程 龍,姜永剛,黃麗清,張 宇,吳 際,孫 昊,劉 齊,王 軍
1. 中國衛(wèi)星海上測控部,江蘇 江陰 214431 2. 西安交通大學(xué)理學(xué)院,陜西 西安 710049 3. 西安工程大學(xué)理學(xué)院,陜西 西安 710048
Ag-Al納米球二聚體的光學(xué)性質(zhì)研究
程 龍1,姜永剛1,黃麗清2*,張 宇2,吳 際2,孫 昊1,劉 齊1,王 軍3
1. 中國衛(wèi)星海上測控部,江蘇 江陰 214431 2. 西安交通大學(xué)理學(xué)院,陜西 西安 710049 3. 西安工程大學(xué)理學(xué)院,陜西 西安 710048
金屬納米材料因其表面等離子體共振特性而備受關(guān)注。異質(zhì)結(jié)構(gòu)的金屬納米材料的光學(xué)特性相比于同質(zhì)結(jié)構(gòu)因其材料的不同破壞了原有結(jié)構(gòu)的對稱性,對稱性的破壞將引起光學(xué)性質(zhì)的改變,相鄰兩個顆粒之間的相互作用會產(chǎn)生Fano共振。Fano共振是由異質(zhì)納米結(jié)構(gòu)的表面等離子體共振耦合引起的,通過合理地調(diào)控表面等離子體共振的耦合,將進(jìn)一步調(diào)控Fano共振的強(qiáng)度同時促使異質(zhì)結(jié)構(gòu)的電場增強(qiáng)特性和輻射特性得到進(jìn)一步優(yōu)化。受金銀等貴金屬的帶間躍遷影響,金屬鋁納米材料成為研究紫外-近紫外光區(qū)的表面等離子體共振研究最佳選擇。采用有限時域差分方法研究了Ag-Al納米球二聚體的光學(xué)特性。研究了Ag和Al納米球組成的二聚體的吸收光譜與入射光偏振方向、納米球半徑、顆粒間距和介質(zhì)折射率等幾何結(jié)構(gòu)及物理參數(shù)的關(guān)系,并深入討論了二聚體的局域場分布規(guī)律;討論了獲取更高效的Fano共振光譜的方法。由于材料的對稱性被破壞,異質(zhì)二聚體的光學(xué)性質(zhì)與同質(zhì)二聚體明顯不同,Ag-Al異質(zhì)納米球二聚體呈現(xiàn)出在紫外和可見光區(qū)的雙Fano共振現(xiàn)象。Ag-Al二聚體表面等離子體互相耦合引起Fano共振從而導(dǎo)致表面等離子體的共振抑制和增強(qiáng)。研究結(jié)果對在紫外-可見光區(qū)的表面等離子體應(yīng)用、納米光學(xué)器件的設(shè)計與開發(fā)及基于表面等離子體共振的表面增強(qiáng)光譜、生物傳感和檢測研究等有一定參考價值。
Ag-Al納米球二聚體;時域有限差分方法(FDTD);局域表面等離子體共振(LSPR);Fano共振
金屬納米顆粒因能產(chǎn)生很強(qiáng)的局域表面等離子體共振(localized surface plasmon resonances, LSPR)而成為當(dāng)前納米光學(xué)領(lǐng)域研究的熱點(diǎn)。LSPR的頻率可以通過改變金屬納米顆粒的尺寸,形狀和周圍的介質(zhì)來調(diào)控至紫外-近紅外光譜范圍內(nèi)[1]。作為LSPR的結(jié)果,金屬納米顆粒周圍的局域電場會出現(xiàn)增強(qiáng),反映在吸收光譜上則為出現(xiàn)明顯的吸收峰[2]。Al在紫外光區(qū)具有優(yōu)異的表面等離子共振特性而越來越受到人們的關(guān)注,因此人們逐漸將紫外光區(qū)表面增強(qiáng)拉曼和表面增強(qiáng)熒光的研究目光投向了儲量豐富而又廉價的金屬Al上[3-5]。異質(zhì)結(jié)構(gòu)的納米材料的光學(xué)特性相比于同質(zhì)結(jié)構(gòu)具有明顯的不同[6-8]。目前關(guān)于紫外光區(qū)的Fano共振及Ag、Al納米材料耦合研究的報道較少[9-11],本文通過采用有限時域差分方法(the finite-difference time-domain theory, FDTD)對Ag-Al納米球二聚體的光譜吸收特性進(jìn)行了模擬研究。研究發(fā)現(xiàn)因Al和Ag各自在紫外、可見光區(qū)有LSPR存在且符合Fano共振產(chǎn)生條件,因此異質(zhì)二聚體的Ag和Al材料可在紫外和可見光區(qū)兩個波段同時產(chǎn)生Fano共振現(xiàn)象。Ag-Al二聚體互相耦合引起Fano共振從而導(dǎo)致LSPR的共振抑制和增強(qiáng)。
1.1 幾何模型
Ag-Al納米球二聚體基本結(jié)構(gòu)如圖1所示。Ag和Al納米球半徑變化范圍為12~28 nm,球間隙變化范圍為2~14 nm,入射光沿z軸方向,偏振方向分別平行于兩球心連線的y軸方向和垂直于兩球心連線的x軸方向,其波長范圍為100~500 nm(研究二聚體介電環(huán)境影響時光波長范圍為100~600 nm)。介質(zhì)折射率變化范圍為1.0~1.6。
圖1 Ag-Al納米球二聚體結(jié)構(gòu)示意圖
1.2 研究方法
研究光與納米結(jié)構(gòu)相互作用的光學(xué)特性時,當(dāng)研究對象的尺寸遠(yuǎn)遠(yuǎn)小于入射光波長時,可采用準(zhǔn)靜電近似方法,對于單個球狀微粒,Mie理論則是常用的精確理論之一。而非球型結(jié)構(gòu)、異質(zhì)結(jié)構(gòu)、多顆粒復(fù)雜計算、陣列結(jié)構(gòu)等復(fù)雜問題通常通過數(shù)值方法如離散偶極近似、FDTD和T矩陣等方法對多結(jié)構(gòu)組合及任意結(jié)構(gòu)的納米材料的光學(xué)性質(zhì)進(jìn)行求解。
FDTD是一種求解矢量麥克斯韋方程的數(shù)值方法,通過該方法可以快捷地得到任意形狀多顆粒納米結(jié)構(gòu)與光相互作用的電磁場的空間和時間分布。本文采用Lumerical Solutions公司的FDTD solutions 8.9軟件對Ag-Al納米球二聚體結(jié)構(gòu)進(jìn)行了模擬計算,計算中所用Ag的光學(xué)常數(shù)取自Palik模型[12],Al的光學(xué)常數(shù)取自CRC模型[13]。
2.1 結(jié)構(gòu)對稱的Ag-Al納米球二聚體光學(xué)特性分析
分別對沿y和x方向偏振的入射光與不同間隙半徑均為20 nm的Ag-Al納米球二聚體相互作用的吸收光譜進(jìn)行了計算和分析。二聚體中Al和Ag納米球的吸收光譜如圖2所示。為了便于比較,圖中同時還給出了單個Al和Ag納米球的吸收光譜(虛線所示)。由圖2(a)可見,當(dāng)入射光沿y方向偏振時,相對單個Al納米球的吸收譜(黑色的虛線),在小250 nm波長范圍內(nèi),二聚體中Al球的吸收強(qiáng)度明顯減弱,且間隙越小減弱程度越明顯;而在400 nm附近出現(xiàn)新的非對稱吸收峰,仔細(xì)觀察該非對稱吸收峰的非對稱性隨間隙變化的特征發(fā)現(xiàn),間隙越小,該吸收譜的非對稱性越高,這一非對稱吸收峰具有典型的Fano共振的特征(如圖2(a)中綠色虛線橢圓所示)。圖2(b)則為入射光沿x方向偏振的情況,相對單個Al球,二聚體中Al吸收譜的強(qiáng)度有所減弱,但對稱性基本不變,圖2(c)和(d)為入射光的偏振方向分別沿y,x方向時二聚體中Ag球的吸收光譜。相對單個Ag納米球的吸收譜(黑色的虛線),二聚體中Ag球的吸收譜均發(fā)生相應(yīng)的變化。如圖2(c)和(d)中橙色虛線橢圓所示,短波吸收峰均呈現(xiàn)非對稱的特征,且當(dāng)入射光為y方向偏振時,其非對稱性隨間隙的的減小而增強(qiáng),而當(dāng)入射光為x偏振時,其非對稱性則幾乎不隨間隙的減小而變化;長波吸收峰僅呈顯微小的紅移和強(qiáng)度變化。如圖2(e)和(h)所示,比較入射光沿y和x方向偏振時Ag-Al二聚體的吸收光譜發(fā)現(xiàn),入射光沿y方向偏振光時,二聚體的非對稱吸收得到加強(qiáng),而入射沿x方向偏振時,二聚體的非對稱吸收受到抑制。因此在后續(xù)討論中只研究y方向偏振光與二聚體相互作用的問題。
圖2 結(jié)構(gòu)對稱的Ag-Al納米球二聚體的吸收光譜受二聚體間隙變化的影響分析
(a): 入射光沿y方向偏振;(b): 入射光沿x方向偏振;(c): 入射光沿y方向偏振照射二聚體檢測Ag的吸收光譜;(d): 入射光沿x方向偏振照射二聚體檢測Ag的吸收光譜;(e): 入射光沿y方向偏振照射二聚體分別檢測Al,Ag與單顆粒Al,Ag納米球吸收光譜的變化;(f): 入射光沿x方向偏振照射二聚體分別檢測Al,Ag與單顆粒Al,Ag納米球吸收光譜的變化[圖中箭頭標(biāo)示了從單顆粒到二聚體譜線的變化情況;(e)和(f)二聚體間隙均為2 nm]
Fig.2 Analysis of absorption spectra ofRAg=20 nm,RAl=20 nm Ag-Al heterodimer affected by the variation of heterodimer gap
(a): The absorption spectra of Al in heterodimer illuminated by theY-polarized light; (b): The absorption spectra of Al in heterodimer illuminated by theX-polarized light; (c): The absorption spectra of Ag in heterodimer illuminated by theY-polarized light; (d): The absorption spectra of Ag in heterodimer illuminated by theX-polarized light; (e): The changes of absorption spectra of a nanosphere in heterodimer from single nanosphere illuminated by theY-polarized light; (f): The changes of absorption spectra of a nanosphere in heterodimer from single nanosphere illuminated by theX-polarized light; [the arrows indicate changes of absorption spectra of nanosphere in heterodimer from single nanosphere; the gap of heterodimer in (e) and (f) are 2 nm]
圖3 異質(zhì)二聚體Fano共振吸收谷、峰處的電場、電荷分布圖
(a): 150 nm電場分布;(b): 238 nm電場分布;(c): 374 nm電場分布;(d): 400 nm電場分布;(e)—(h)分別對應(yīng)為(a)—(d)的電荷分布
Fig.3 The electric field and charge distributions of heterodimer in peaks and valleys of absorption spectra
(a): |E/E0| distribution ofλ=150 nm; (b): |E/E0| distribution ofλ=238 nm; (c): |E/E0| distribution ofλ=374 nm; (d): |E/E0| distribution ofλ=400 nm; (e)—(h) charge distributions of (a)—(d) respectively
圖3是半徑為20 nm的Ag-Al二聚體與y方向偏振光相互作用時其非對稱吸收譜峰和谷處的電場和電荷分布截面圖(上圖為電場分布圖,下圖為電荷分布圖)。可以看出二聚體產(chǎn)生Fano共振時,在非對稱吸收谷處(150 nm,374 nm),電場分別局域在Al和Ag球的周圍[如圖3(a)和(c)所示],而具有雜化的特征[如圖3(e)和(g)所示]。在非對稱吸收峰處(238 nm,400 nm),電場主要局域在二聚體的間隙中,電荷分布表現(xiàn)為兩個偶極分布的同相疊加特征[如圖3(f)和(h)所示]。為了便于說明二聚體的Fano共振特性,圖4給出了半徑為20 nm的Ag和Al納米球吸收峰處的局域電場和電何分布(上圖為電場分布圖,下圖為電荷分布圖)。
圖4 半徑為20 nm的單個Ag和Al納米球吸收譜峰波長處的電場、電荷分布圖
(a): Ag納米球220 nm處電場分布;(b): Ag納米球374 nm處電場分布;(c): Al納米球150 nm處電場分布;(d): Al納米球184 nm處電場分布;(e)—(h)分別對應(yīng)為(a)—(d)的電荷分布
Fig.4 The electric field and charge distributions of single Ag, Al nanosphere particles as radii are 20 nm
(a): |E/E0| distribution of Ag nanosphere withλ=220 nm; (b): |E/E0| distribution of Ag nanosphere withλ=374 nm; (c): |E/E0| distribution of Al nanosphere withλ=150 nm; (d): |E/E0| distribution of Al nanosphere withλ=184 nm; (e)—(h) charge distributions of (a)—(d) respectively
2.2 二聚體中單個納米球?qū)偽展庾V的貢獻(xiàn)
在二聚體金屬納米結(jié)構(gòu)中,LSPR與Fano共振的共同作用,影響著二聚體的吸收光譜。圖5為入射光沿y方向偏振時,單個Ag和Al納米球的吸收譜(粉色和藍(lán)色點(diǎn)線所示)、它們的線性疊加吸收譜(紅色虛線所示)、Ag-Al二聚體中Ag和Al的吸收譜(粉色和藍(lán)色細(xì)實(shí)線所示)和Ag-Al二體的吸收光譜(紅色實(shí)線所示),其中Ag球和Al球半徑均為20 nm,Ag-Al的間隙為2 nm。從圖中可以看出,相對Ag和Al納米球的線性疊加吸收光譜(紅色虛線所示),小間隙Ag-Al納米球二聚體的吸收光譜具有兩個特征: 在100~220和340~384 nm之間吸收譜變?nèi)?,?20~340 nm之間、384~500 nm之間吸收譜增強(qiáng)。二聚體的吸收光譜在220 nm附近及384 nm附近出現(xiàn)明顯地非對稱變化,這歸因于二聚體中兩個顆粒之間的Fano共振作用。
2.3 非對稱結(jié)構(gòu)的Ag-Al納米球二聚體吸收光譜特性
結(jié)構(gòu)對稱的Ag-Al納米球二聚體在紫外-可見光區(qū)表現(xiàn)出優(yōu)異的Fano共振,但實(shí)際實(shí)驗(yàn)中常常會遇到尺寸大小不同的顆粒,基于此本文對結(jié)構(gòu)非對稱的Ag- Al納米球二聚體也進(jìn)行了探究。圖6(a)給出了固定Al納米球半徑為RAl=20n m,Ag納米球半徑分別為RAg=12,16,20,24和28 nm時Al納米球的吸收光譜;圖6(b)給出了固定Ag納米球半徑為RAg=20 nm,Al納米球半徑分別為RAl=12,16,20,24和28 nm時Ag的吸收光譜。從圖中可以看出當(dāng)二聚體中固定一個納米球尺寸增大另一個納米球尺寸時,固定尺寸納米球的吸收光譜的非對稱線性Fano共振更明顯,這說明其Fano共振作用更加強(qiáng)烈。圖中吸收譜有略微紅移其原因?yàn)槌叽绱笮「淖円鸬腖SPR頻率的變化,Ag的吸收譜在長波區(qū)的出現(xiàn)的雙峰由Ag的LSPR與Al的Fano共振耦合引起。
圖5 Ag-Al納米球二聚體的單顆粒、二聚體吸收光譜與單個納米球無耦合的單顆粒、簡單疊加吸收光譜對比圖
Fig.5 The compares of absorption spectra of a nanosphere in heterodimer and single nanosphere, absorption spectra of heterodimer and addition of two single nanosphere
圖6 固定二聚體中一個納米球半徑改變另一個納米球半徑分析固定半徑納米球的吸收光譜變化
(a): 固定Al納米球半徑RAl=20 nm;(b): 固定Ag納米球半徑RAg=20 nm (圖中虛線為單個納米球的吸收光譜,二聚體間距Gap=2 nm)
Fig.6 The absorption spectra of a nanosphere in hetero-dimer affected by another nano-sphere when the second sphere radius is changed
(a): The fixed Al nanosphere radiusRAl=20n m; (b): The fixed Ag nanosphere radiusRAg=20 nm (the dotted line is the absorption spectra of the single nanosphere alone and the gap is 2 nm)
2.4 不同介電環(huán)境中的Ag-Al納米球二聚體吸收光譜模擬及分析
LSPR跟材料和材料所處的介電環(huán)境有著密切的關(guān)系,當(dāng)材料選定后,周圍介質(zhì)的介電環(huán)境可以影響LSPR的頻率,對于不同材料其影響強(qiáng)弱不同。圖7所示為介質(zhì)的折射率為1.0,1.3和1.6時Ag-Al納米球二聚體的吸收光譜。從圖中可以發(fā)現(xiàn),當(dāng)二聚體處于介質(zhì)中時Fano共振峰及強(qiáng)度均會發(fā)生變化,當(dāng)折射率增大時Ag的Fano共振逐漸變?nèi)酰鳤l的Fano共振變強(qiáng)并且半高寬明顯展寬。Ag-Al納米球二聚體中銀和鋁的長波共振吸收峰隨介質(zhì)折射率的變化紅移量明顯大于單個的銀納米球顆粒,這在SPR的生物化學(xué)傳感方面具有明顯的優(yōu)勢和應(yīng)用價值。
圖7 周圍介質(zhì)折射率對Ag-Al納米球二聚體單獨(dú)顆粒的吸收光譜的影響虛線表示出了單獨(dú)納米球顆粒的吸收光譜
Fig.7 Effect of absorption spectra of a nanosphere in hetero-dimer from the refracuive index of surrounding medium
The dotted lines indicate the absorption spectra of the single nanosphere alone
采用了FDTD方法對Ag-Al納米球異質(zhì)二聚體的局域場分布、光學(xué)吸收譜特性進(jìn)行了系統(tǒng)的研究。結(jié)果表明,Ag-Al納米異質(zhì)二聚體的共振吸收光譜來自兩個顆粒的LSPR的耦合疊加,作為材料不對稱系統(tǒng)的結(jié)果,能夠分析出兩納米球間的耦合模式及來自每個單獨(dú)的納米球?qū)偟奈展庾V的貢獻(xiàn)。該結(jié)構(gòu)在紫外光區(qū)和可見光區(qū)可以產(chǎn)生兩個Fano共振效應(yīng),通過調(diào)控顆粒大小和周圍介質(zhì)的折射率,顆粒間距可以實(shí)現(xiàn)對二聚體Fano共振頻率的調(diào)控,并驗(yàn)證了兩個Fano共振對彼此納米球的吸收光譜的影響。同時分析發(fā)現(xiàn)只有在入射光偏振方向平行于兩顆粒連線方向時才能產(chǎn)生較強(qiáng)的Fano共振,在垂直于兩顆粒連線方向時LSPR得到明顯抑制。該工作基于FDTD對Al的LSPR以及異質(zhì)結(jié)構(gòu)的LSPR相互作用等內(nèi)容進(jìn)行模擬分析和研究,對以后的紫外光區(qū)LSPR以及Fano共振,雙共振效應(yīng)、生物傳感技術(shù)等方面研究和實(shí)驗(yàn)驗(yàn)證Ag-Al納米異質(zhì)二聚體的光學(xué)性質(zhì)具有一定的參考價值。
[1] Kelly K L, Coronado E, Zhao L L, et al. The Journal of Physical Chemistry B, 2003, 107(3): 668.
[2] Le F, Brandl D W, Urzhumov Y A, et al. ACS Nano, 2008, 2(4): 707.
[3] Knight M W, King N S, Liu L, et al. ACS Nano, 2013, 8(1), 834.
[4] Ding T, Sigle D O, Herrmann L O, et al. ACS Applied Materials & Interfaces, 2014, 6(20): 17358.
[5] Ono A, Kikawada M, Inami W. Frontiers of Physics, 2014, 9(1): 60.
[6] Encina E R, Coronado E A. The Journal of Physical Chemistry C, 2011, 115(32): 15908.
[7] Halas N J, Lal S, Chang W. Chemical Reviews, 2011, 111(6): 3913.
[8] Liusman C, Li H, Lu G, et al. The Journal of Physical Chemistry C, 2012, 116(18): 10390.
[9] Ahmadivand A, Karabiyik M, Pala N, et al. Optics Communications, 2015, 338(1): 218.
[10] Shan D, Huang L, Li X, et al. The Journal of Physical Chemistry C, 2014, 118(41): 23930.
[11] Cheng L, Huang L, Li X, et al. The Journal of Physical Chemistry C, 2015, 119(25): 14304.
[12] Palik E D. Handbook of Optical Constants of Solids. 3nd ed. New York: Academic Press, 1998.
[13] Sposito G. The Environmental Chemistry of Aluminum. Boca Raton: CRC Press, 1995.
*Corresponding author
(Received Jun. 9, 2015; accepted Oct. 12, 2015)
Optical Properties of Ag-Al Nanosphere Heterodimer
CHENG Long1, JIANG Yong-gang1, HUANG Li-qing2*, ZHANG Yu2, WU Ji2, SUN Hao1, LIU Qi1, WANG Jun3
1. Chinese Satellite Maritime Tracking and Control Department, Jiangyin 214431, China 2. College of Science, Xi’an Jiaotong University, Xi’an 710049, China 3. College of Science, Xi’an Polytechnic University, Xi’an 710048, China
Metal nanostructure material has attracted great attention due to its surface plasmon resonance. The optical properties of heterodimer metallic nanostructure materials are different compared with that of homogeneous nanostructure materials because their symmetry structure is broken. The symmetry of the original structures will be changed, and the interaction between the two particles will produce Fano resonance. The Fano resonances are the result of the double or more surface plasmon resonances coupling, and be controlled by properly controlling the nanostructures. The electric field enhancement and the radiation characteristics of the nanostructure are further optimized for the Fano resonance controlled. Aluminum nanostructure materials have become the best choice of the surface plasmon resonance in the UV region, because gold, silver and other noble metals have inter-band transition effects. In this work, we study the local field and absorption spectra of heterodimer composed of a silver nanosphere and an aluminum nanosphere by the Finite-Difference Time-Domain (FDTD) theory. Firstly, the effects of the incident polarization, the geometric like, nanospheres separation, nanosphere radius and physical dielectric media on the optical response of silver-aluminum nanospheres heterodimer are analyzed. Secondly, the near field distributions of heterodimer are given in-depth discussion. Due to the destruction of the symmetry of dimer material, heterodimeric optical character is significantly different from homodimer. Fano resonances are produced in UV and visible light in the heterodimer respectively when silver-aluminum nanospheres heterodimer is illuminated by the Y-polarized light. More favorable Fano resonance effects can be obtained by regulating the spacing and size of heterodimer in the given dielectric environment which is also an effect factor certainly. Finally, the absorption of the heterodimer contributed from each nanosphere structure is also analyzed. In this way, the result which is a general and complete description of the optical properties of silver-aluminum nanospheres heterodimer nanostructure in the paper, leads to the suppression and enhancement of the surface plasmon resonance in different frequency bands and may be valuable for the design and development of plasmonic devices and optical tools in UV-visible light and could serve as the basis of the future experimental analysis of surface enhanced spectroscopy, molecular detection and biosensor etc.
Silver-aluminum nanosphere heterodimer; Finite-difference time-domain (FDTD) theory; Localized surface plasmon resonances (LSPR); Fano resonance
2015-06-09,
2015-10-12
國防(973)項(xiàng)目,陜西省科學(xué)技術(shù)研究發(fā)展計劃項(xiàng)目(2012K07-19),陜西省教育廳科學(xué)研究計劃項(xiàng)目(14JK1308)和國家自然科學(xué)基金項(xiàng)目(11547172)資助
程 龍,1988年生,中國衛(wèi)星海上測控部助理工程師 e-mail: 563131960@qq.com *通訊聯(lián)系人 e-mail: lqhuangxjtu@126.com
O433.2
A
10.3964/j.issn.1000-0593(2016)11-3470-06