亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Theoretical Investigation of the Electronic Structure and Optical Properties of CuSin and Clusters (n=4~10)

        2016-07-12 12:57:57LINLinYANGJucai
        光譜學(xué)與光譜分析 2016年9期
        關(guān)鍵詞:帶隙化工學(xué)院呼和浩特

        LIN Lin, YANG Ju-cai

        1.College of Science, Inner Mongolia University of Technology, Huhhot 010051, China 2.School of Chemical Engineering, Inner Mongolia University of Technology, Huhhot 010051, China 3.School of Energy and Power Engineering, Inner Mongolia University of Technology, Huhhot, 010051, China

        LIN Lin1,2, YANG Ju-cai2,3*

        1.College of Science, Inner Mongolia University of Technology, Huhhot 010051, China 2.School of Chemical Engineering, Inner Mongolia University of Technology, Huhhot 010051, China 3.School of Energy and Power Engineering, Inner Mongolia University of Technology, Huhhot, 010051, China

        The electronic structure and UV-Vis properties of ground state CuSin(n=4~10) and CuSinanion clusters were studied using B3LYP density functional theory (DFT) at a 6-311+G (d) level.Calculations indicate that: (1) the band gap of neutral CuSinclusters is narrower than their anion, indicating anion clusters are relatively stable; (2) the energy gap and electronic structure calculations indicate that the anion CuSi5cluster is more stable than neighboring clusters; and (3) the UV-Vis spectrum of CuSinclusters and CuSinanions suggests that the neutral clusters are weakly absorbing; the anion clusters are strongly absorbing, and anion clusters with increasing size of the Si atoms experience a redshift in the absorption spectra.

        Copper doped silicon clusters; Electronic structure; Absorption spectrum

        Introduction

        Silicon atoms (Si) and nanoclusters have drawn more and more attention because of their relevance in the development of nanelectronics[1-3].Pure silicon clusters are unstable due to the “dangling bonds”on their surfaces[4-6]but the process of impurity-doping is used to stabilize pure silicon clusters.Transition metal (TM) atoms are considered to be good candidates for doping, as they have unfilled d-orbitals containing single-electrons, which can effectively saturate the “dangling bonds" of the silicon clusters[7-9].After the TM is added into the silicon frame, the clusters tend to form closed shell electronic structures and generate transitional metal encapsulated clusters with novel properties.Beck[10, 11]first observed the stable metal-doped silicon clusters in a supersonic molecular beam coupled with a mass spectrometer.The dominant clusters in this study were silicon clusters with one metal atom attached:MSin(M=Cr, Mo, and W).Hiura et al.[12]studiedMSin,M=HF, Ta, W, Re, etc ….(8

        Copper (Cu) is a common trace impurity in the manufacturing of silicon devices, such as integrated circuits and solar cells.Since copper plays an important role in altering the electronic properties of Si-based semiconductors, copper, behavior in Si has been studied extensively.Xiao et al.[15]performed a comparative study of the interaction ofM(M=Scandium (Sc) and Cu) atoms with Sin(n=1~6) clusters using a B3LYP/6-311+G(d) method, in which the most stable isomers of ScSin(n=1~6), binding energies, vertical and adiabatic ionization potentials, and electron affinities were reported.

        In Sec.Ⅱ, we provide the computational details.In Secs.Ⅲ, we discuss electronic structure and ultraviolet-visible spectroscopy of the ground-state structures CuSin(n=4~10) clusters and their anions, respectively.Finally, we summarize our results in Sec.Ⅳ.

        1 Computational Detalls

        The electronic properties of CuSinclusters were examined using the DFT at a B3LYP/6-311+G (d) level.We chose the B3LYP approach, because this method has been previously by Xiao et al.[16], Hossain et al.[18], and Dkhissi et al.[22]and B3LYP with either the 6-31+G* or 6-311+G* basis set is well suited for investigating the electronic structural properties of CuSinclusters.

        The ultraviolet-visible (UV-Vis) spectra was calculated using a time-dependent B3LYP method based on the optimized structure.Time-dependent DFT(TD-DFT)[23-25]has proven to be a powerful and effective computational tool for the study of ground and excited state properties.

        The ground state structure we used is from the literature[26]and is shown in Fig.1.To characterize the relative stabilities of all CuSinclusters considered, the gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were considered useful quality to evaluate the chemical stability.A larger energy gap often corresponds to a higher stability.In this paper, the HOMO-LUMO gap (Egap) was calculated as follows

        Egap=E(LUMO)-E(HOMO)

        AllthecalculationswerecarriedoutusingGaussian09package[27]andMultiwfnprogram,revision2.1[28-29].

        Fig.1 The isomers of CuSin (n=4~10) and their anions are obtained at the MP2/6-31G(2df,p)level.Only silicon atoms are numbered

        2 Results and Discussion

        In the following, we will describe the electronic structures and optical properties of individual CuSin(n=4~10) clusters and their anions.

        2.1 Electronic structure properties

        Fig.3 The total density of state (TDOS) and partial density of state (PDOS) map of CuSin(n=4~10), The DOS value is in arbitrary unit.The vertical broken line shows the HOMO.Gaussian function with full width half maximum (FWHM) of 0.25 eV was used for broadeningmolecular orbital energies to yield the DOS curves.Black represents TDOS, red represents Cuatomic s orbital, green represents Cu atomic p orbital, blue represents Cu atomic d orbital, cyanrepresents Si atomic s orbital and pink represents Si atomic p orbital

        2.2 Ultraviolet-Visible spectroscopy

        Fig.5 The absorption spectra of CuSin(n=4~10) clusters (a)—(g)

        Fig.6 The absorption spectra of clusters (a)—(g)

        3 Conclusions

        In this paper, The electronic structure of the neutral CuSin(n=4~10) clusters and their anions was examined using B3LYP/6-311+G (d) level, UV-Vis spectroscopy of the neutral CuSin(n=4~10) clusters and their anion were examined TD-B3LYP/6-311+G (d) level The results are summarized below:

        (2) The results showed that both the neutral CuSin(n=4~10) clusters and their anion clusters have obvious energy gaps.Anion clustern=5 andn=10 have large band gaps, which suggests that they have higher stability than their neighboring clusters.

        (3) The UV-Vis spectroscopy suggestes that the neutral clusters have weak absorption, while their anion clusters have strong absorption.Anion clusters (exceptn=5) with the increase of the Si atomic size there is redshift in absorption spectra.

        [1] Jarrold M F.Science,1991, 252:1085.

        [2] Brown W L,F(xiàn)reeman R R,Raghavachari K,et al.Science,1987, 235:860.

        [3] Hayashi S,Kanzawa Y,Kataoka M,et al.Phys.D Atom.Mol.Cl., 1993, 26: 144.

        [4] Zhu X L, Zeng X C.J.Chem.Phys., 2003, 118: 3558.

        [5] Kaxiras E.Phys.Rev.Lett., 1990, 64: 551.

        [6] Kaxiras E, Jackson K.Phys.Rev.Lett., 1993, 71: 727.

        [7] Majumder C, Kulshreshtha S K.Phys.Rev.B, 2004, 70: 245426.

        [8] Zorriasatein S, Joshi K, Kanhere D G.Phys.Rev.B, 2007, 75: 045117.

        [9] Wang J, Ma QM, Xie Z, et al.Phys.Rev.B, 2007, 76: 035406.

        [10] Beck S M.J.Chem.Phys.,1987,87:4233.

        [11] Beck S M.J.Chem.Phys., 1989, 90: 6306.

        [12] Hiura H,Miyazaki T,Kanayama T.Phys.Rev.Lett., 2001, 86: 1733.

        [13] Khanna S N, Rao B K, Jena P.Phys.Rev.Lett., 2002, 89: 016803.

        [14] Jackson K, Nellermoe B.Chem.Phys.Lett., 1996, 254: 249.

        [15] Xiao C Y, Abraham A, Quinn R, et al.J.Phys.Chem.A, 2002, 106: 11380.

        [16] Xiao C Y, Hagelberg F, Lester W A.Phys.Rev.B, 2002, 66: 075425.

        [17] Guo L J, Zhao G F, Gu Y Z, et al.Phys.Rev.B, 2008, 77: 1954.

        [18] Hossain D, Pittman C U Jr, Gwaltney S R.Chem.Phys.Lett., 2008, 451: 93.

        [19] Lan Y Z, Feng Y L.Phys.Rev.A, 2009, 79: 033201.

        [20] Li G L, Ma W L, Gao A M, et al.Journal of Theoretical and Computational Chemistry, 2012,11:185.

        [21] Xu H G, Wu M M, Zhang Z G, et al.J.Chem.Phys.2012,136:104308.

        [22] Dkhissi A.Int.J.Quantum Chem., 2008, 108: 996.

        [23] Bader R F W.Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford (UK), 1990.

        [24] Bauernschmitt R, Ahlrichs R.Chem.Phys.Lett., 1996, 256: 454.

        [25] Kose E, Atac A, Karabacak M, et al.Spectrochim.Acta A,2012,97:435.

        [26] Lin Lin, Yang Jucai.J.Mol.Model.,Accepted.

        [27] Frisch M J, Trucks G W, Schlegel H B, et al.Revision C.01, Gaussian, Inc., Wallingford CT, 2010.

        [28] Tian Lu, Chen F.J.Comp.Chem., 2012, 33: 580.

        [29] Lu T, Multiwfn, Revision 2.1, University of Science and Technology Beijing, Beijing, China, 2011.

        *通訊聯(lián)系人

        O433.1

        A

        林 琳1,2, 楊桔材2,3*

        1.內(nèi)蒙古工業(yè)大學(xué)理學(xué)院,內(nèi)蒙古 呼和浩特 010051 2.內(nèi)蒙古工業(yè)大學(xué)化工學(xué)院,內(nèi)蒙古 呼和浩特 010051 3.內(nèi)蒙古工業(yè)大學(xué)能動(dòng)學(xué)院,內(nèi)蒙古 呼和浩特 010051

        基于密度泛函的B3LYP/ 6-311+G (d)方法研究基態(tài)結(jié)構(gòu)CuSin(n=4~10)和 CuSin陰離子團(tuán)簇的電子結(jié)構(gòu)和紫外吸收譜。計(jì)算結(jié)果表明:(1)中性CuSin團(tuán)簇的帶隙要比陰離子團(tuán)簇的帶隙要小,說明陰離子團(tuán)簇比中性的要穩(wěn)定;(2)陰離子CuSi5團(tuán)簇要比相鄰的其他團(tuán)簇穩(wěn)定;(3)紫外吸收譜可看出中性CuSin團(tuán)簇屬弱吸收而陰離子則表現(xiàn)出很強(qiáng)的吸收。對(duì)陰離子來說,隨著硅原子的增加有紅移現(xiàn)象發(fā)生。

        銅摻雜硅團(tuán)簇;電子結(jié)構(gòu);吸收譜

        2015-09-16,

        2016-01-12)

        Foundation item:the National Natural Science Foundation of China (21263010, 11562016)

        10.3964/j.issn.1000-0593(2016)09-3026-07

        Received:2015-09-16; accepted:2016-01-12

        Biography:LIN Lin, (1974—), female, lecturer in College of Science, Inner Mongolia University of Technology e-mail: linlin@imut.edu.cn *Corresponding author e-mail: yangjc@imut.edu.cn

        猜你喜歡
        帶隙化工學(xué)院呼和浩特
        使固態(tài)化學(xué)反應(yīng)100%完成的方法
        密度泛函理論計(jì)算半導(dǎo)體材料的帶隙誤差研究
        國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
        呼和浩特之旅
        【鏈接】國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
        工商企業(yè)管理的知識(shí)與操作實(shí)例
        一種基于BJT工藝的無運(yùn)放低溫度系數(shù)的帶隙基準(zhǔn)源
        間距比對(duì)雙振子局域共振軸縱振帶隙的影響
        一款高PSRR低溫度系數(shù)的帶隙基準(zhǔn)電壓源的設(shè)計(jì)
        電子制作(2018年1期)2018-04-04 01:48:38
        呼和浩特
        草原歌聲(2017年4期)2017-04-28 08:20:43
        亚洲老妈激情一区二区三区| 91精品国产综合久久精品密臀| 国产av一区二区三区性入口| 真人做爰片免费观看播放| 国产69精品久久久久app下载| 国产精品jizz在线观看老狼| 一区二区三区不卡在线| 一级a免费高清免在线| 婷婷亚洲岛国热超碰中文字幕| 高清破外女出血av毛片| 日本亚洲欧美在线观看| 精品日韩av专区一区二区| 国产一区二区三区中文在线| 无遮无挡爽爽免费毛片| 国产一级免费黄片无码AV| 精品av一区二区在线| 亚洲人成网77777色在线播放| 极品粉嫩小泬无遮挡20p| 久久久久久国产精品免费网站| 日本黄色特级一区二区三区| 久久亚洲中文字幕精品一区| 无码人妻丰满熟妇区毛片| 亚洲熟女av超清一区二区三区| 久久一区二区视频在线观看| 成人网站在线进入爽爽爽| 日日干夜夜操高清视频| 国产高清女人对白av在在线| 亚洲乱码中文字幕综合久久| 97夜夜澡人人双人人人喊| 熟妇无码AV| 亚洲国产一区二区,毛片| 久久久噜噜噜久久中文福利| 国产午夜福利精品久久2021| 久久久亚洲精品免费视频| 中文字幕一区二区中文| 国产成人av片在线观看| 人妻人妻少妇在线系列| 毛片成人18毛片免费看| 色哟哟精品视频在线观看| 国产欧美成人| 色综合久久人妻精品日韩|