汪 元,蔣霞敏,樂可鑫,韓慶喜,彭瑞冰,梁晶晶,王鵬帥
?
飼料蛋白質(zhì)水平對(duì)擬目烏賊生長(zhǎng)前期的生長(zhǎng)性能、肌肉成分和酶活的影響
汪元,蔣霞敏,樂可鑫,韓慶喜,彭瑞冰,梁晶晶,王鵬帥
(寧波大學(xué) 海洋學(xué)院,浙江 寧波 315211)
摘要:以魚粉、豆粕和明膠為主要蛋白源配制成蛋白質(zhì)水平分別為 31.5%、35.0%、38.5%、42.0%、45.5%、49.0%的試驗(yàn)飼料。選取初始均重(3.99±0.08)g的擬目烏賊(Sepia lycidas)540只,隨機(jī)分成6組,每組3個(gè)重復(fù),每個(gè)重復(fù)30只。結(jié)果表明: 擬目烏賊的生長(zhǎng)性能指標(biāo)(增重率、特定生長(zhǎng)率、成活率)均在飼料蛋白質(zhì)水平為45.91%時(shí)達(dá)到最佳,除與蛋白質(zhì)水平為 49.72%時(shí)差異不顯著(P>0.05)外,與其他各組均有顯著差異(P<0.05)。飼料系數(shù)隨蛋白質(zhì)水平的升高呈先降后升的趨勢(shì),在飼料蛋白質(zhì)水平為45.91%時(shí)達(dá)到最低,顯著低于除49.72%組外的其他各組; 蛋白質(zhì)效率隨著飼料中蛋白質(zhì)水平的升高而顯著下降(P<0.05)。飼料蛋白質(zhì)水平對(duì)肥滿度與肝體比影響不顯著(P>0.05)。胃蛋白酶、胰蛋白酶、腸道脂肪酶和肝臟超氧化物歧化酶活性,隨飼料蛋白質(zhì)水平的增加呈先升后降的趨勢(shì),均在飼料蛋白質(zhì)水平為45.91%時(shí)達(dá)到最高,胃蛋白酶和胰蛋白酶活性除與蛋白質(zhì)水平為42.22%時(shí)差異不顯著(P>0.05)外,與其他各組均有顯著差異(P<0.05); 脂肪酶和肝臟超氧化物歧化酶活性與其他各組均有顯著差異(P<0.05),而腸道淀粉酶活性則相反。肝臟谷丙轉(zhuǎn)氨酶和谷草轉(zhuǎn)氨酶活性隨飼料蛋白質(zhì)水平的增加呈先升后穩(wěn)定的趨勢(shì),均在飼料蛋白質(zhì)水平為 49.72%時(shí)達(dá)到最大,顯著高于除 45.91%組外的其他各組(P<0.05); 而飼料蛋白質(zhì)水平對(duì)堿性磷酸酶活性影響不顯著(P>0.05)。烏賊肌肉粗蛋白質(zhì)在飼料蛋白質(zhì)水平 45.91%時(shí)含量最高,顯著高于除 49.72%組外的其他各組(P<0.05); 粗脂肪含量最低,顯著低于其他各組(P<0.05); 而肌肉水分和粗灰分含量不受飼料蛋白質(zhì)水平的影響(P>0.05)。擬目烏賊生長(zhǎng)前期(4~10 g)配合飼料適宜的蛋白質(zhì)水平為45.91%。
關(guān)鍵詞:擬目烏賊(Sepia lycidas); 蛋白質(zhì)水平; 生長(zhǎng)性能; 肌肉成分; 酶活
[Foundation: Agriculture Science Technology Achievement Transformation Project of China,No.2009GB2C220415; Zhejiang Province Germplasm and Germchit Project,No.2013-82; Ningbo Agriculture Major Project,No.2014C11001]
擬目烏賊(Sepia lycidas),隸屬軟體動(dòng)物門(Mollusca)、頭足綱(Cephalopoda)、烏賊目(Sepioidea)、烏賊科(Sepiidae)、烏賊屬(Sepia)。擬目烏賊具有生活周期較短、成熟個(gè)體大、營(yíng)養(yǎng)價(jià)值高等特點(diǎn),目前已成為海水養(yǎng)殖中引人關(guān)注的品種。而近年來(lái),由于過度的捕撈,導(dǎo)致我國(guó)烏賊資源趨于衰退,所以開展人工養(yǎng)殖能有效進(jìn)行資源修復(fù),同時(shí)可以為養(yǎng)殖業(yè)帶來(lái)新的品種,增加經(jīng)濟(jì)效益。目前關(guān)于擬目烏賊的研究主要集中在繁殖行為學(xué)[1-3]、環(huán)境因子對(duì)幼體生長(zhǎng)[4-5]、攝食[6]和胚胎發(fā)育[7-10]的影響以及人工繁育技術(shù)[11]等方面,而關(guān)于擬目烏賊配合飼料方面的研究尚未見報(bào)道。
飼料蛋白質(zhì)水平對(duì)水產(chǎn)動(dòng)物機(jī)體健康水平、消化代謝水平和抗氧化能力有顯著影響,而這些影響程度可以通過機(jī)體內(nèi)消化酶、肝臟酶、抗氧化酶的活力水平反映出來(lái)[12]。消化酶(胃蛋白酶、胰蛋白酶、脂肪酶和淀粉酶)是水生生物體內(nèi)重要的消化指標(biāo),能反映機(jī)體對(duì)飼料消化能力的強(qiáng)弱。肝臟酶(谷丙轉(zhuǎn)氨酶、谷草轉(zhuǎn)氨酶和堿性磷酸酶)是肝功能正常與否的重要指標(biāo),能反映肝臟受損程度; 此外,谷丙轉(zhuǎn)氨酶和谷草轉(zhuǎn)氨酶在參與氨基酸代謝的轉(zhuǎn)氨過程,對(duì)氨基酸的分解和合成有重要作用; 超氧化物歧化酶(SOD)是生物體內(nèi)重要的抗氧化酶之一,能清除自由基、預(yù)防或修復(fù)肝損傷[13]。
本試驗(yàn)通過設(shè)計(jì) 6種不同的飼料蛋白質(zhì)水平,研究飼料蛋白質(zhì)水平對(duì)擬目烏賊生長(zhǎng)前期(平均體重4~10 g)的生長(zhǎng)性能、肌肉成分、消化酶活性和肝臟酶活性的影響,確定擬目烏賊生長(zhǎng)前期配合飼料的最適蛋白質(zhì)水平,為擬目烏賊專用配合飼料以及全價(jià)飼料的配制提供資料。
1.1試驗(yàn)飼料
以魚粉、豆粕和食用明膠為主要蛋白源,配制蛋白質(zhì)水平分別為31.30%、34.92%、38.54%、42.22%、45.91%、49.72% 的配合飼料,粉料均過80目篩,多維和多礦等微量成分采用逐級(jí)擴(kuò)大法進(jìn)行混合,再加入魚油、大豆卵磷脂,最后加水?dāng)嚢杌旌铣蓤F(tuán)狀,用擠條機(jī)制成條狀(長(zhǎng)為 2~3 cm,直徑為 0.5~1 cm)軟顆粒飼料,直接投喂或置于-20℃冰箱中保存?zhèn)溆?。試?yàn)飼料組成及營(yíng)養(yǎng)水平見表1。
1.2試驗(yàn)對(duì)象及飼養(yǎng)管理
試驗(yàn)于2014年6~8月進(jìn)行。擬目烏賊親體捕自南海海域(21.11°N,110.24°E),經(jīng)自然交配產(chǎn)卵,在浙江舟山市水產(chǎn)研究所基地人工繁育。采用水泥池(3 m× 4 m×1.5 m)懸浮圓形塑料篩筐(直徑為60 cm,高為20 cm)作為培養(yǎng)容器,按表1中蛋白質(zhì)水平49.72%組飼料作為基礎(chǔ)飼料馴化8 d。待正常攝食后,挑選活潑、健康的擬目烏賊 540只,平均胴長(zhǎng)(3.34± 0.22)cm,平均體重(3.99±0.08)g,隨機(jī)分成 6組,每組3平行,每平行放養(yǎng)30只。
表1 試驗(yàn)飼料組成及營(yíng)養(yǎng)水平(干物質(zhì)基礎(chǔ))Tab.1 Composition and nutrient levels of experimental diets(DM basis)
試驗(yàn)期間,每天分4次(8: 00、11: 00、14: 00和17: 30)投喂試驗(yàn)飼料(表1配方),日投喂量按烏賊體重的15%。每隔10天測(cè)量體重和胴長(zhǎng),調(diào)整投喂量。日換水2次,每次換水量80%,定期清洗塑料篩框。試驗(yàn)條件: 水溫20~23℃,鹽度20~27,溶氧>5 mg/L,pH為7.4~7.8。試驗(yàn)期為30 d。
1.3樣品采集
試驗(yàn)結(jié)束后,停止投喂 24 h,統(tǒng)計(jì)每框?yàn)踬\數(shù)量,每個(gè)塑料篩框隨機(jī)取 8~10只烏賊,每只烏賊測(cè)量體重、胴長(zhǎng)后解剖,單獨(dú)分離出各個(gè)烏賊的胃、肝臟、胰臟和腸道,放入-80℃冰箱保存,用于酶活測(cè)定; 剩余部分取肌肉,放入-20℃冰箱保存,用于肌肉成分分析。每只烏賊的胃、肝臟、胰臟、腸道和肌肉均單獨(dú)采集并保存待測(cè)。
1.4肌肉成分測(cè)定方法
水分含量采用105℃烘干恒重法進(jìn)行測(cè)定,灰分含量采用馬福爐550℃高溫灼燒法進(jìn)行測(cè)定,粗蛋白含量采用凱氏定氮法進(jìn)行測(cè)定,粗脂肪含量采用索氏抽提法進(jìn)行測(cè)定。
1.5酶活性測(cè)定方法
4種消化酶(胃蛋白酶、胰蛋白酶、腸道脂肪酶、腸道淀粉酶)和 4種肝臟酶(谷丙轉(zhuǎn)氨酶、谷草轉(zhuǎn)氨酶、堿性磷酸酶和超氧化物歧化酶)均采用南京建成生物技術(shù)有限公司試劑盒(A080-1、A080-2、C016、A054和C009-1、C010-1、A059-1、A001-1)測(cè)定,相應(yīng)操作均參照說(shuō)明書進(jìn)行。
1.6數(shù)據(jù)統(tǒng)計(jì)與分析
計(jì)算增重率(Weight gain rate,WGR,%)、特定生長(zhǎng)率(Specific growth ratio,SGR,%/d)、成活率(Survival rate,SR,%)、飼料系數(shù)(Feed conversion ratio,F(xiàn)C)、蛋白質(zhì)效率(Protein efficiency ratio,PER)、肥滿度(Condition factor,CF,g/cm3)及肝體比(Hepatosomatic index,HSI,%),計(jì)算公式如下:
增重率(WGR,%)=100×(末均重-初均重)/初重;
特定生長(zhǎng)率(SGR,%/d)=100×(ln終末體重-ln初始體重)/飼養(yǎng)天數(shù);
成活率(SR,%)=100×終末尾數(shù)/初始尾數(shù);
飼料系數(shù)(FC)=投飼總量/(終末體重-初始體重);
蛋白質(zhì)效率(PER,%)=100×(終末體重-初始體重)/蛋白攝入量;
肥滿度(CF,g/cm3)=100×體重/體長(zhǎng)3;
肝體比(HSI,%)=100×肝臟重/體重。
數(shù)據(jù)均以平均值±標(biāo)準(zhǔn)差(Mean±SD)表示。用SPSS 18.0軟件對(duì)所有數(shù)據(jù)進(jìn)行單因子方差分析(One-way ANOVA),當(dāng)各組間差異顯著(P<0.05)時(shí),進(jìn)行Duncan多重比較。
2.1飼料蛋白質(zhì)水平對(duì)擬目烏賊生長(zhǎng)前期生長(zhǎng)性能的影響
由表2可知,各組烏賊的末均體重、增重率、特定生長(zhǎng)率和成活率隨著飼料蛋白質(zhì)水平的增加而顯著上升,均在蛋白質(zhì)水平為 45.91%時(shí)達(dá)到最高值,45.91%和49.72%蛋白質(zhì)水平組的末均體重、增重率、特定生長(zhǎng)率和成活率均顯著高于其他各組(P<0.05)。飼料系數(shù)隨飼料蛋白質(zhì)水平的增加呈先降后升的趨勢(shì),在飼料蛋白質(zhì)水平為 45.91%時(shí)最低(2.57±0.27),顯著低于除49.72%組外的其他各組。蛋白質(zhì)效率隨著飼料中蛋白質(zhì)水平的升高呈先穩(wěn)定后下降趨勢(shì),以蛋白質(zhì)水平為 31.30% 時(shí)最高(29.02±2.02 )%,蛋白質(zhì)水平為49.72%時(shí)最低(23.06±1.93 )%。飼料蛋白質(zhì)水平對(duì)肥滿度與肝體比未產(chǎn)生顯著影響(P>0.05)。
表2 飼料蛋白質(zhì)水平對(duì)擬目烏賊生長(zhǎng)前期生長(zhǎng)性能的影響Tab.2 Effects of dietary protein level on growth performance of Sepia lycidas during early growth period
2.2飼料蛋白質(zhì)水平對(duì)擬目烏賊生長(zhǎng)前期肌肉成分的影響
由表 3可知,投喂配合飼料蛋白水平為45.91%組,烏賊肌肉粗蛋白質(zhì)含量最高(14.86±0.17)%,顯著高于除 49.72%組外的其他各組(P<0.05); 粗脂肪含量最低(0.12±0.01)%,顯著低于其他各組(P<0.05);而肌肉水分和粗灰分含量不受飼料蛋白質(zhì)水平的影響(P>0.05)。
2.3飼料蛋白質(zhì)水平對(duì)擬目烏賊生長(zhǎng)前期消化酶活性的影響
由表4可知,胃蛋白酶、胰蛋白酶和腸道脂肪酶活性隨飼料蛋白質(zhì)水平的增加呈先升后降的趨勢(shì),均在蛋白質(zhì)水平為 45.91%時(shí)達(dá)到最高值,42.22%和45.91%蛋白質(zhì)水平組的胃蛋白酶、胰蛋白酶活性顯著高于其他各組(P<0.05),45.91%蛋白質(zhì)水平組的脂肪酶活性顯著高于其他各組(P<0.05)。腸道淀粉酶活性隨飼料蛋白質(zhì)水平的增加呈先降后升的趨勢(shì),在飼料蛋白質(zhì)水平為 45.91%時(shí)最低,顯著低于其他各組(P<0.05)。
2.4飼料蛋白質(zhì)水平對(duì)擬目烏賊生長(zhǎng)前期肝臟酶活性的影響
由表 5可知,肝臟谷丙轉(zhuǎn)氨酶和谷草轉(zhuǎn)氨酶活性隨飼料蛋白質(zhì)水平的增加呈先升后穩(wěn)定的趨勢(shì),均在飼料蛋白質(zhì)水平為 49.72%時(shí)達(dá)到最大值,顯著高于除 45.91%組外的其他各組(P<0.05); 肝臟超氧化物歧化酶活性隨飼料蛋白質(zhì)水平的增加呈先升后降的趨勢(shì),在飼料蛋白質(zhì)水平為 45.91%時(shí)達(dá)到最高值,與其他各組均有顯著差異(P<0.05); 而飼料蛋白質(zhì)水平對(duì)堿性磷酸酶活性影響不顯著(P>0.05)。
3.1飼料蛋白質(zhì)水平對(duì)擬目烏賊生長(zhǎng)前期生長(zhǎng)性能的影響
目前關(guān)于烏賊配合飼料方面的研究鮮有報(bào)道,僅見葉坤等[14]報(bào)道了飼料蛋白質(zhì)水平對(duì)曼氏無(wú)針烏賊(Sepiella maindroni)生長(zhǎng)和飼料利用率的影響,得出最佳的飼料蛋白質(zhì)水平為 45.9%~51.5%; 羅云云等[15]報(bào)道了曼氏無(wú)針烏賊人工配合飼料的物理性狀。但在其他軟體動(dòng)物的相關(guān)研究表明,飼料中適宜的蛋白質(zhì)水平可以促進(jìn)其生長(zhǎng)和飼料利用效率[16-19]。本試驗(yàn)表明,飼料不同蛋白質(zhì)水平對(duì)擬目烏賊生長(zhǎng)前期的增重率、特定生長(zhǎng)率和飼料系數(shù)顯著影響,均以投喂飼料蛋白質(zhì)水平 45.91% 組最佳,過低的飼料蛋白質(zhì)水平不能滿足擬目烏賊的正常生長(zhǎng)需求,會(huì)導(dǎo)致擬目烏賊生長(zhǎng)緩慢、飼料利用率下降。在蛋白質(zhì)水平相對(duì)較低組(蛋白質(zhì)水平小于 34.92%)中,出現(xiàn)部分烏賊生長(zhǎng)畸形(胴寬變小、胴體消瘦、肉鰭不規(guī)則)的現(xiàn)象,這可能是因?yàn)檫^低的飼料蛋白質(zhì)水平無(wú)法滿足烏賊機(jī)體需求,攝入的蛋白質(zhì)用于維持烏賊機(jī)體正常代謝的同時(shí),用于其生長(zhǎng)的比例則會(huì)相對(duì)減少,從而導(dǎo)致烏賊生長(zhǎng)緩慢,甚至出現(xiàn)負(fù)增長(zhǎng)的現(xiàn)象。本試驗(yàn)中,擬目烏賊的成活率隨著飼料蛋白質(zhì)水平的增加呈先升后穩(wěn)定趨勢(shì),這與曼氏無(wú)針烏賊的研究結(jié)果一致[14]。在試驗(yàn)過程中發(fā)現(xiàn),在蛋白質(zhì)水平相對(duì)較低組(小于 34.92%)中,當(dāng)擬目烏賊出現(xiàn)生長(zhǎng)畸形時(shí),會(huì)表現(xiàn)出明顯的活力下降、攝食減少的現(xiàn)象,出現(xiàn)畸形現(xiàn)象 3~4 d后,烏賊開始漂浮水面、停止進(jìn)食,一周后則會(huì)死亡,從而嚴(yán)重影響成活率。本試驗(yàn)中,蛋白質(zhì)效率隨飼料蛋白質(zhì)水平的增加呈先穩(wěn)定后下降的趨勢(shì),這與曼氏無(wú)針烏賊的研究結(jié)果一致[14],這可能是由于飼料中過高的蛋白質(zhì)會(huì)用于烏賊能量消耗,從而導(dǎo)致蛋白質(zhì)效率下降。
表3 飼料蛋白質(zhì)水平對(duì)擬目烏賊生長(zhǎng)前期肌肉成分的影響(濕重基礎(chǔ))Tab.3 Effects of dietary protein level on muscle composition of Sepia lycidas during early growth period(fresh weight basis)
表4 飼料蛋白質(zhì)水平對(duì)擬目烏賊生長(zhǎng)前期消化酶活性的影響Tab.4 Effects of dietary protein level on intestinal digestive enzyme activities of Sepia lycidas during early growth period
表5 飼料蛋白質(zhì)水平對(duì)擬目烏賊生長(zhǎng)前期肝臟酶活性的影響Tab.5 Effects of dietary protein level on liver enzyme activities of Sepia lycidas during early growth period
3.2飼料蛋白質(zhì)水平對(duì)擬目烏賊生長(zhǎng)前期肌肉成分的影響
本試驗(yàn)表明,擬目烏賊肌肉粗蛋白質(zhì)和粗脂肪含量受飼料蛋白質(zhì)水平影響顯著,而水分和灰分不受飼料蛋白質(zhì)水平的影響。隨著飼料蛋白質(zhì)水平增加,烏賊肌肉粗蛋白含量呈上升趨勢(shì),粗脂肪含量呈先降后升的趨勢(shì)。杜學(xué)星等[20]研究表明隨著飼料蛋白質(zhì)水平的增加,管角螺(Hemi fusus tuba)肌肉的粗蛋白含量逐漸上升,這和本試驗(yàn)結(jié)果相吻合。Peter等[21]認(rèn)為,適宜的蛋白質(zhì)水平能促進(jìn)南非鮑(Haliotis rubra)蛋白質(zhì)合成,抑制脂肪蓄積; 當(dāng)飼料蛋白質(zhì)水平過低或過高時(shí),都會(huì)對(duì)其脂肪代謝關(guān)鍵酶基因的表達(dá)造成影響,進(jìn)而影響南非鮑的體脂沉積。本試驗(yàn)結(jié)果中,當(dāng)飼料蛋白質(zhì)水平達(dá)到 49.72%時(shí),烏賊粗脂肪含量顯著升高,與前者的結(jié)果一致。因此,過低和過高的飼料蛋白質(zhì)水平均會(huì)導(dǎo)致擬目烏賊肌肉脂肪含量的升高; 而其原因可能是,在適宜的飼料蛋白質(zhì)水平條件下,具有合適的蛋能比,能夠促進(jìn)擬目烏賊蛋白質(zhì)的合成,從而抑制體脂的蓄積; 而另一方面,飼料蛋白質(zhì)水平可能通過調(diào)控?cái)M目烏賊能量代謝關(guān)鍵酶基因的表達(dá),來(lái)影響其體脂的沉積。
3.3飼料蛋白質(zhì)水平對(duì)擬目烏賊生長(zhǎng)前期消化酶活性的影響
本試驗(yàn)表明,擬目烏賊的胃蛋白酶、胰蛋白酶和腸道脂肪酶隨飼料蛋白質(zhì)水平呈先增后降的趨勢(shì),在蛋白質(zhì)水平為 45.91%時(shí)達(dá)到最高值,在胡子鲇(Clarias fuscus)[22]和刺參(Apostichopus japonicus)[23]等水產(chǎn)動(dòng)物的研究中也有相似的變化趨勢(shì)。吳永恒等[21]研究表明,刺參的胰蛋白酶和腸道脂肪酶活性在一定范圍內(nèi)隨著飼料蛋白質(zhì)水平的增加而升高,但當(dāng)超過最適蛋白質(zhì)水平后,胃蛋白酶和脂肪酶活性無(wú)顯著變化; Mukhopadhyay等[22]在胡子鲇的研究中發(fā)現(xiàn),當(dāng)飼料中蛋白質(zhì)水平超過 50%后,胃蛋白酶活性并不會(huì)隨著飼料蛋白質(zhì)水平的升高而繼續(xù)增加。所以在一定范圍內(nèi),飼料蛋白質(zhì)水平的增加會(huì)促進(jìn)烏賊體內(nèi)胃蛋白酶、胰蛋白酶和腸道脂肪酶的分泌,以增強(qiáng)擬目烏賊的消化吸收功能,促進(jìn)機(jī)體蛋白質(zhì)的合成,有利于其生長(zhǎng)[16],而過高的飼料蛋白質(zhì)水平可能會(huì)引發(fā)負(fù)反饋調(diào)節(jié),致使酶活下降[24]。本試驗(yàn)中,當(dāng)飼料蛋白質(zhì)水平達(dá)到 49.72%時(shí),胃蛋白酶、胰蛋白酶和腸道脂肪酶活性均顯著低于45.91%組,可以看出,在消化酶活性比較上,49.72%已超過擬目烏賊生長(zhǎng)前期最適宜的飼料蛋白水平。因此,過低和過高的飼料蛋白質(zhì)水平都會(huì)導(dǎo)致擬目烏賊消化能力降低,飼料不能被充分利用的同時(shí),其生長(zhǎng)發(fā)育也會(huì)受到影響。腸道淀粉酶活性隨著飼料蛋白質(zhì)水平增加呈先降后升的趨勢(shì),在蛋白質(zhì)水平為 45.91%時(shí)達(dá)到最小值,與刺參的研究結(jié)果不一致[22],這可能是由于試驗(yàn)對(duì)象不同,淀粉酶的分泌器官存在差異,以及試驗(yàn)對(duì)象的食性、生理特點(diǎn)不同等因素有關(guān)。至于擬目烏賊消化酶活性變化的具體機(jī)制,則需要研究其消化酶基因的表達(dá)來(lái)進(jìn)一步的探討。
3.4飼料蛋白質(zhì)水平對(duì)擬目烏賊生長(zhǎng)前期肝臟酶活性的影響
蛋白質(zhì)代謝以氨基酸為核心,飼料中的蛋白質(zhì)都要降解為氨基酸才能被機(jī)體利用,肝臟中的谷丙轉(zhuǎn)氨酶(GPT)和谷草轉(zhuǎn)氨酶(GOT)參與氨基酸代謝,這兩種關(guān)鍵酶活性的變化能反應(yīng)肝功能的狀態(tài)[25]。當(dāng)肝細(xì)胞受到損傷時(shí),GPT和GOT會(huì)從肝細(xì)胞中釋放出來(lái),進(jìn)去血液,使肝組織中的酶活性下降[26]。堿性磷酸酶(AKP)是一種結(jié)合在細(xì)胞膜上的金屬酶,在重金屬離子污染的水體中,AKP的活性會(huì)發(fā)生變化[27]; 肝臟是機(jī)體清理重金屬離子最主要的器官,當(dāng)重金屬離子濃度增加或影響時(shí)間延長(zhǎng)而超出肝臟的解毒能力時(shí),肝臟酶活性就會(huì)受到抑制,從而影響肝功能[28]。超氧化物歧化酶(SOD)是生物體內(nèi)重要的抗氧化酶之一,能清除自由基、預(yù)防或修復(fù)肝損傷[13]。本試驗(yàn)中發(fā)現(xiàn),隨著飼料蛋白質(zhì)水平增加,肝臟中GPT和GOT含量先上升后穩(wěn)定,在飼料蛋白質(zhì)水平為 45.91%時(shí)達(dá)到穩(wěn)定,當(dāng)?shù)鞍踪|(zhì)水平繼續(xù)增加時(shí),GPT和GOT含量無(wú)顯著變化。這可能是由于當(dāng)飼料蛋白質(zhì)水平過高時(shí),飼料中的蛋白質(zhì)含量超過了烏賊的需要量,過剩的蛋白質(zhì)合成脂肪,積累在肝臟中,引起肝臟損傷,導(dǎo)致肝臟中GOT和GPT出現(xiàn)外溢現(xiàn)象,使得肝臟中GPT和GOT含量不再隨著蛋白質(zhì)水平增加而升高[26]。由此可見,肝臟的健康程度在一定程度上受到了飼料蛋白質(zhì)水平的影響,過高的飼料蛋白質(zhì)水平可導(dǎo)致肝臟損傷。隨著飼料蛋白質(zhì)水平增加,AKP活性無(wú)顯著變化,均處于正常水平,這說(shuō)明試驗(yàn)過程中,烏賊肝臟未受到重金屬離子的影響。SOD活性隨飼料蛋白質(zhì)水平的增加,呈先升后降的趨勢(shì),在飼料蛋白質(zhì)水平為 45.91%時(shí)達(dá)到最高值,過低或過高的飼料蛋白質(zhì)水平下,SOD均顯著下降,說(shuō)明飼料蛋白質(zhì)水平影響了烏賊肝臟的 SOD活性。Roche & Bog等[29]認(rèn)為,在外界污染條件下,有機(jī)體會(huì)產(chǎn)生更多的活性氧自由基,若抗氧化酶活性降低,過多的活性氧自由基會(huì)對(duì)細(xì)胞或組織造成嚴(yán)重的破壞,SOD活性的降低表明有機(jī)體對(duì)超氧陰離子的清除能力下降。這個(gè)結(jié)果可能預(yù)示著,飼料蛋白質(zhì)水平過低或過高,都會(huì)降低擬目烏賊對(duì)氧化脅迫的耐受性,更易受到氧化脅迫的威脅。
飼料蛋白水平對(duì)擬目烏賊生長(zhǎng)前期的生長(zhǎng)性能、肌肉組成、消化酶活性和肝臟酶活性影響顯著,通過各項(xiàng)指標(biāo)和生產(chǎn)成本方面綜合得出,生長(zhǎng)前期擬目烏賊飼料中適宜的蛋白質(zhì)水平為45.91%。
參考文獻(xiàn):
[1]文菁,江星,王雁,等.擬目烏賊繁殖行為學(xué)的初步研究[J].水產(chǎn)科學(xué),2012,31(1): 22-27.Wen Qing,Jiang Xing,Wang Yan,et al.The reproductive behavior of cuttlefish Sepia lycidas[J].Fisheries Science,2012,31(1): 22-27.
[2]羅江,蔣霞敏,唐鋒,等.擬目烏賊精子發(fā)生和精子的超微結(jié)構(gòu)[J].動(dòng)物學(xué)雜志,2014,49(1): 71-82.Luo Jiang,Jiang Xiamin,Tang Feng,et al.Ultrastructure of Spermatogenesis and Mature Spermatozoa in Sepia lycidas[J].Chinese Journal of Zoology,2014,49(1): 71-82.
[3]羅江,蔣霞敏,彭瑞冰,等.擬目烏賊生殖系統(tǒng)的組織學(xué)研究[J].水產(chǎn)學(xué)報(bào),2014,38(7): 946-955.Luo Jiang,Jiang Xiamin,Peng Ruibing,et al.Histology of reproductive system in Sepia lycidas[J].Journal of Fisheries of China,2014,38(7): 946-955.
[4]蔡文飛,徐海洪,陳道海,等.溫度對(duì)擬目烏賊幼體日生長(zhǎng)率和成活率的影響[J].氨基酸和生物資源,2012,34(4): 63-66.Cai Wenfei,Xu Haihong,Chen Daohai,et al.Effects of temperature on growth rate and survival rate in cuttlefish(Sepia lycidas)larvae[J].Amino Acids and Biotic Resources,2012,34(4): 63-66.
[5]彭瑞冰,蔣霞敏,樂可鑫,等.鹽度對(duì)擬目烏賊生長(zhǎng)和生化成分的影響[J].海洋環(huán)境科學(xué),2014,33(5):719-723.Peng Ruibing,Jiang Xiamin,Le Kexin,et al.Effect of salinity effects on growth and biochemical composition of Sepia lycidas[J].Marine Environmental Science,2014,33(5): 719-723.
[6]徐海洪,蔡文飛,周淑進(jìn),等.擬目烏賊幼體日攝食量及其對(duì)體重的影響[J].氨基酸和生物資源,2012,34(4): 67-70.Xu Haihong,Cai Wenfei,Zhou Shujin,et al.Daily food consumption and its effect on the larvae body weight of Sepia lycidas[J].Amino Acids and Biotic Resources,2012,34(4): 67-70.
[7]陳道海,顏蓉,文菁,等.鹽度對(duì)擬目烏賊受精卵卵徑、重量和孵化率的影響[J].氨基酸和生物資源,2013,35(3): 8-12.Chen Daohai,Yan Rong,Wen Jing,et al.Effect on diameter,weight and hatchability of fertilized egg of cuttlefish(Sepia lycidas)by different salinity water environment[J].Amino Acids and Biotic Resources,2013,35(3): 8-12.
[8]陳道海,郭永平,文菁,等.不同鹽度下擬目烏賊胚胎發(fā)育過程研究[J].海洋與湖沼,2013,44(5):1282-1287.Chen Daohai,Guo Yongping,Wen Jing,et al.Salinity impact onembryonic development of cuttlefish Sepia lycidas[J].Oceanologia et Limnologia Sinica,2013,44(5): 1282-1287.
[9]蔣霞敏,彭瑞冰,羅江,等.溫度對(duì)擬目烏賊胚胎發(fā)育及幼體的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2013,24(5):1453-1460.Jiang Xiamin,Peng Ruibing,Luo Jiang,et al.Effects oftemperature on the embryonic development and larval growth of Sepia lycidas[J].Chinese Journal of Applied Ecology,2013,24(5): 1453-1460.
[10]彭瑞冰,蔣霞敏,于曙光,等.幾種生態(tài)因子對(duì)擬目烏賊胚胎發(fā)育的影響[J].生態(tài)學(xué)報(bào),2013,33(20):6560-6568.Peng Ruibing,Jiang Xiamin,Yu Shuguang,et al.Effect of several ecological factors on embryonic development of Sepia lycidas[J].Acta Ecologica Sinica,2013,33(20): 6560-6568.
[11]唐鋒,蔣霞敏,羅江,等.擬目烏賊受精卵孵化及室內(nèi)附卵基附卵效果的研究[J].生物學(xué)雜志,2013,30(6): 54-58.Tang Feng,Jiang Xiamin,Luo Jiang,et al.The study of the optimal ambient environment on egg hatching and the effect of different spawning substrates on adhesion to newly spawned eggs of Sepia lycidas[J].Journal of Biology,2013,30(6): 54-58.
[12]Lall S P,Dumas A.Nutritional requirements of cultured fish: Formulating nutritionally adequate feeds[J].Feed and Feeding Practices in Aquaculture,2015: 53-109.
[13]王君明,崔瑛,王崢濤,等.超氧化物歧化酶參與肝損傷的研究進(jìn)展[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2011,17(7): 265-269.Wang Junming,Cui Ying,Wang Zhengtao,et al.Research progress of superoxide dismutase involved in liver injury[J].Chinese Journal of Experimental Traditional Medical Formulae,2011,17(7): 265-269.
[14]葉坤,王秋榮,席峰,等.飼料蛋白質(zhì)水平對(duì)曼氏無(wú)針烏賊生長(zhǎng)性能和飼料利用率的影響[J].集美大學(xué)學(xué)報(bào),2012,17(4): 247-252.Ye Kun,Wang Qiurong,Xi Feng,et al.Effects of the dietary protein levels on the growth and feed utilization of Sepiella maindroni[J].Journal of Jimei University,2012,17(4): 247-252.
[15]羅云云,林利民,王秋榮,等.曼氏無(wú)針烏賊人工配合飼料物理性狀的研究[J].集美大學(xué)學(xué)報(bào),2013,18(1): 14-17.Luo Yunyun,Lin Limin,Wang Qiurong,et al.Physical properties of artificial diets for juvenile Sepiella maindroni[J].Journal of Jimei University,2013,18(1):14-17.
[16]Yang S D,Liou C H,Liu F G.Effects of dietary protein level on growth performance,carcass composition and ammonia excretion in juvenile silver perch(Bidyanus bidyanus)[J].Aquaculture,2002,213(1/2/3/4): 363-372.
[17]Coutinho F,Peres H,Guerreiro I,et al.Dietary protein requirement of sharpsnout sea bream(Diplodus puntazzo,Cetti 1777)juveniles[J].Aquaculture,2012,356/357: 391-397.
[18]許貽斌,柯才煥,王德祥,等.方斑東風(fēng)螺對(duì)飼料蛋白質(zhì)需要量的研究[J].廈門大學(xué)學(xué)報(bào)(自然科學(xué)版),2006,45: 216-220.Xu Yibin,Ke Caihuan,Wang Dexiang,et al.Studies on protein requirement of Babylonia areolata link[J].Journal of Xiamen University,2006,45: 216-220.
[19]羅俊標(biāo),駱明飛,李勇.配合飼料中不同蛋白含量對(duì)方斑東風(fēng)螺稚螺生長(zhǎng)和體組成的影響[J].水產(chǎn)養(yǎng)殖,2014,35(1): 11-16.Luo Junbiao,Luo Mingfei,Li Yong.The effect of diet protein levels on growth performance and body composition of Babylonia areolata[J].Journal of Aquaculture,2014,35(1): 11-16.
[20]杜學(xué)星,蔣霞敏,姜小敏.管角螺幼螺配合飼料中蛋白質(zhì)適宜含量的研究[J].生物學(xué)雜志,2013,30(3):54-58.Du Xuexing,Jiang Xiamin,Jiang Xiaomin.Study on the appropriate protein content in compound feed of Hemifusus tuba larvae[J].Journal of Biology,2013,30(3): 54-58.
[21]Peter J B,Thomas H.Effect of dietary protein and energy level on growth and body composition of South African abalone,Haliotis midae[J].Aquaculture,1997,156: 195-210.
[22]Mukhopadhyay P K,Dehadrai P V,Banerjee S K.Studies on intestinal protease: Isolation,purification and effect of dietary proteins on alkaline protease activity of the air-breathing fish,Clarias batrachus(Linn)[J].Hydrobiologia,1978,57(1): 11-15.
[23]吳永恒,王秋月,馮政夫,等.飼料粗蛋白含量對(duì)刺參消化酶及消化道結(jié)構(gòu)的影響[J].海洋科學(xué),2012(1):36-41.Wu Yongheng,Wang Qiuyue,F(xiàn)eng Zhengfu,et al.Effect of crude protein content on feed digestion and digestive enzymes and structure of Apostichopus japonicus[J].Marine Science,2012(1): 36-41.
[24]Matthew S B,James O H.Growth and feed utilisation of juvenile greenlip abalone(Haliotis laevigata)in response to water temperatures and increasing dietary protein levels[J].Aquaculture,2015,436: 13-20.
[25]Malbrou C,Trausch G,Devos P,et al.Hepatic accumulation and effects of microcystin-LR on juvenile gold fish Carassius auratus L[J].Comparative Biochemisty and Physiology Part C,2003,135: 39-48.
[26]Hilmy A M,Shabana M B,Daabees A Y.Effects of cadmium toxicity upon the in vivo and in vitro activity of protein and five enzymes in blood serum and tissue homogenates of Mugil cephalus[J].Comparative Biochemistry and Physiology Part C,1985,81: 145-153.
[27]Asgerisson B,Hartemink R,Chlebowski J F.Alkaline phosphatase from Atlanticcod(Gadus morhua)Kinetic and structural properties which indicate adaptation to low temperatures[J].Comparative Biochemistry and Physiology,1995,110(B): 315-329.
[28]舒琥,黃家惠,李海燕,等.汞對(duì)羅非魚血細(xì)胞和肝臟堿性磷酸酶活性的影響[J].廣東農(nóng)業(yè)科學(xué),2011,13: 114-118.Su Hu,Huang Jiahui,Li Haiyan,et al.Effects of mercury on blood cells and alkaline phosphatase activity in liver of Tilapia niloticus[J].Guangdong Agricultural Sciences,2011,13: 114-118.
[29]Roche H,Bog G.Fish blood parameters as potential tool for identification of stress caused by environmental factors and chemical intoxication[J].Marine environmental research,1996,41: 27-33.
(本文編輯: 康亦兼)
Effects of dietary protein level on growth,muscle composition,and enzyme activity of Sepia lycidas during early growth period
WANG Yuan,JIANG Xia-min,LE Ke-xin,HAN Qin-xi,PENG Rui-bing,LIANG Jing-jing,WANG Peng-shuai
(School of Marine Science,Ningbo University,Ningbo 315211,China)
Received: Jun.2,2015
Key words:Sepia lycidas; protein level; growth; muscle composition; enzyme activities
Abstract:In this study,we determined the effects of the dietary protein level on the growth rate,muscle composition,and activities of digestive and liver enzymes of Sepia lycidas during the early growth period of the lifecycle.Six experimental diets were formulated,including fishmeal,soybean mean,and gelatine as protein sources,at various protein levels(31.5%,35.0%,38.5%,42.0%,45.5%,and 49.0%).Totally 540 Sepia lycidas with an average body weight of 3.99 ± 0.08 g were randomly assigned into these six dietary groups; this produced groups containing thirty fish with three replicates,providing a total of ninety fish per group.It was found that at the 45.91% protein level,Sepia lycidas achieved the optimum growth rate.At this protein level,the weight gain rate,special gain rate,and survival rate showed significant difference from all other protein groups(P<0.05),with the exception of the 49.72% group(P>0.05).Along with the increase of the dietary protein level,the feed conversion ratio initially decreased and then increased,with the lowest value found at the 45.91% protein level,which is significantly lower than those of the other groups(P<0.05),with the exception of the 49.72% group(P>0.05).The protein efficiency ratio significantly decreased as the dietary protein level increased(P<0.05).The condition factor and hepatosomatic index in muscles were not affected by the dietary protein level(P>0.05).As the protein level was increased up to 45.91%,the activities of protease,trypsin,lipase,and hepatic superoxide dismutase(SOD)increased and were significantly higher than those of other groups(P<0.05).Lipase and SOD continued to increase and showed the maximum activity at the 49.72%(P>0.05)protein level.Meanwhile,the intestinal amylase activity showed the opposite trend.Levels of hepatic glutamate pyruvate transaminase and glutamic oxaloacetic transaminase initially increased before reaching a plateau,with the highest values being observed at the 49.72% dietary protein level,which was significantly higher than those of other groups(P<0.05),with the exception of values at the 45.91% dietary protein level(P>0.05).The alkaline phosphatase activity was not found to be affected by the dietary protein level(P>0.05).Sepia lycidas achieved the highest crude protein content at the 45.91% dietary protein level,which was significantly higher than those at other levels(P<0.05),with the exception of the 45.91% level(P>0.05).Juvenile Sepia lycidas had the lowest crude lipid content in muscles.The dietary protein levels had no significant effect on the moisture and ash content in muscles(P>0.05).Results indicated that the 45.91% dietary protein level was sufficient to satisfy the growth requirements of Sepia lycidas during the early growth period.
中圖分類號(hào):S963.7
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1000-3096(2016)03-0087-08
doi:10.11759/hykx20150602002
收稿日期:2015-06-02; 修回日期: 2015-08-18
基金項(xiàng)目:國(guó)家農(nóng)轉(zhuǎn)化項(xiàng)目(2009GB2C220415); 浙江省種質(zhì)種苗項(xiàng)目(浙海漁計(jì)2013-82); 寧波市農(nóng)業(yè)重大專項(xiàng)(2014C11001)
作者簡(jiǎn)介:汪元(1992-),男,湖北潛江人,碩士研究生,主要從事烏賊繁殖培養(yǎng)研究,Email: wyuan639@163.com; 蔣霞敏,通信作者,教授,Email: jiangxiamin@nbu.edu.cn