J]. Canadian Metallurgical Quarterly, 1989, 28(4): 337-344.
[8]曾偉民. 黃銅礦生物浸出過程中鈍化膜的形成機(jī)制及其清除方法探討[D]. 長沙: 中南大學(xué), 2011. ZENG Wei-min. The formation machanism of passivation layer and its elimination way during bioleaching of chalcopyrite[D]. Changsha: Central South University, 2011.
[9]KLAUBER C, PARKER A, van BRONSWIJK W, WATLING H. Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy[J]. International Journal of Mineral Processing, 2001, 62(1): 65-94.
[10]ZHAO Hong-bo, WANG Jun, QIN Wen-qing, HU Ming-hao,ZHU Shan, QIU Guang-zhou. Electrochemical dissolution process of chalcopyrite in the presence of mesophilic microorganisms[J]. Minerals Engineering, 2015, 71: 159-169.
[11]YANG Yi, LIU Wei-hua, CHEN Miao. A copper and iron K-edge XANES study on chalcopyrite leached by mesophiles and moderate thermophiles[J]. Minerals Engineering, 2013, 48: 31-35.
[12]XIA Le-xian, LU Tang, XIA Jin-lan, CHU Yin, CAI Li-yuan,ZHAO Xiao-juan, NIE Zhen-yuan, LIU Jian-she, QIU Guan-zhou. Relationships among bioleaching performance,additional elemental sulfur, microbial population dynamics and its energy metabolism in bioleaching of chalcopyrite[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(1): 192-198.
[13]KONISHI Y, ASAI S, TOKUSHIGE M, SUZUKI T. Kinetics of the bioleaching of chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi[J]. Biotechnology Progress,1999, 15(4): 681-688.
[14]劉 凱, 刁夢雪, 楊 宇, 覃文慶, 吳學(xué)玲. 混合高溫菌浸出黃銅礦及浸出過程中微生物群落的演替[J]. 中國有色金屬學(xué)報, 2015, 20(2): 346-353. LIU Kai, DIAO Meng-xue, YANG Yu, QIN Wen-qing, WU Xue-ling. Bioleaching of chalcopyrite concentrate using mixed thermophilic culture and succession of microbial community during leaching process[J]. The Chinese Journal of Nonferrous Metals, 2015, 20(2): 346-353.
[15]RODRIGUEZ Y, BALLESTER A, BLAZQUEZ M,GONZALEZ F, MUNOZ J. New information on the chalcopyrite bioleaching mechanism at low and high temperature[J]. Hydrometallurgy, 2003, 71(1): 47-56.
[16]SAND W, ROHDE K, SOBOTKE B, ZENNECK C. Evaluation of Leptospirillum ferrooxidans for leaching[J]. Applied and Environmental Microbiology, 1992, 58(1): 85-92.
[17]BRIERLEY J A. Thermophilic iron-oxidizing bacteria found in copper leaching dumps[J]. Applied and Environmental Microbiology, 1978, 36(3): 523-525.
[18]BRIERLEY J, LOCKWOOD S. The occurrence of thermophilic iron-oxidizing bacteria in a copper leaching system[J]. FEMS Microbiology Letters, 1977, 2(3): 163-165.
[19]BRIERLEY J A, NORRIS P R, KELLY D P, LE ROUX N W. Characteristics of a moderately thermophilic and acidophilic iron-oxidizing Thiobacillus[J]. European journal of applied microbiology and biotechnology, 1978, 5(4): 291-299.
[20]ZHOU Hong-bo, LIU Xi, FU Bo, QIU Guan-zhou, HUO Qiang,ZENG Wei-min, LIU Jian-she, CHEN Xin-hua. Isolation and characterization of Acidithiobacillus caldus from several typical environments in China[J]. Journal of Central South University of Technology, 2007, 14(2): 163-169.
[21]FU Bo, ZHOU Hong-bo, ZHANG Ru-bing, QIU Guan-zhou. Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum[J]. International Biodeterioration & Biodegradation, 2008, 62(2): 109-115.
[22]KINNUNEN P H M, PUHAKKA J A. Characterization of iron-and sulphide mineral-oxidizing moderately thermophilic acidophilic bacteria from an Indonesian auto-heating copper mine waste heap and a deep South African gold mine[J]. Journal of Industrial Microbiology and Biotechnology, 2004, 31(9): 409-414.
[23]WU Chang-bin, ZENG Wei-min, ZHOU Hong-bo, FU Bo,HUANG Ju-fang, QIU Guan-zhou, WANG Dian-zuo. Bioleaching of chalcopyrite by mixed culture of moderately thermophilic microorganisms[J]. Journal of Central South University of Technology, 2007, 14(4): 474-478.
[24]FENG Shou-shuai, YANG Hai-lin, XIN Yu, GAO Kai, YANG Ji-wei, LIU Ting, ZHANG Ling, WANG Wu. A novel and highly efficient system for chalcopyrite bioleaching by mixed strains of Acidithiobacillus[J]. Bioresource Technology, 2013, 129: 456-462.
[25]WEI Zhu, XIA Jin-lan, PENG An-an, NIE Zhen-yuan, QIU Guan-zhou. Characterization of apparent sulfur oxidation activity of thermophilic archaea in bioleaching of chalcopyrite[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(8): 2383-2388.
[26]劉漫博, 孫 琦, 李國平, 李路路, 范 燕. 生物冶金技術(shù)應(yīng)用與發(fā)展現(xiàn)狀[J]. 甘肅冶金, 2012, 34(5): 1-3. LIU Man-bo, SUN Qi, LI Guo-ping, LI Lu-lu, FAN Yan. Application and development of bioleaching technology[J]. Gansu Metallurgy, 2012, 34(5): 1-3.
[27]QIN Wen-qing, YANG Cong-ren, LAI Shao-shi, WANG Jun,LIU Kai, ZHANG Bo. Bioleaching of chalcopyrite by moderately thermophilic microorganisms[J]. Bioresource Technology, 2013, 129: 200-208.
[28]WANG Yu-guang, SU Li-jun, ZENG Wei-min, WAN Li-li,CHEN Zhu, ZHANG Li-juan, QIU Guan-zhou, CHEN Xin-hua,ZHOU Hong-bo. Effect of pulp density on planktonic and attached community dynamics during bioleaching of chalcopyrite by a moderately thermophilic microbial culture under uncontrolled conditions[J]. Minerals Engineering, 2014,61: 66-72.
[29]KAKSONEN A H, MORRIS C, REA S, LI J, WYLIE J, USHER K M, GINIGE M P, CHENG K Y, HILARIO F, du PLESSIS C A. Biohydrometallurgical iron oxidation and precipitation: Part I—Effect of pH on process performance[J]. Hydrometallurgy, 2014,147/148: 255-263.
[30]馬鵬程, 楊洪英, 王路平, 楊培根, 劉 慧. pH 對黃銅礦細(xì)菌浸銅的影響[J]. 有色金屬(冶煉部分), 2015(3): 1-4.MA Peng-cheng, YANG Hong-ying, WANG Lu-ping, YANG Pei-gen, LIU Hui. Effect of pH value on bioleaching of chalcopyrite[J]. Nonferrous Metals (Extractive Metallurgy),2015(3): 1-4.
[31]吳俊子, 曾偉民, 王玉光, 仉麗娟, 萬利利, 周洪波. 攪拌槽反應(yīng)器中中度嗜熱浸礦菌預(yù)處理含砷金礦[J]. 過程工程學(xué)報,2013, 13(3): 494-499. WU Jun-zi, ZENG Wei-min, WANG Yu-guang, ZHANG Li-juan,WAN Li-li, ZHOU Hong-bo. Pretreatment of refractory gold ore by a moderate thermophilic consortium in stirred tank reactor[J]. The Chinese Journal of Process Engineering, 2013, 13(3): 494-499.
[32]GERICKE M, GOVENDER Y, PINCHES A. Tank bioleaching of low-grade chalcopyrite concentrates using redox control[J]. Hydrometallurgy, 2010, 104(3): 414-419.
[33]張廣積, 方兆珩. 馴化氧化亞鐵硫桿菌從鎳黃鐵礦中浸出鎳[J]. 過程工程學(xué)報, 2001, 1(3): 285-288. ZHANG Guang-ji, FANG Zhao-heng. Bioleaching of nicopyrite with adapted thiobacillus ferrooxidans[J]. The Chinese Journal of Process Engineering, 2001, 1(3): 285-288.
[34]MOUSAVI S, YAGHMAEI S, VOSSOUGHI M, JAFARI A,HOSEINI S. Comparison of bioleaching ability of two native mesophilic and thermophilic bacteria on copper recovery from chalcopyrite concentrate in an airlift bioreactor[J]. Hydrometallurgy, 2005, 80(1): 139-144.
[35]馬鵬程, 楊洪英, 佟琳琳, 韓戰(zhàn)旗, 宋 言. 黃銅礦生物浸出過程中 Fe(Ⅱ)和 Fe(Ⅲ)的行為[J]. 中國有色金屬學(xué)報, 2013,23(6): 1694-1700. MA Peng-cheng, YANG Hong-ying, TONG Lin-lin, HAN Zhan-qi, SONG Yan. Behaviour of Fe(Ⅱ) and Fe(Ⅲ) in chalcopyrite bioleaching process[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(6): 1694-1700.
[36]張衛(wèi)民, 谷士飛, 孫占學(xué). 催化條件下低品位原生硫化銅礦的攪拌細(xì)菌浸出[J]. 金屬礦山, 2009(4): 40-42. ZHANG Wei-min, GU Shi-fei, SUN Zhan-xue. Agitation bioleaching of low-grade primary copper sulfide ore under caterlysis conditions[J]. Mine, 2009(4): 40-42.
[37]TORMA A, WALDEN C, DUNCAN D, BRANION R. The effect of carbon dioxide and particle surface area on the microbiological leaching of a zinc sulfide concentrate[J]. Biotechnology and Bioengineering, 1972, 14(5): 777-786.
[38]ZHAO Hong-bo, WANG Jun, YANG Cong-ren, HU Ming-hao,GAN Xiao-wen, TAO Lang, QIN Wen-qin, QIU Guan-zhou. Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: An emphasis on solution compositions[J]. Hydrometallurgy, 2015, 151: 141-150.
[39]LIANG Chang-li, XIA Jin-lan, YANG Yi, NIE Zhen-yuan,ZHAO Xiao-juan, ZHENG Lei, MA Chen-yan, ZHAO Yi-dong. Characterization of the thermo-reduction process of chalcopyrite at 65°C by cyclic voltammetry and XANES spectroscopy[J]. Hydrometallurgy, 2011, 107(1/2): 13-21.
[40]CRUNDWELL F. How do bacteria interact with minerals?[J]. Hydrometallurgy, 2003, 71(1/2): 75-81.
[41]SCHIPPERS A, SAND W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur[J]. Applied and Environmental Microbiology, 1999, 65(1): 319-321.
[42]GEHRKE T, TELEGDI J, THIERRY D, SAND W. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching[J]. Applied and Environmental Microbiology, 1998, 64(7): 2743-2747.
[43]GOMEZ C, ROMAN E, BLAZQUEZ M, BALLESTER A. SEM and AES studies of chalcopyrite bioleaching in the presence of catalytic ions[J]. Minerals Engineering, 1997, 10(8): 825-835.
[44]傅開彬, 董發(fā)勤, 諶 書, 王維清, 徐龍華, 王 振. 黃銅礦生物浸出鈍化及調(diào)控研究進(jìn)展[J]. 武漢理工大學(xué)學(xué)報, 2013,35(6): 128-133. FU Kai-bin, DONG Fa-qin, CHEN Shu, WANG Wei-qing, XU Long-hua, WANG Zhen. Review on passivation and elimination way during bioleaching of chalcopyrite[J]. Journal of WuHan University of Technology, 2013, 35(6): 128-133.
[45]梁長利, 夏金蘭, 楊 益, 聶珍媛, 邱冠周. 黃銅礦生物浸出過程的硫形態(tài)轉(zhuǎn)化研究進(jìn)展[J]. 中國有色金屬學(xué)報, 2012,22(1): 265-273. LIANG Chang-li, XIA Jin-lan, YANG Yi, NIE Zhen-yuan, QIU Guan-zhou. Progress in sulfur speciation transformation during chalcopyrite bioleaching[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(1): 265-273.
[46]ZHAO Hong-bo, WANG Jun, QIN Wen-qing, ZHENG Xi-hua,TAO Lang, GAN Xiao-wen, QIU Guan-zhou. Surface species of chalcopyrite during bioleaching by moderately thermophilic bacteria[J]. Transactions of Nonferrous Metals Society of China,2015, 25(8): 2725-2733.
[47]SAND W, GEHRKE T. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria[J]. Research in Microbiology, 2006, 157(1): 49-56.
[48]ZENG Wei-min, QIU Guan-zhou, ZHOU Hong-bo, LIU Xue-duan, CHEN Miao, CHAO Wei-liang, ZHANG Cheng-gui,PENG Juan-hua. Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate[J]. Hydrometallurgy, 2010, 100(3): 177-180.
[49]莫曉蘭, 林 海, 溫建康, 徐承焱. 脈石礦物對細(xì)菌浸出黃銅礦的影響研究[J]. 稀有金屬, 2013, 37(3): 437-445. MO Xiao-lan, LIN Hai, WEN Jian-kang, XU Cheng-yan. Effect of gangue minerals on chalcopyrite bioleaching[J]. Chinese Journal of Rare Metals, 2013, 37(3): 437-445.
[50]YU Run-lan, JING Liu, AN Chen, ZHONG Dai-li, QIAN Li,QIN Wen-qing, QIU Guan-zhou, GU Guo-hua. Interaction mechanism of Cu2+, Fe3+ions and extracellular polymeric substances during bioleaching chalcopyrite by Acidithiobacillus ferrooxidans ATCC2370[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(1): 231-236.
(編輯 龍懷中)
Bioleaching of chalcopyrite concentrate with moderate thermophilic bacteria and its optimization
WANG Jun1, 2, LI Yi-ni1, 2, ZHUANG Tian1, 2, ZHAO Hong-bo1, 2,ZHU Shan1, 2, QIN Wen-qing1, 2, QIU Guan-zhou1, 2
(1. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China;
2. Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China)
The bioleaching of chalcopyrite concentrate in the presence of three different moderate thermophilic bacteria such as Acidithiobacillus caldus (A.c), Leptospirillum ferriphilu (L.f) and Sulfobacillus thermosulfidooxidans (S.t),including the optimal conditions of microbial growth and the optimization of stirred reactor during the bioleaching process, was investigated. The results show that the best growth conditions of bacteria are as follows, temperature of 45 ℃ and initial pH of 1.5. The microbial growth of the domesticated bacteria and the bioleaching rate using them are significantly higher than those of the non-domesticated bacteria. The leaching rate using the domesticated strains reaches the maximum 94.00% with the pulp density of 50 g/L. The leaching rate of copper stabilizes at about 80% when the pulp density reaches 100 g/L. The optimal parameters of stirred reactors are as follows: stirring speed of 350 r/min and aeration intensity of 500 mL/min. The final concentration of copper ions is 17.36 g/L and the leaching rate of copper is 85.60% for the chalcopyrite bioleaching for 30 d under these conditions.
chalcopyrite; moderate thermophilic bacteria; bioleaching
Projects (51374248, 51320105006) supported by the National Natural Science Foundation of China;Project (20120162120010) supported by the Research Foundation for the Doctoral Program of Higher Education, China;Project (NCET-13-0595) supported by the Program for New Century Excellent Talents in University, China
date: 2015-08-25; Accepted date: 2015-12-08
WANG Jun; Tel: +86-731-88876557; E-mail: wjwq2000@126.com
1004-0609(2016)-05-1120-09
TD982
A
國家自然科學(xué)基金資助項目(51374248,51320105006);教育部博士點新教師基金資助項目(20120162120010);教育部新世紀(jì)人才計劃項目(NCET-13-0595)
2015-08-25;
2015-12-08
王 軍,副教授,博士;電話:0731-88876557;E-mail:wjwq2000@126.com