金 瀏, 韓亞強(qiáng), 丁子星, 杜修力
(北京工業(yè)大學(xué) 城市與工程安全減災(zāi)教育部重點(diǎn)實(shí)驗(yàn)室,北京 100124)
端部摩擦約束對(duì)混凝土單軸動(dòng)態(tài)壓縮強(qiáng)度影響分析
金瀏, 韓亞強(qiáng), 丁子星, 杜修力
(北京工業(yè)大學(xué) 城市與工程安全減災(zāi)教育部重點(diǎn)實(shí)驗(yàn)室,北京100124)
混凝土宏觀力學(xué)行為與其微/細(xì)觀結(jié)構(gòu)密切關(guān)聯(lián),考慮內(nèi)部結(jié)構(gòu)非均質(zhì)性的影響,假定混凝土是由骨料、砂漿基質(zhì)及界面過渡區(qū)組成的復(fù)合材料,建立了考慮端部摩擦約束的混凝土細(xì)觀力學(xué)模型。以單軸壓縮情況為例,針對(duì)不同的端部約束條件,模擬了中低應(yīng)變率水平下混凝土的動(dòng)態(tài)壓縮行為,分析了端部摩擦約束對(duì)混凝土動(dòng)態(tài)壓縮力學(xué)特性尤其是動(dòng)態(tài)強(qiáng)度的影響機(jī)理。數(shù)值結(jié)果表明:① 相同加載速率下,混凝土動(dòng)態(tài)壓縮強(qiáng)度隨端部摩擦因數(shù)的增大先增大,后逐漸趨于平穩(wěn);② 端部摩擦約束效應(yīng)改變了混凝土的單軸受力狀態(tài)及損傷分布,對(duì)混凝土單軸壓縮強(qiáng)度的提高有明顯的貢獻(xiàn);③ 端部摩擦約束條件相同時(shí),摩擦貢獻(xiàn)因子隨應(yīng)變率的增大呈減小趨勢(shì),且端部摩擦因數(shù)越大,減小的趨勢(shì)越明顯。
混凝土;端部摩擦;動(dòng)態(tài)壓縮強(qiáng)度;中低應(yīng)變率;細(xì)觀力學(xué)模型
混凝土是一種應(yīng)用最為廣泛的建筑材料,對(duì)于橋梁、大壩、核電站及防御工事等,除了要考慮正常的使用荷載外,還需考慮地震、沖擊及爆炸等動(dòng)力荷載的影響?;炷恋膭?dòng)力破壞機(jī)制和力學(xué)特性是這些工程結(jié)構(gòu)設(shè)計(jì)及數(shù)值仿真的基礎(chǔ)。然而,混凝土在動(dòng)態(tài)荷載作用下,其力學(xué)性質(zhì)和損傷特性與靜態(tài)情況下有很大區(qū)別,即所謂的“率相關(guān)”效應(yīng)或“應(yīng)變率”效應(yīng)。研究者通??梢圆捎寐溴N試驗(yàn)[1]、液壓伺服試驗(yàn)[2]和分離式霍普金森壓桿(SHPB)試驗(yàn)[3]等對(duì)混凝土材料動(dòng)態(tài)性能進(jìn)行研究,獲得混凝土動(dòng)態(tài)壓縮強(qiáng)度放大因子(CDIF,即動(dòng)態(tài)抗壓強(qiáng)度與靜態(tài)抗壓強(qiáng)度的比值)與應(yīng)變率的關(guān)系。大量試驗(yàn)工作均表明混凝土動(dòng)態(tài)強(qiáng)度隨應(yīng)變率的增大而增大,但其試驗(yàn)數(shù)據(jù)呈現(xiàn)出很大的離散性[4-5]。該行為可歸因于試驗(yàn)裝置、試驗(yàn)元件及試件尺寸等[5]。
實(shí)際上,在混凝土單軸動(dòng)態(tài)壓縮試驗(yàn)中,試件與試驗(yàn)設(shè)備之間會(huì)存在摩擦約束作用。那么,這種摩擦約束作用是否對(duì)混凝土的動(dòng)態(tài)力學(xué)特性產(chǎn)生影響,以及產(chǎn)生多大的影響,正是本文試圖回答的主要問題。
為了考察端部摩擦約束效應(yīng)的影響,一些研究者開始采用數(shù)值模擬手段來研究混凝土的動(dòng)態(tài)力學(xué)特性。如:Li等[4]在霍普金森壓桿模擬試驗(yàn)(應(yīng)變率為2.7×101s-1~3.9×102s-1)中考慮了端面摩擦因數(shù)從0~0.7的情況,發(fā)現(xiàn)當(dāng)摩擦因數(shù)小于0.1時(shí),可以忽視摩擦約束效應(yīng)對(duì)DIF的影響;當(dāng)摩擦因數(shù)大于0.2時(shí),端面摩擦約束效應(yīng)對(duì)DIF的影響較大。Mu等[6]模擬了霍普金森壓桿試驗(yàn)(應(yīng)變率為4.4×101s-1~1.47×102s-1),認(rèn)為混凝土材料并不存在應(yīng)變率效應(yīng),其強(qiáng)度提高是端部摩擦約束效應(yīng)和橫向慣性約束效應(yīng)共同作用的結(jié)果。Li等[7]采用動(dòng)摩擦和靜摩擦進(jìn)行霍普金森壓桿模擬產(chǎn)生了不同的數(shù)值結(jié)果,得到了動(dòng)摩擦和靜摩擦影響的不同結(jié)論。徐勇華等[8]則認(rèn)為摩擦約束對(duì)裂紋的產(chǎn)生、開展有一定的抑制作用(應(yīng)變率為3×101s-1~ 5×102s-1),并對(duì)抗壓強(qiáng)度DIF也有一定的提高。Hao等[8]對(duì)應(yīng)變率大于10 s-1,端部摩擦因數(shù)在0~0.5下混凝土試件的動(dòng)態(tài)壓縮強(qiáng)度增大的物理機(jī)理進(jìn)行了細(xì)觀尺度數(shù)值研究,發(fā)現(xiàn)端部摩擦及試件長(zhǎng)/徑比均對(duì)其有明顯的影響。這些研究工作,促進(jìn)了對(duì)混凝土動(dòng)態(tài)壓縮強(qiáng)度提高的物理機(jī)理的認(rèn)識(shí),但其均局限于探討沖擊及爆炸等高加載速率(應(yīng)變率范圍1×101s-1~ 1×103s-1)下的情況,即分離式霍普金森壓桿常應(yīng)用的加載范圍[4],對(duì)于中低應(yīng)變率水平下端部摩擦約束的影響則少有涉及。因此,本文集中討論中低應(yīng)變率下端部摩擦約束作用的影響規(guī)律和機(jī)制。
眾所周知,混凝土是一種典型的非均質(zhì)復(fù)合材料,其宏觀力學(xué)特性及破壞行為與其微/細(xì)觀組分密切關(guān)聯(lián)。鑒于此,考慮細(xì)觀非均質(zhì)性的影響,將混凝土視為骨料、砂漿基質(zhì)及二者之間的過渡區(qū)界面組成的三相復(fù)合材料,建立了混凝土細(xì)觀尺度的力學(xué)分析模型。通過與試驗(yàn)對(duì)比,驗(yàn)證了方法的可行性和準(zhǔn)確性。在此基礎(chǔ)上,分別模擬并探討了中低應(yīng)變率水平(1×10-3s-1~ 1×100s-1)下試件端部摩擦約束對(duì)混凝土動(dòng)態(tài)壓縮力學(xué)行為,以及動(dòng)態(tài)壓縮強(qiáng)度放大因子(CDIF)的影響,進(jìn)而揭示了端面摩擦對(duì)CDIF的影響隨加載速率的變化規(guī)律。
1混凝土細(xì)觀分析模型
1.1細(xì)觀結(jié)構(gòu)與力學(xué)模型
考慮細(xì)觀組分非均質(zhì)性的影響,從細(xì)觀角度出發(fā),將混凝土視為由骨料顆粒、砂漿基質(zhì)及兩者之間的過渡區(qū)界面(ITZ)組成的三相復(fù)合材料。采用Monte Carlo法進(jìn)行骨料的隨機(jī)投放,具體方法見文獻(xiàn)[9-10]。建立如圖1所示的二維混凝土細(xì)觀力學(xué)模型。為研究端部摩擦作用對(duì)混凝土動(dòng)態(tài)壓縮強(qiáng)度的影響規(guī)律,在試件上、下端面設(shè)置了剛性墊塊,以摩擦因數(shù)來表征端部約束作用。
為簡(jiǎn)化計(jì)算,Zhou等[10],將骨料顆粒設(shè)定為圓形。試件中各種代表粒徑的圓形骨料的等效顆粒數(shù)為:中石(粒徑d=30 mm)顆粒數(shù)為6,小石(粒徑d=12 mm)顆粒數(shù)為56[11]。考慮到計(jì)算量的限制,過渡區(qū)界面厚度設(shè)定為1 mm[12]。混凝土試件的尺寸為150 mm×150 mm,剛性墊塊尺寸為200 mm× 25 mm。圖1中,圓形區(qū)域?yàn)楣橇舷啵瑘A環(huán)“薄層”為界面過渡區(qū)(ITZ),圓環(huán)外側(cè)區(qū)域?yàn)樯皾{基質(zhì),上下兩矩形代表剛性墊塊,在剛性墊塊與混凝土試塊接觸面設(shè)定摩擦因數(shù)來表征兩者相互摩擦作用。
圖1 混凝土細(xì)觀力學(xué)模型Fig.1 Concrete meso-scale mechanical model
需要指出的是,本文采用二維平面模型模擬三維混凝土試件,忽略了實(shí)際混凝土的“三維約束效應(yīng)”[13]。因此,后續(xù)的研究中還需要采用三維模型及凸多邊形骨料來探討端部摩擦約束對(duì)混凝土單軸動(dòng)態(tài)壓縮強(qiáng)度的影響。
1.2細(xì)觀組分本構(gòu)關(guān)系及力學(xué)參數(shù)
Zhou等[10,14-15]對(duì)混凝土的動(dòng)態(tài)拉伸/壓縮破壞行為進(jìn)行了數(shù)值模擬,結(jié)果表明,由于骨料相的拉伸/壓縮強(qiáng)度明顯高于砂漿基質(zhì)及過渡區(qū)界面,故不會(huì)發(fā)生斷裂破壞。金瀏等[16]在考慮加載速率及其突變對(duì)混凝土壓縮破壞的數(shù)值模擬中,采用彈性行為表征骨料的力學(xué)特性。本文集中于探討中低應(yīng)變率下混凝土動(dòng)態(tài)力學(xué)行為,亦認(rèn)為骨料不發(fā)生斷裂破壞,為線彈性體。
對(duì)于砂漿基質(zhì)及界面過渡區(qū),采用由Lubliner等[17]提出的后經(jīng)Lee等[18]改進(jìn)的塑性損傷模型來描述其力學(xué)行為。該模型能表征材料的塑性永久變形,且可以描述材料由于損傷累積而產(chǎn)生的剛度退化及達(dá)到強(qiáng)度后的材料軟化力學(xué)行為,獲得了廣泛應(yīng)用[16,19]。本文中采用的各細(xì)觀組分的力學(xué)參數(shù),包括彈性模量、泊松比及拉伸/壓縮屈服應(yīng)力等見表1。表1中各參數(shù)物理意義詳見文獻(xiàn)[19]。
Grote等[3]試驗(yàn)研究表明砂漿力學(xué)性能與混凝土類似,因此可以采用該損傷塑性模型來描述砂漿力學(xué)性能。相比于抗壓及抗拉強(qiáng)度,混凝土的其它力學(xué)參數(shù)如彈性模量、泊松比、能量耗散能力及峰值應(yīng)變等率敏感性較弱[3,19]。因此,本文中僅考慮材料強(qiáng)度的放大行為,即細(xì)觀組分的應(yīng)變率效應(yīng)用其強(qiáng)度的動(dòng)態(tài)增大系數(shù)DIF來表示。
采用CEB規(guī)范中用來表征混凝土動(dòng)態(tài)抗壓強(qiáng)度提高因子(CDIF)的公式為:
(1)
(2)
(3)
(4)
1.3細(xì)觀力學(xué)模型的驗(yàn)證
在混凝土的加載率效應(yīng)研究方面,Dilger等[22]的試驗(yàn)數(shù)據(jù)相對(duì)最為全面,眾多學(xué)者曾采用Dilger等的混凝土動(dòng)態(tài)壓縮試驗(yàn)數(shù)據(jù)來驗(yàn)證其數(shù)值方法的可靠性。因此,作者在前文獻(xiàn)[16]采用了與本文計(jì)算模型(端面完全光滑無摩擦,即摩擦因數(shù)μ=0)相同的細(xì)觀力學(xué)模型,將三種不同應(yīng)變率下獲得的單軸壓縮應(yīng)力-應(yīng)變關(guān)系曲線與Dilger等的試驗(yàn)結(jié)果進(jìn)行比較。從圖2可以看出模擬結(jié)果和試驗(yàn)數(shù)據(jù)吻合良好,說明了本文方法的合理性。
表1 混凝土細(xì)觀組分的力學(xué)參數(shù)
注:“*”數(shù)據(jù)取用文獻(xiàn)[21]。
圖2 單軸壓縮情況下數(shù)值結(jié)果與試驗(yàn)結(jié)果對(duì)比Fig.2 Comparison between the available experimental data and numerical results for uniaxial compression
2混凝土動(dòng)態(tài)破壞分析與討論
圖3 不同加載速率下混凝土達(dá)到峰值應(yīng)力(壓縮強(qiáng)度)時(shí)的損傷狀態(tài)Fig.3 Damage distribution of the concrete specimens at their peak stresses (compressive strength) under different strain rates
2.1端部摩擦對(duì)壓縮強(qiáng)度的影響
比較圖3(a)和圖3(b)可以發(fā)現(xiàn),試件端面摩擦因數(shù)不同,同一應(yīng)變率下混凝土達(dá)到強(qiáng)度時(shí),試件內(nèi)部損傷情況不同。相同應(yīng)變率下,摩擦因數(shù)較大的試件上、下端面處的損傷程度較小,損傷區(qū)域由上下兩端向中部靠攏,這是由于端部摩擦約束改變了局部混凝土的單軸受力狀態(tài)造成的。為此,分別對(duì)端面摩擦因數(shù)μ=0(試件與加載設(shè)備接觸面完全光滑無摩擦)、0.1、0.2、0.3、0.6、0.8和∞(試件上下端面水平向完全約束)的情況,進(jìn)行了不同加載速率下的單軸壓縮模擬,得到了如圖4所示的混凝土單軸壓縮應(yīng)力-應(yīng)變關(guān)系曲線,各曲線的峰值(混凝土軸向壓縮強(qiáng)度)見表2。
圖5是不同應(yīng)變率下混凝土試件動(dòng)態(tài)壓縮強(qiáng)度與端面摩擦因數(shù)之間的關(guān)系。可知,摩擦因數(shù)介于0~0.3之間時(shí),各加載速率下混凝土單軸壓縮強(qiáng)度均增長(zhǎng)較快;當(dāng)端面摩擦因數(shù)μ≥0.3之后,混凝土單軸壓縮強(qiáng)度增長(zhǎng)緩慢,并逐漸趨于平穩(wěn)。該數(shù)值結(jié)果與Li等[4]關(guān)于高應(yīng)變率下端部約束影響的分析結(jié)果一致。
圖4 不同應(yīng)變率下混凝土動(dòng)態(tài)壓縮應(yīng)力-應(yīng)變關(guān)系曲線Fig.4 Dynamic compressive stress-strain relationship curves of concrete under different strain rates
μ動(dòng)態(tài)壓縮強(qiáng)度值/MPa1×10-5s-11×10-3s-11×10-2s-11×10-1.5s-11×10-1s-11×10-0.5s-11×100s-107.938.068.589.1910.4211.9715.390.18.298.389.069.7711.1312.9716.120.28.468.579.2610.0711.3713.4916.820.38.498.649.3910.1611.6713.5516.960.68.578.779.5510.3611.7513.8217.360.88.608.819.6210.4211.8513.9117.45∞8.758.929.8010.6712.1214.0617.49
圖5 混凝土動(dòng)態(tài)壓縮強(qiáng)度與試件端面摩擦因數(shù)關(guān)系Fig.5 The relationship between the obtained dynamic compressive strengths of concrete and end friction coefficient
發(fā)生損傷的位置基本無變化,但損傷程度逐漸增加并趨于穩(wěn)定。這很好地解釋了圖5中曲線先快速上升(0<μ<0.3)而后趨于平緩(μ>0.3)的變化過程。
圖6 峰值應(yīng)力時(shí)損傷破壞模式(兩組加載速率不同)Fig.6 Damagedistribution within concretes at the corresponding peak stresses (two different loading velocities)
2.2端部摩擦對(duì)動(dòng)態(tài)放大因子(DIF)的影響
圖7 壓縮強(qiáng)度放大系數(shù)與應(yīng)變率(對(duì)數(shù)表示)關(guān)系Fig.7 The relationship between CDIF and strain rate
(5)
圖9(a)和9(b)中,E1表示無端面摩擦(μ=0)準(zhǔn)靜態(tài)加載下混凝土達(dá)到壓縮強(qiáng)度時(shí)消耗的能量;E2和E4表示由應(yīng)變率效應(yīng)導(dǎo)致的壓縮強(qiáng)度增加所消耗的能量;而E3和E5則表示由于端面摩擦效應(yīng)導(dǎo)致的動(dòng)態(tài)壓縮強(qiáng)度增加所消耗的能量。從圖9(a)和9(b)的對(duì)比中可以看出:
圖8 摩擦因數(shù)μ和應(yīng)變率對(duì)摩擦貢獻(xiàn)因子β的影響Fig.8 Effect of friction coefficient μ and strain rate on thefriction contribution factor β
圖9 混凝土動(dòng)態(tài)單軸壓縮應(yīng)力-應(yīng)變曲線上升段Fig.9 The ascending part of concrete dynamic uniaxial compressive stress-strain curves
(6)
3結(jié)論
(1) 中低應(yīng)變率 (1×10-5s-1~1×100s-1)水平下,混凝土單軸動(dòng)態(tài)壓縮強(qiáng)度隨端部摩擦因數(shù)的增大先增大(0≤μ≤ 0.3),后逐漸趨于平穩(wěn)(μ>0.3)。
(2) 端部摩擦約束效應(yīng)改變了局部混凝土的單軸受力狀態(tài)及損傷破壞模式,對(duì)混凝土單軸壓縮強(qiáng)度的提高有明顯的貢獻(xiàn)。當(dāng)應(yīng)變率為1×100s-1,端面摩擦因數(shù)μ=0.6時(shí),端部摩擦貢獻(xiàn)因數(shù)約為28.5%。
(3) 端部摩擦約束條件相同(μ>0)時(shí),摩擦貢獻(xiàn)因數(shù)隨應(yīng)變率(1×10-2s-1~1×100s-1)的增大呈減小趨勢(shì),且端部摩擦因數(shù)越大,減小的趨勢(shì)越明顯。
[ 1 ] Perry S H, Prichard S J. Sleeved concrete cylinders subjected to hard impact [J]. In: 3rdAsia-Pacific Conference on Shock & Impact Loads on Structures, Singapore, 1999, 359-371.
[ 2 ] Cao J Y, Chung D D L. Effect of strain rate on cement mortar under compression, studied by electrical resistivity measurement [J]. Cement and Concrete Research, 2002, 32(5): 817-819.
[ 3 ] Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain-rates and pressures: I. Experimental characterization [J]. International Journal of Impact Engineering, 2001, 25(9): 869-886.
[ 4 ] Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Solids and Structures,2003,40(2):343-360.
[ 5 ] Hao Y, Hao H, Li Z X. Influence of end friction confinement on impact tests of concrete material at high strain rate[J]. International Journal of Impact Engineering, 2013, 60: 82-106.
[ 6 ] Mu Z C, Dancygier A N, Zhang W. Revisiting the dynamic compressive behavior of concrete-like materials [J]. International Journal of Impact Engineering, 2012, 49(1):91-102.
[ 7 ] Li Q M, Lu Y B, Meng H. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson bar tests. Part II: Numerical simulations [J]. International Journal of Impact Engineering, 2009, 36(12): 1335-1345.
[ 8 ] 徐勇華, 浣石, 陶為俊, 等. 考慮端部摩擦約束的混凝土SHPB試驗(yàn)細(xì)觀數(shù)值模擬 [J]. 混凝土, 2015(2): 39-42.
XU Yong-hua, HUAN Shi, TAO Wei-jun, et al. Meso-level numerical simulation of SHPB tests with end friction confinement [J]. Concrete, 2015(2): 39-42.
[ 9 ] 馬懷發(fā), 陳厚群, 黎保琨. 混凝土試件細(xì)觀結(jié)構(gòu)的數(shù)值模擬 [J]. 水利學(xué)報(bào), 2004, 35(10): 27-35.
MA Huai-fa, CHEN Hou-qun, LI Bao-kun. Meso-structure numerical simulation of concrete specimens [J]. Journal of Hydraulic Engineering, 2004, 35(10): 27-35.
[10] Zhou X Q, Hao H. Modeling of compressive behavior of concrete-like materials at high strain rate [J]. International Journal of Solids and Structures, 2008, 45(17): 4648-4661.
[11] 杜修力, 金瀏. 混凝土材料宏觀力學(xué)特性分析的細(xì)觀單元等效化模型 [J]. 計(jì)算力學(xué)學(xué)報(bào), 2012, 29(5): 654-661.
DU Xiu-li, JIN Liu. Meso-element equivalent model for macro-scopic mechanical properties analysis of concrete materials [J]. Chinese Journal of Computational Mechanics, 2012, 29(5): 654-661.
[12] 杜修力, 金瀏. 界面過渡區(qū)對(duì)混凝土動(dòng)態(tài)力學(xué)行為影響分析 [J]. 地震工程與工程振動(dòng), 2015, 35(1): 11-19.
DU Xiu-li, JIN Liu. Effect of the interfacial transition zone on the dynamic macroscopic mechanical behavior of concrete [J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(1): 11-19.
[13] 杜修力, 韓亞強(qiáng), 金瀏, 等. 骨料空間分布對(duì)混凝土壓縮強(qiáng)度及軟化曲線影響統(tǒng)計(jì)分析 [J]. 水利學(xué)報(bào),2015,46(6):631-639.
DU Xiu-li, HAN Ya-qiang, JIN Liu, et al. Statistical investigation on effects of aggregate distribution on concrete compressive strength and the descending part of stress-strain curve [J]. Journal of Hydraulic Engineering, 2015, 46(6):631-639.
[14] Zhou X Q, Hao H. Mesoscale modeling of concrete tensile failure mechanism at high strain rates [J]. Computers and Structures, 2008, 86(21/22): 2013-2026.
[15] Snozzi L, Caballero A, Molinari J F. Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading [J]. Cement and Concrete Research, 2011, 41(11): 1130-1142.
[16] 金瀏,杜修力.加載速率及其突變對(duì)混凝土壓縮破壞影響的數(shù)值研究[J].振動(dòng)與沖擊,2014,33(19):187-193.
JIN Liu, DU Xiu-li. Effects of loading rate and its sudden change on concrete compressive failure [J]. Journal of Vibration and Shock, 2014, 33(19): 187-193.
[17] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.
[18] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures [J]. ASCE Journal of Engineering Mechanics, 1998, 124(8): 892-900.
[19] Du X L, Jin L, Ma G W. Numerical simulation of dynamic tensile failure of concrete at meso-scale [J]. International Journal of Impact Engineering, 2014, 66(1): 5-17.
[20] Malvar L J, Ross C A. Review of strain rate effects for concrete in tension[J].ACI Materials Journal,1998,95(6):735-739.
[21] Du X L, Jin L, Zhang R B. Modeling the cracking of cover concrete due to non-uniform corrosion of reinforcement [J]. Corrosion Science, 2014, 89: 189-202.
[22] Dilger W H, Koch R, Kowalczyk R. Ductility of plain and confined concrete under different strain rates [J]. American Concrete Institute Special Publication, 1984, 81(1): 73-81.
Effect of end friction confinement on uniaxial dynamic compressive strength of concrete
JIN Liu, HAN Ya-qiang, DING Zi-xing, DU Xiu-li
(Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China)
Macro mechanical behavior of concrete is closely related to its micro-/meso-scale structure. Considering the influence of heterogeneity of interior structure, a meso-scale mechanical model was established to study the effects of end friction confinement, concrete was composed of aggregate particles, mortar matrix and the interfacial transition zones between the two phases. Aiming at different end friction confinements, the uniaxial dynamic compressive mechanical behaviors of concrete subjected to different medium and low strain rates were simulated. Furthermore, the influence mechanism of end friction confinement on the uniaxial dynamic compressive mechanical properties, especially, the compressive strength of concrete was analyzed. The simulation results indicated that ① with increase in end friction coefficient, the uniaxial compressive strength of concrete increases firstly and then becomes flat under the same loading rate; ② the end friction confinement changes the local stress state and damage distribution of concrete, and it contributes to the increase in compressive strength of concrete obviously; ③ the friction contribution factor has a descending tendency with increase in the strain rate, and it decreases obviously when the end friction coefficient increases under the same end friction confinemenr.
concrete; end friction; dynamic compressive strength; medium and low strain rates; meso- mechanical model
10.13465/j.cnki.jvs.2016.11.003
973項(xiàng)目計(jì)劃(2011CB013600);國(guó)家自然科學(xué)基金創(chuàng)新研究群體項(xiàng)目(51421005)
2015-05-12修改稿收到日期:2015-06-12
金瀏 男,博士,1985年生
杜修力 男,博士, 長(zhǎng)江學(xué)者特聘教授,1963年生
TU352; TU37
A