談明高, 丁 榮, 劉厚林, 吳賢芳, 董亮
(1.江蘇大學(xué) 流體機(jī)械工程技術(shù)研究中心,江蘇 鎮(zhèn)江 212013; 2. 江蘇大學(xué) 能源與動(dòng)力工程學(xué)院,江蘇 鎮(zhèn)江 212013)
?
雙流道污水泵內(nèi)非定常壓力脈動(dòng)特性研究
談明高1, 丁榮1, 劉厚林1, 吳賢芳2, 董亮1
(1.江蘇大學(xué) 流體機(jī)械工程技術(shù)研究中心,江蘇 鎮(zhèn)江212013; 2. 江蘇大學(xué) 能源與動(dòng)力工程學(xué)院,江蘇 鎮(zhèn)江212013)
摘要:基于拓展的標(biāo)準(zhǔn)k-ε湍流模型和Mixture多相流模型,對(duì)雙流道污水泵內(nèi)非定常壓力脈動(dòng)進(jìn)行了數(shù)值模擬,計(jì)算結(jié)果與試驗(yàn)結(jié)果較為吻合,數(shù)值計(jì)算模型和方法可靠性高。在泵蝸殼內(nèi)設(shè)置了監(jiān)測(cè)點(diǎn)來(lái)分析不同顆粒粒徑和顆粒體積分?jǐn)?shù)時(shí)壓力脈動(dòng)的變化。結(jié)果表明:顆粒物性對(duì)泵內(nèi)壓力脈動(dòng)影響明顯,加入粒徑0.5 mm、體積分?jǐn)?shù)5%的顆粒后蝸殼周向壓力脈動(dòng)強(qiáng)度有減弱的趨勢(shì)且最大減小了34.80%。隔舌下端與蝸殼出口成15°夾角的TP1點(diǎn)因受隔舌處回流影響主頻大多不是葉頻,而正對(duì)隔舌的TP2點(diǎn)和隔舌上端第9斷面的TP3點(diǎn)壓力脈動(dòng)主頻均為葉頻。顆粒在TP3點(diǎn)處發(fā)生沉降離析導(dǎo)致靜壓波動(dòng)異常,顆粒體積分?jǐn)?shù)一定時(shí)選擇合適的粒徑或粒徑一定時(shí)適當(dāng)增大兩相流輸送濃度都能有效降低壓力脈動(dòng)強(qiáng)度。
關(guān)鍵詞:雙流道污水泵;壓力脈動(dòng);顆粒物性;回流;葉頻
雙流道泵與普通葉片泵相比流道較寬,對(duì)固體顆粒的通過(guò)性能好、抗堵塞和纏繞能力較強(qiáng),因而被廣泛應(yīng)用于生活污水、工業(yè)廢水等含固體顆粒介質(zhì)的輸送。伴隨日益嚴(yán)格的環(huán)境保護(hù)標(biāo)準(zhǔn)和各行各業(yè)對(duì)污水輸送泵性能要求的不斷提升,雙流道泵輸送固液兩相流時(shí)的性能受到越來(lái)越多的關(guān)注[1-3],這其中泵內(nèi)壓力脈動(dòng)特性是關(guān)注的一個(gè)重點(diǎn)。
目前,國(guó)內(nèi)外學(xué)者對(duì)泵內(nèi)壓力脈動(dòng)特性進(jìn)行了廣泛的研究,并經(jīng)過(guò)大量的優(yōu)化設(shè)計(jì)來(lái)降低壓力脈動(dòng),以期減小水泵機(jī)組的振動(dòng)噪聲。江偉等[4]研究了不同葉片出口傾斜角對(duì)壓力脈動(dòng)的影響,結(jié)果表明較小的傾斜角能有效減小壓力脈動(dòng)波動(dòng)幅度;施衛(wèi)東等[5]的研究表明增大隔舌安放角能夠使泵內(nèi)流動(dòng)狀態(tài)變好,有效地改善隔舌處壓力脈動(dòng);黎耀軍等[6]分析了不同輪緣間隙對(duì)軸流泵內(nèi)壓力脈動(dòng)影響,研究表明葉輪出口斷面壓力脈動(dòng)幅值隨輪緣間隙增大而減小。此外文獻(xiàn)[7-9]還分別分析了分流葉片、傾斜蝸殼、葉輪出口寬度等結(jié)構(gòu)參數(shù)對(duì)泵內(nèi)壓力脈動(dòng)特性的影響。
到目前為止,泵內(nèi)壓力脈動(dòng)的研究還主要集中在葉片式的離心泵[10-15]和軸流泵[16-17]且介質(zhì)為清水而關(guān)于雙流道泵內(nèi)壓力脈動(dòng)研究還比較少。在泵送固液混合物時(shí)壓力脈動(dòng)的研究方面,張釗等[18-19]分別針對(duì)螺旋離心泵和雙吸泵內(nèi)固液兩相流工況下壓力脈動(dòng)進(jìn)行了初步分析,而對(duì)雙流道泵輸送污水時(shí)顆粒物性對(duì)泵內(nèi)壓力脈動(dòng)的分布與變化規(guī)律的研究還尚未涉及。實(shí)踐表明顆粒物的沉降極易惡化泵內(nèi)流體流動(dòng)從而增大壓力脈動(dòng)及其誘導(dǎo)振動(dòng)噪聲,危害泵系統(tǒng)安全有效運(yùn)行。
本文基于Mixture多相流模型,對(duì)不同顆粒直徑和顆粒體積分?jǐn)?shù)下雙流道污水泵內(nèi)湍流進(jìn)行非定常計(jì)算,研究顆粒物性對(duì)蝸殼尤其是隔舌附近壓力脈動(dòng)影響,以獲得泵內(nèi)壓力脈動(dòng)及其誘導(dǎo)振動(dòng)噪聲隨顆粒物性變化的規(guī)律,為雙流道污水泵的優(yōu)化設(shè)計(jì)提供依據(jù)。
1計(jì)算模型與方法
1.1基本假設(shè)
以含砂水流為介質(zhì),為實(shí)現(xiàn)對(duì)雙流道泵內(nèi)固液兩相流數(shù)值模擬,作如下假設(shè):流體相和顆粒相均為連續(xù)介質(zhì),且各相的物理特性均為常數(shù);固相為粒徑均勻的球形顆粒,不考慮相變;主相為清水,第二相為同種固體顆粒(固體顆粒為砂粒,密度ρ=2 520 kg/m3)。
1.2研究模型
以一臺(tái)比轉(zhuǎn)速ns=99的雙流道泵為研究對(duì)象,其設(shè)計(jì)流量Q=10 m3/h,設(shè)計(jì)轉(zhuǎn)速n=2 900 r/min,設(shè)計(jì)揚(yáng)程H=10 m,其主要的結(jié)構(gòu)參數(shù)如表1所示。
表1 泵主要結(jié)構(gòu)參數(shù)
為保證計(jì)算的有效性在泵進(jìn)出口都加上了適當(dāng)長(zhǎng)度的延長(zhǎng)段,計(jì)算區(qū)域?yàn)閺倪M(jìn)口延長(zhǎng)段到泵出口延長(zhǎng)段的整個(gè)流動(dòng)區(qū)域,旋轉(zhuǎn)葉輪部分用混合網(wǎng)格劃分而蝸殼及進(jìn)出口延長(zhǎng)段部分采用結(jié)構(gòu)化網(wǎng)格,并對(duì)邊界進(jìn)行加密處理,如圖1所示。以揚(yáng)程計(jì)算值變化小于1%作為網(wǎng)格相關(guān)性檢查的標(biāo)準(zhǔn),并綜合計(jì)算精度和計(jì)算時(shí)間,最后選定計(jì)算域網(wǎng)格總數(shù)為1 281 584。ICEM CFD網(wǎng)格質(zhì)量檢查在0.35以上,滿足網(wǎng)格質(zhì)量要求。
1.進(jìn)口延長(zhǎng)段 2.葉輪 3.蝸殼 4.出口延長(zhǎng)段圖1 雙流道泵計(jì)算域及網(wǎng)格Fig.1 Computational domain and mesh
2數(shù)值計(jì)算設(shè)定
2.1數(shù)學(xué)模型及邊界條件
兩相流模型采用考慮固液間滑移速度的Mixture模型,滑移速度計(jì)算采用Manninen-et-al模型,曳力應(yīng)用Schiller-Naumann模型求得,顆粒碰撞恢復(fù)系數(shù)為0.9。將單相的標(biāo)準(zhǔn)k-ε湍流模型和SIMPLEC壓力速度耦合算法拓展應(yīng)用到固液兩相流的計(jì)算中來(lái),采用Fluent軟件對(duì)雙流道污水泵進(jìn)行非定常數(shù)值計(jì)算。
進(jìn)口邊界取為速度進(jìn)口,并給定進(jìn)口邊界混合流體的湍流強(qiáng)度和水力直徑數(shù)值;出口邊界采用自由出流;固壁使用無(wú)滑移條件,在接近固體壁面區(qū)域采用壁面函數(shù)法,收斂精度設(shè)為10-4。
2.2時(shí)間步長(zhǎng)
在定長(zhǎng)計(jì)算收斂的基礎(chǔ)上進(jìn)行非定常計(jì)算,葉輪轉(zhuǎn)速為2 900 r/min,時(shí)間步長(zhǎng)設(shè)定為5.747×10-5s,即將葉輪旋轉(zhuǎn)1°作為一個(gè)時(shí)間步長(zhǎng),葉輪總共旋轉(zhuǎn)18圈,總的時(shí)間是0.372 4 s。選取葉輪旋轉(zhuǎn)的最后兩個(gè)周期進(jìn)行分析。
2.3監(jiān)測(cè)點(diǎn)設(shè)置
為準(zhǔn)確獲取葉輪和蝸殼動(dòng)靜干涉條件下的壓力脈動(dòng)規(guī)律,在蝸殼周向第1斷面至第8斷面中間位置按序設(shè)置了監(jiān)測(cè)點(diǎn)VP1~VP8,在隔舌下端與y軸正向成-15°處設(shè)監(jiān)測(cè)點(diǎn)TP1,正對(duì)隔舌位置設(shè)點(diǎn)TP2,TP3設(shè)在隔舌附近的第9斷面處,以此研究壓力脈動(dòng)在蝸殼尤其是隔舌附近的分布變化情況,各監(jiān)測(cè)點(diǎn)的位置如圖2所示。設(shè)定蝸殼周向角度y軸正向?yàn)?°,并在圖2中隨葉輪旋轉(zhuǎn)方向增大。
圖2 蝸殼內(nèi)監(jiān)測(cè)點(diǎn)設(shè)置Fig.2 Monitoring location in volute
3數(shù)值計(jì)算可靠性驗(yàn)證
3.1外特性驗(yàn)證
為驗(yàn)證數(shù)值計(jì)算結(jié)果的可靠性,制作了一臺(tái)型號(hào)為50QW10-10-0.75的雙流道泵樣機(jī)并在江蘇大學(xué)國(guó)家水泵中心開式試驗(yàn)臺(tái)上進(jìn)行了性能測(cè)試,圖3為試驗(yàn)系統(tǒng)示意圖。用壓力變送器測(cè)量泵出口處壓力,用電磁流量計(jì)測(cè)量管路中的流量,壓力傳感器測(cè)得泵出口處壓力脈動(dòng),采集卡將傳感器的電信號(hào)轉(zhuǎn)換成數(shù)字信號(hào)并傳輸?shù)接?jì)算機(jī)控制系統(tǒng)進(jìn)行分析處理。
1.蓄水池 2.試驗(yàn)泵 3.霍爾傳感器 4.計(jì)算機(jī)控制系統(tǒng) 5.壓力變送器 6 .壓力傳感器 7.電磁流量計(jì)圖3 雙流道污水泵試驗(yàn)裝置示意圖Fig.3 Sketch of test rig
圖4 雙流道泵數(shù)值計(jì)算和試驗(yàn)外特性對(duì)比Fig.4 Comparison between test and simulation results
圖4為雙流道泵外特性非定常數(shù)值計(jì)算結(jié)果與試驗(yàn)測(cè)試結(jié)果的對(duì)比。可以看出總體上計(jì)算結(jié)果與試驗(yàn)值趨勢(shì)比較統(tǒng)一;在設(shè)計(jì)工況點(diǎn)附近揚(yáng)程和效率預(yù)測(cè)值和試驗(yàn)值相比誤差均小于3.0%,在非設(shè)計(jì)工況點(diǎn)外特性計(jì)算誤差略高一些,但總體上數(shù)值計(jì)算結(jié)果對(duì)雙流道污水泵有較高的可靠性。
3.2壓力脈動(dòng)驗(yàn)證
在外特性測(cè)量的同時(shí)借助于型號(hào)為CYG3042高頻壓力傳感器對(duì)蝸殼出口處壓力脈動(dòng)進(jìn)行了測(cè)量,傳感器外部機(jī)構(gòu)做成液位式密封,待泵平穩(wěn)運(yùn)行后通過(guò)調(diào)節(jié)出口處閥門將流量調(diào)至設(shè)計(jì)工況,測(cè)量時(shí)信號(hào)采集頻率為1 000 Hz,總的采集時(shí)間為2 s,通過(guò)計(jì)算機(jī)控制系統(tǒng)對(duì)測(cè)量信號(hào)進(jìn)行處理。
圖5為雙流道泵蝸殼出口處壓力脈動(dòng)計(jì)算值與試驗(yàn)值對(duì)比(橫坐標(biāo)統(tǒng)一以周期為單位,縱坐標(biāo)是總壓)。圖中可以看出數(shù)值計(jì)算的蝸殼出口總壓變化與試驗(yàn)結(jié)果趨勢(shì)基本一致,都明顯出現(xiàn)了兩個(gè)波峰和波谷且相繼出現(xiàn)的時(shí)間大體一致,從波峰到波谷的一個(gè)波動(dòng)周期用時(shí)約為0.5 T即0.01 s,這說(shuō)明數(shù)值計(jì)算對(duì)壓力脈動(dòng)的計(jì)算可靠性比較高。因試驗(yàn)是單點(diǎn)測(cè)量而數(shù)值計(jì)算取的是出口面上某一時(shí)刻的面積平均總壓,故而計(jì)算值要相對(duì)平穩(wěn),更具有規(guī)律性。
圖5 壓力脈動(dòng)計(jì)算值與試驗(yàn)值對(duì)比Fig.5 Comparision of pressure pulsation between experimental and computational results
4數(shù)值計(jì)算結(jié)果及分析
4.1蝸殼周向脈動(dòng)壓力分布
針對(duì)蝸殼內(nèi)壓力脈動(dòng),采用葉輪旋轉(zhuǎn)兩周的瞬態(tài)靜壓值經(jīng)無(wú)量綱化處理得到算術(shù)平方根壓力系數(shù)CRMS來(lái)表示各個(gè)監(jiān)測(cè)點(diǎn)的壓力脈動(dòng)情況[20]:
(1)
為清晰獲得不同顆粒物性時(shí)蝸殼周向壓力脈動(dòng)分布與變化情況,以極坐標(biāo)圖的方式表示了算術(shù)平方根壓力系數(shù)變化,縱坐標(biāo)是CRMS,橫坐標(biāo)表示監(jiān)測(cè)點(diǎn)所在蝸殼周向的角度,角度設(shè)定與圖2中一致,監(jiān)測(cè)了VP1~VP8和隔舌下端點(diǎn)TP1處壓力脈動(dòng)變化。
圖6 蝸殼周向壓力脈動(dòng)分布Fig.6 The distribution of pressure fluctuation in volute circumference
圖6為不同流量(0.6Q、0.8Q、1.0Q和1.2Q)下清水和固液兩相流標(biāo)準(zhǔn)工況(此時(shí)顆粒體積分?jǐn)?shù)CV=5%,顆粒粒徑ds=0.5 mm)蝸殼周向各監(jiān)測(cè)點(diǎn)壓力脈動(dòng)對(duì)比。從圖6可以看出不同流量下,輸送清水與輸送固液混合物時(shí)蝸殼周向壓力脈動(dòng)變化的趨勢(shì)較為一致,但在輸送固液混合物時(shí)周向各監(jiān)測(cè)點(diǎn)壓力脈動(dòng)強(qiáng)度基本上都有減小的趨勢(shì)。各監(jiān)測(cè)點(diǎn)CRMS的變化如表2所示(變化值相對(duì)于清水而言,用百分比表示),其中TP1點(diǎn)減幅最大,其次是VP1點(diǎn),這是由于CV=5%,ds=0.5 mm顆粒物的加入很大程度上減小了這兩處兩相流速度變化梯度從而使壓力脈動(dòng)強(qiáng)度減弱。
結(jié)合運(yùn)行工況來(lái)看,設(shè)計(jì)工況下各監(jiān)測(cè)點(diǎn)間的壓力脈動(dòng)變化較?。恍×髁抗r下VP1、VP2處壓力脈動(dòng)強(qiáng)度有所減弱而VP4、VP7、VP8和TP1點(diǎn)則明顯增強(qiáng),這是小流量工況下泵內(nèi)湍流強(qiáng)烈的不規(guī)則運(yùn)動(dòng)所致;大流量工況下蝸殼周向的VP1~VP3和TP1點(diǎn)壓力脈動(dòng)顯著增大,這可能是由于大流量工況下葉片尾跡產(chǎn)生分離并進(jìn)入上述流道引起流動(dòng)不穩(wěn)定,造成了水力損失的結(jié)果。
表2 各監(jiān)測(cè)點(diǎn)CRMS改變量
圖7將清水工況與不同顆粒粒徑(ds=0.1 mm、0.5 mm及0.8 mm,此時(shí)CV=5%)和不同顆粒體積分?jǐn)?shù)(CV=1%、5%及10%,此時(shí)ds=0.5 mm)下蝸殼周向各監(jiān)測(cè)點(diǎn)的壓力脈動(dòng)進(jìn)行了對(duì)比。由圖7(a)可知,相對(duì)于清水工況,ds=0.1 mm時(shí)除VP1、VP3和TP1外其余各監(jiān)測(cè)點(diǎn)壓力脈動(dòng)均有不同程度增大;ds=0.5 mm時(shí)變化規(guī)律見(jiàn)圖6分析;ds=0.8 mm時(shí)除VP7和TP1外其余各監(jiān)測(cè)點(diǎn)脈動(dòng)情況都有所減弱,并且在VP3~VP6點(diǎn)上壓力脈動(dòng)強(qiáng)度減小的幅度比ds=0.5 mm時(shí)還要大,這主要是因?yàn)樵诒容^寬敞的蝸殼第3~第6斷面間的流道內(nèi)顆粒直徑的適當(dāng)增大有利于葉片出口尾跡流動(dòng)更具有規(guī)律性從而減小壓力脈動(dòng)。
在圖7(b)中,相對(duì)于清水工況,CV=1%時(shí)在蝸殼周向呈現(xiàn)出VP1~VP3時(shí)壓力脈動(dòng)有所減弱而VP4~VP8及TP1點(diǎn)則略微增強(qiáng);CV=5%時(shí)各監(jiān)測(cè)點(diǎn)變化規(guī)律見(jiàn)圖6分析;CV=10%時(shí)則是除VP7外其余各點(diǎn)壓力脈動(dòng)都減小,并且在VP3~ VP6和VP8點(diǎn)壓力脈動(dòng)強(qiáng)度減小量比CV=5%時(shí)還要多,這是因?yàn)榱髁恳欢ǖ那闆r下顆粒體積分?jǐn)?shù)越高就意味著單位體積內(nèi)流體相越少,對(duì)顆粒相攜帶需耗費(fèi)的能量就越多,從而使促進(jìn)壓力脈動(dòng)等不穩(wěn)定流動(dòng)的能量就相對(duì)減少,因此在較寬敞的流道內(nèi),混合均勻的固液兩相流引起的壓力脈動(dòng)強(qiáng)度會(huì)比較小。VP7點(diǎn)附近蝸殼流道寬敞且開始出現(xiàn)大范圍的低速區(qū)因而受流體間排擠和流動(dòng)而造成的損失要比VP3~VP6小,且受隔舌影響要比VP1、VP2、VP8和TP1要小,因而總體看來(lái)VP7點(diǎn)附近壓力脈動(dòng)要小于其余各點(diǎn)。
圖7 不同顆粒物性下蝸殼內(nèi)壓力脈動(dòng)對(duì)比Fig.7 Comparison of pressure pulsation in volute for different particle properties
4.2隔舌附近壓力脈動(dòng)分析
葉輪轉(zhuǎn)動(dòng)頻率fn=48.33 Hz,對(duì)雙流道泵而言葉片通過(guò)頻率即葉頻fBPF=96.67 Hz。為準(zhǔn)確分析隔舌附近固液兩相流工況時(shí)壓力脈動(dòng)情況,選取泵穩(wěn)定運(yùn)行最后兩個(gè)周期內(nèi)數(shù)據(jù)計(jì)算得到的壓力脈動(dòng)系數(shù)CP作為衡量此處壓力脈動(dòng)強(qiáng)度的無(wú)量綱數(shù)[21]:
(2)
式中各參數(shù)定義如式(1)中約定。圖8為隔舌附近監(jiān)測(cè)點(diǎn)TP1~TP3在清水設(shè)計(jì)工況和固液兩相流工況(設(shè)計(jì)流量點(diǎn)且CV=5%,ds=0.5 mm)時(shí)壓力脈動(dòng)時(shí)域和頻域特性對(duì)比。時(shí)域圖中橫坐標(biāo)以數(shù)據(jù)取樣的起始時(shí)間開始,記錄了穩(wěn)定運(yùn)行的兩個(gè)周期,以周期T作為單位統(tǒng)一處理。
從時(shí)域圖中可看出各監(jiān)測(cè)點(diǎn)壓力脈動(dòng)在清水設(shè)計(jì)工況下具有很強(qiáng)的周期性特征。加入顆粒物后只有正對(duì)隔舌的TP2點(diǎn)還保留周期性特征;而TP1點(diǎn)每個(gè)周期內(nèi)都出現(xiàn)了兩個(gè)大波峰、波谷和一個(gè)小波峰、波谷;TP3點(diǎn)每個(gè)周期內(nèi)相繼出現(xiàn)兩個(gè)波峰和波谷,但是壓力脈動(dòng)幅值波動(dòng)較大周期性不明顯。這說(shuō)明固相顆粒物的加入影響了隔舌附近流體的流動(dòng)從而改變了壓力脈動(dòng)規(guī)律。時(shí)域圖中TP1和TP2點(diǎn)處壓力脈動(dòng)強(qiáng)度在加入顆粒物后有所減弱,在TP3點(diǎn)處則出現(xiàn)某段時(shí)間突然增強(qiáng)的現(xiàn)象,這是因?yàn)轭w粒物的加入阻礙了隔舌處回流的產(chǎn)生。
在清水時(shí)各監(jiān)測(cè)點(diǎn)壓力脈動(dòng)主頻均是1倍葉頻,而加入顆粒物后TP1點(diǎn)的壓力脈動(dòng)主頻已不是葉頻,此時(shí)壓力脈動(dòng)主要都集中在低頻處,這充分說(shuō)明在CV=5%,ds=0.5 mm兩相流狀況下TP1點(diǎn)同時(shí)受到了隔舌處兩相流回流和動(dòng)靜干涉的共同影響且前者的影響更大;TP2點(diǎn)處主頻的壓力脈動(dòng)幅值由清水時(shí)0.016 02變成了兩相流工況下的0.010 5,即最大壓力脈動(dòng)強(qiáng)度降低了34%,但是次頻處脈動(dòng)強(qiáng)度明顯升高;TP3點(diǎn)在加入顆粒物后主頻和次頻處壓力脈動(dòng)強(qiáng)度都有所減弱,說(shuō)明壓力脈動(dòng)變化不僅與宏觀的動(dòng)靜干涉有關(guān)還與該處來(lái)流的湍流強(qiáng)度有關(guān)。隔舌處壓力脈動(dòng)基本上都集中分布在葉頻附近的低頻處,說(shuō)明泵不發(fā)生空化情況下隔舌處引起泵產(chǎn)生振動(dòng)噪聲的原因主要是葉輪與蝸殼間的動(dòng)靜干涉以及隔舌處產(chǎn)生的回流。
圖8 隔舌附近各監(jiān)測(cè)點(diǎn)壓力脈動(dòng)時(shí)域和頻域特性Fig.8 Time and frequency domain characteristics of pressure pulsation near tongue
為充分掌握顆粒直徑和體積分?jǐn)?shù)對(duì)隔舌附近壓力脈動(dòng)的影響機(jī)制,對(duì)TP1~TP3點(diǎn)在不同粒徑(此時(shí)CV=5%)和體積分?jǐn)?shù)下(此時(shí)ds=0.5 mm)的壓力脈動(dòng)進(jìn)行了分析。
圖9給出了不同顆粒特性下TP1點(diǎn)壓力脈動(dòng)時(shí)域與頻域特性。圖9(a)中ds=0.5 mm和ds=0.8 mm時(shí)壓力脈動(dòng)波動(dòng)幅度隨時(shí)間逐漸變小,壓力脈動(dòng)強(qiáng)度有所減弱,而ds=0.1 mm時(shí)呈現(xiàn)相反的規(guī)律。圖9(b)中ds=0.8 mm時(shí)壓力脈動(dòng)主頻為葉頻而ds=0.1 mm和ds=0.5 mm時(shí)則不是,并且壓力脈動(dòng)在低頻處分布較為均勻,這說(shuō)明回流在粒徑較小時(shí)惡化了TP1點(diǎn)處低頻壓力脈動(dòng),在粒徑較大時(shí)則加劇了該點(diǎn)葉頻處壓力脈動(dòng)強(qiáng)度。
圖9(c)中可看出,隨著體積分?jǐn)?shù)的增大,TP1點(diǎn)處壓力脈動(dòng)波動(dòng)也越來(lái)越大,并且變得更加沒(méi)有規(guī)律性。圖9(d)中CV=1%時(shí)壓力脈動(dòng)的主頻為葉頻且比較明顯,CV=5%時(shí)低頻壓力脈動(dòng)幅值遠(yuǎn)遠(yuǎn)大于1倍葉頻處幅值,CV=10%時(shí)壓力脈動(dòng)的主頻雖然是1倍葉頻但其壓力脈動(dòng)主要分布在了2倍葉頻范圍之內(nèi)且分布比CV=1%和CV=5%都要集中、均勻,這說(shuō)明顆粒體積分?jǐn)?shù)的增大在降低葉頻處壓力脈動(dòng)幅值的同時(shí)也加劇了隔舌下端TP1點(diǎn)處的低頻壓力脈動(dòng)及其誘導(dǎo)振動(dòng)噪聲,這其中來(lái)自隔舌處回流的作用至關(guān)重要。
由圖9(b)和圖9(d)的TP1頻域特性圖可以看出,只有ds=0.8 mm和CV=1%時(shí) TP1點(diǎn)處的壓力脈動(dòng)主頻才明顯體現(xiàn)為葉片通過(guò)頻率,具體結(jié)合時(shí)域圖可看出在不同粒徑和不同體積分?jǐn)?shù)下TP1點(diǎn)靜壓值波動(dòng)都比較劇烈,所體現(xiàn)出的周期性也不明顯,這是葉輪與蝸殼動(dòng)靜干涉和隔舌處產(chǎn)生的回流共同作用所致。
圖9 TP1點(diǎn)不同顆粒特性下時(shí)域與頻域特性Fig.9 Time and frequency domain characteristics of pressure pulsation at TP1 in different particle propertiers
圖10給出了不同顆粒特性下TP2點(diǎn)壓力脈動(dòng)時(shí)域與頻域特性。由圖10(a)可以看出,在不同粒徑下每個(gè)計(jì)算周期內(nèi)TP2點(diǎn)壓力脈動(dòng)都出現(xiàn)了兩個(gè)波峰與兩個(gè)波谷;ds=0.5 mm時(shí)周期性明顯,壓力脈動(dòng)強(qiáng)度較小且波動(dòng)幅度較小;ds=0.1 mm時(shí)波動(dòng)較大且隨時(shí)間壓力脈動(dòng)強(qiáng)度有增大的趨勢(shì);ds=0.8 mm時(shí)則有減小的趨勢(shì)。從圖10(b)可看出,雖然各粒徑下壓力脈動(dòng)主頻都是葉頻,但在ds=0.1 mm和ds=0.8 mm時(shí)低頻(0.25fBPF、0.5fBPF和0.75fBPF)壓力脈動(dòng)強(qiáng)度變化并沒(méi)有ds=0.5 mm時(shí)的明顯,壓力脈動(dòng)在低頻處分布比較均勻;ds=0.1 mm和ds=0.8 mm時(shí)主頻壓力脈動(dòng)幅值比ds=0.5 mm時(shí)要高很多,說(shuō)明了在TP2點(diǎn)處粒徑過(guò)大或過(guò)小都會(huì)引起泵內(nèi)壓力脈動(dòng)加劇從而加劇泵振動(dòng)。
圖10 TP2點(diǎn)不同顆粒特性下時(shí)域與頻域特性Fig.10 Time and frequency domain characteristics of pressure pulsation at TP2 in different particle propertiers
圖10(c)中CV=1%和CV=5%時(shí)壓力脈動(dòng)隨時(shí)間周期性變化明顯;與CV=1%時(shí)壓力脈動(dòng)強(qiáng)度相比,CV=5%和CV=10%時(shí)的脈動(dòng)強(qiáng)度明顯減小,這說(shuō)明適當(dāng)升高固相顆粒的體積分?jǐn)?shù)有利于減小TP2點(diǎn)處壓力脈動(dòng)強(qiáng)度。由圖10(d)可以看出,各體積分?jǐn)?shù)下壓力脈動(dòng)的主頻均為葉頻,但是壓力脈動(dòng)隨頻率的分布有所不同,CV=1%時(shí)葉頻處壓力脈動(dòng)幅值要比其他頻率高很多;在CV=5%及CV=10%時(shí)變化沒(méi)有這么明顯,這說(shuō)明較低的顆粒體積分?jǐn)?shù)會(huì)惡化隔舌前端點(diǎn)TP2處流體流動(dòng)狀態(tài),加速了回流向隔舌下端發(fā)展的趨勢(shì),從而加劇了主頻壓力脈動(dòng)。
圖11 TP3點(diǎn)不同顆粒特性下時(shí)域與頻域特性Fig.11 Time and frequency domain characteristics of pressure pulsation at TP3 in different particle propertiers
圖11給出了不同顆粒特性下TP3點(diǎn)壓力脈動(dòng)時(shí)域與頻域特性。圖11(a)和11(b)中在不同顆粒粒徑和顆粒體積分?jǐn)?shù)下均有明顯的兩個(gè)波峰和兩個(gè)波谷,且TP3點(diǎn)處壓力脈動(dòng)在各固液兩相流工況下都有較大波動(dòng)幅度。這是因?yàn)樵赥P3點(diǎn)附近固相顆粒漸漸產(chǎn)生了離析并沉降,固相顆粒并不會(huì)產(chǎn)生靜壓,故而隨著顆粒的緩慢離析沉降,TP3點(diǎn)附近空間流體流量將會(huì)發(fā)生突變,這種突變隨粒徑的增大如圖11(a)所示使壓力脈動(dòng)波動(dòng)愈發(fā)劇烈。
圖11(b)中CV=1%和CV=5%時(shí)壓力脈動(dòng)隨體積分?jǐn)?shù)的增加波動(dòng)加?。籆V=10%時(shí)表現(xiàn)為平均靜壓值有不斷上升的趨勢(shì),這是受隔舌結(jié)構(gòu)的影響在隔舌上端顆粒會(huì)沉降離析,并且顆粒體積分?jǐn)?shù)越大相應(yīng)單位體積可用于攜帶顆粒的流體就越少,體積分?jǐn)?shù)越大的工況在顆粒沉降后流體剩余的有助于壓力脈動(dòng)等不穩(wěn)定流動(dòng)的能量就越少,平均靜壓值也將隨顆粒體積分?jǐn)?shù)的適當(dāng)增加而變大,同時(shí)也降低了主頻處壓力脈動(dòng)強(qiáng)度。
在頻域圖中不同粒徑和不同顆粒體積分?jǐn)?shù)下的主頻均為1倍葉頻,壓力脈動(dòng)主要都分布在了4倍葉頻以內(nèi)的低頻區(qū)域,這說(shuō)明了TP3點(diǎn)處低頻脈動(dòng)是壓力脈動(dòng)及其誘導(dǎo)振動(dòng)噪聲產(chǎn)生的主因。不同粒徑、體積分?jǐn)?shù)下壓力脈動(dòng)最大幅值從大到小排列分別為:ds=0.8 mm>ds=0.1 mm>ds=0.5 mm,CV=1%>CV=5%>CV=10%,表明在一定體積分?jǐn)?shù)下選擇輸送合適的粒徑有利于減小壓力脈動(dòng)強(qiáng)度;一定顆粒粒徑下適當(dāng)加大顆粒輸送濃度能顯著改善TP3點(diǎn)的不穩(wěn)定壓力脈動(dòng)。
5結(jié)論
(1) 顆粒物性對(duì)雙流道泵蝸殼尤其是隔舌處壓力脈動(dòng)影響明顯,葉頻對(duì)雙流道泵內(nèi)壓力脈動(dòng)及其誘導(dǎo)振動(dòng)噪聲起主導(dǎo)作用。
(2) 不同工況下加入一定量顆粒物大體上能減弱蝸殼周向壓力脈動(dòng)強(qiáng)度且最大降幅能夠達(dá)到34.80%;設(shè)計(jì)工況下在蝸殼周向比較寬敞的流道內(nèi)的顆粒直徑或體積分?jǐn)?shù)的適當(dāng)增加能讓固液兩相流壓力脈動(dòng)強(qiáng)度有所減小。
(3) 隔舌處各監(jiān)測(cè)點(diǎn)壓力脈動(dòng)均以低頻為主,對(duì)顆粒物性比較敏感;各點(diǎn)體現(xiàn)出的規(guī)律不盡相同,TP2和TP3點(diǎn)處壓力脈動(dòng)主頻均為葉頻而TP1點(diǎn)因受隔舌處回流影響主頻大多不是葉頻;TP2點(diǎn)處粒徑過(guò)大或過(guò)小都會(huì)惡化該處壓力脈動(dòng)從而加劇振動(dòng),而顆粒體積分?jǐn)?shù)的適當(dāng)增加有利于降低該點(diǎn)處最大壓力脈動(dòng)幅值;TP3點(diǎn)處受隔舌結(jié)構(gòu)影響顆粒會(huì)沉降離析從而引起靜壓波動(dòng)異常,在一定體積分?jǐn)?shù)下選擇合適的顆粒粒徑或一定粒徑下適當(dāng)增加顆粒體積分?jǐn)?shù)都有助于減弱壓力脈動(dòng)強(qiáng)度。
參 考 文 獻(xiàn)
[1] 劉厚林,陸斌斌,談明高,等.雙流道泵內(nèi)固液兩相流動(dòng)的數(shù)值模擬[J].排灌機(jī)械,2009,27(5):297-301.
LIU Hou-lin, LU Bin-bin, TAN Ming-gao, et al.Numerical simulation on solid-liquid two-phase flow in a double channel pump [J].Drainage and Irrigation Machinery,2009,27(5): 297-301.
[2] Li Y, Cui Q, Zhu Z, et al.The influence of major diameter solid particle on the double-channel pump performance[C]//ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. Hamamatsu,Japan:American Society of Mechanical Engineers, 2011: 665-672.
[3] 何朝輝,黃新華,葉斌斌,等.雙流道蝸殼泵內(nèi)固液兩相流動(dòng)特性與磨損研究[J].水泵技術(shù),2012(5):21-25.
HE Zhao-hui, HUANG Xin-hua, YE Bin-bin,et al.Research on characteristics of solid-liquid two-phase flow and wear in a double channel volute pump[J].Pump Technology,2012 (5): 21-25.
[4] 江偉,李國(guó)君,張新盛.離心泵葉片出口邊傾斜角對(duì)壓力脈動(dòng)的影響[J].排灌機(jī)械工程學(xué)報(bào),2013,31(5): 369-372.
JIANG Wei, LI Guo-jun,ZHANG Xin-sheng. Effect of oblique angle of blade trailing edge on pressure fluctuation in centrifugal pump[J].Journal of Drainage and Irrigation Machinery Engineering,2013,31(5):369-372.
[5] 施衛(wèi)東,徐焰棟,李偉,等.蝸殼隔舌安放角對(duì)離心泵內(nèi)部非定常流場(chǎng)的影響[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(增刊1):125-130.
SHI Wei-dong,XU Yan-dong,LI Wei, et al. Effect of different tongue angels on unsteady flow in centrifugal pump[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44(Sup1):125-130.
[6] 黎耀軍,沈金峰,洪益平,等.輪緣間隙對(duì)軸流泵內(nèi)部非定常流場(chǎng)的影響[J].排灌機(jī)械工程學(xué)報(bào),2013,31(8):667-673.
LI Yao-jun,SHEN Jin-feng,HONG Yi-ping,et al.Effect of tip clearance on unsteady flow in axial-flow pump[J]. Journal of Drainage and Irrigation Machinery Engineering,2013,31(8): 667-673.
[7] 張金鳳,王文杰,方玉建,等.分流葉片離心泵非定常流動(dòng)及動(dòng)力學(xué)特性分析[J].振動(dòng)與沖擊,2014,33(23):37-41.
ZHANG Jin-feng,WANG Wen-jie,F(xiàn)ANG Yu-jian,et al.Influence of splitter blades on unsteady flow and structural dynamic characteristics of a molten salt centrifugal pump[J].Journal of Vibration and Shock,2014,33(23):37-41.
[8] Zhang N,Yang M,Gao B,et al.Unsteady pressure pulsation and rotating stall characteristics in a centrifugal pump with slope volute[J].Advances in Mechanical Engineering,2014, 2014:1-11.
[9] 戴菡葳,劉厚林,丁劍,等.離心泵葉輪出口寬度對(duì)泵腔內(nèi)壓力脈動(dòng)分布的影響[J].排灌機(jī)械工程學(xué)報(bào),2015,33(1): 20-25.
DAI Han-wei,LIU Hou-lin,DING Jan,et al.Effects of impeller outlet width on pressure pulsation in two side chambers of centrifugal pump[J].Journal of Drainage and Irrigation Machinery Engineering,2015,33(1): 20-25.
[10] Spence R, Amaral-Teixeira J.A CFD parametric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifugal pump[J]. Computers & Fluids,2009, 38(6):1243-1257.
[11] Barrio R, Parrondo J, Blanco E.Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points[J]. Computers & Fluids,2010,39(5): 859-870.
[12] 王松林,譚磊,王玉川.離心泵蝸殼內(nèi)非定常流動(dòng)特性[J]. 振動(dòng)與沖擊,2014,33(11):43-48.
WANG Song-lin,TAN Lei,WANG Yu-chuan.Characteristics of unsteady flow in a centrifugal pump volute[J].Journal of Vibration and Shock, 2014, 33(11): 43-48.
[13] 朱榮生,龍?jiān)?付強(qiáng),等.核主泵小流量工況壓力脈動(dòng)特性[J].振動(dòng)與沖擊,2014,33(17):143-149.
ZHU Rong-sheng,LONG Yun,F(xiàn)U Qiang,et al. Pressure pulsation of a reactor coolant pump under low flow conditions[J].Journal of Vibration and Shock,2014,33(17): 143-149.
[14] 施衛(wèi)東,徐燕,張啟華,等.多級(jí)潛水泵內(nèi)部壓力脈動(dòng)特性[J].排灌機(jī)械工程學(xué)報(bào),2014,32(3):196-201.
SHI Wei-dong,XU Yan,ZHANG Qi-hua,et al.Characteristics of pressure pulsation in multi-stage submersible pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014,32(3):196-201.
[15] 蔣躍,李紅,劉宜.單,雙出口雙蝸殼泵的壓力脈動(dòng)及徑向力特性[J].排灌機(jī)械工程學(xué)報(bào),2014,32(9):748-753.
JIANG Yue,LI Hong,LIU Yi. Pressure fluctuation and radial thrust characteristics in double volute pumps with single and double outlet[J].Journal of Drainage and Irrigation Machinery Engineering,2014,32(9):748-753.
[16] 朱榮生,龍?jiān)?林鵬,等.螺旋軸流泵內(nèi)部流場(chǎng)與壓力脈動(dòng)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(7):103-110.
ZHU Rong-sheng,LONG Yun,LIN Peng,et al.Internal flow and pressure pulsation characteristics of screw axial-flow pumps[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(7):103-110.
[17] 張玉新,王秀葉,丁鵬,等.潛水軸流泵內(nèi)部流場(chǎng)壓力脈動(dòng)的數(shù)值模擬[J].排灌機(jī)械工程學(xué)報(bào),2014,32(4):302-307.
ZHANG Yu-xin,WANG Xiu-ye,DING Peng,et al.Numerical analysis of pressure fluctuation of internal flow in submersible axial-flow pump[J].Journal of Drainage and Irrigation Machinery Engineering,2014,32(4): 302-307.
[18] 張釗,蘇敏,韓偉,等.螺旋離心泵固液兩相非定常流動(dòng)誘導(dǎo)力特性[J].排灌機(jī)械工程學(xué)報(bào),2015,33(4):296-300.
ZHANG Zhao,SU Min,HAN Wei,et al.Inducted force characteristics of solid-liquid two-phase unsteady flow in screw centrifugal pump[J].Journal of Drainage and Irrigation Machinery Engineering,2015,33(4):296-300.
[19] 程效銳,張楠,趙偉國(guó),等.雙吸泵輸送含沙水流時(shí)蝸殼內(nèi)壓力脈動(dòng)特性[J].排灌機(jī)械工程學(xué)報(bào),2015,33(1):37-42.
CHENG Xiao-rui,ZHANG Nan,ZHAO Wei-guo,et al. Pressure fluctuation features of sand particle-laden water flow in volute of double-suction centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering,2015,33(1):37-42.
[20] 吳登昊,袁壽其,任蕓,等.葉片幾何參數(shù)對(duì)管道泵徑向力及振動(dòng)的影響[J].排灌機(jī)械工程學(xué)報(bào),2013,31(4): 277-283.
WU Deng-hao,YUAN Shou-qi,REN Yun,et al.Effects of blade geometry parameters on radial force and vibration of in-line circulator pump[J].Journal of Drainage and Irrigation Machinery Engineering,2013,31(4): 277-283.
[21] Guelich J,Bolleter U.Pressure pulsations in centrifugal pumps[J].Journal of Vibration and Acoustics,1992,114(2):272-279.
基金項(xiàng)目:國(guó)家科技支撐計(jì)劃(2013BAF01B02);江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目(PAPD);過(guò)程裝備與控制工程四川省高校重點(diǎn)實(shí)驗(yàn)室開放基金資助項(xiàng)目(GK201403);江蘇大學(xué)研究生創(chuàng)新工程項(xiàng)目(KYXX_0039)
收稿日期:2015-03-26修改稿收到日期:2015-06-19
通信作者丁榮 男,碩士生,1989年生
中圖分類號(hào):TH212;TH213.3
文獻(xiàn)標(biāo)志碼:A
DOI:10.13465/j.cnki.jvs.2016.14.026
Unsteady characteristics of pressure pulsation in a double channel sewage pump
TAN Ming-gao1, DING Rong1, LIU Hou-lin1, WU Xian-fang2, DONG Liang1
(1. Research Center of Fluid Machinery Engineering and Technology,Jiangsu University,Zhenjiang 212013,China;2. School of Energy and Power Engineering,Jiangsu University,Zhenjiang 212013,China)
Abstract:The unsteady pressure pulsation in a double channel sewage pump was numerically simulated by using the combination of an extended standard k-ε turbulence model and the mixture multiphase flow model. The simulation results are in agreement with the experimental ones, which indicates that the numerical model and the calculation methods are feasible and can be used to predict the pressure pulsation in the double channel sewage pump. The changes of pressure fluctuation under different particle diameters and particle volume fractions were analyzed by setting some monitoring points in the volute. The simulation results show that the pressure pulsation inside the pump changes obviously with the variation of particle properties, and the pressure fluctuation intensity at the volute circumference generally gets weaker with the addition of certain amount of particles and can decrease maximally by 34.80%. The pressure pulsations at the points TP1~TP3 near the tongue are sensitive to particle properties. The TP1 is located at the lower end of the tongue and the angle between the volute outlet and the TP1 is 15 degrees, the TP2 is located at the tongue intermediate position and the TP3 is located at the ninth section of volute near the tongue. The dominant frequency of pressure pulsation at TP1 usually comes from the tongue backflow, while the dominant frequency at TP2 and TP3 is the blade passing frequency. Due to the tongue, the particles around TP3 accumulate easily, which results in an unusual fluctuation of static pressure. Selecting an appropriate particle size or particle volume fraction can contribute to weaken the pressure fluctuation intensity at TP3.
Key words:double channel sewage pump; pressure pulsation; particle property; backflow; blade passing frequency
第一作者 談明高 男,博士,副研究員,1980年生