劉文婷,馬田田,周春菊,藏瀟,李浪金,張寶軍,杜威,張煒麗,陳坤明
西北農(nóng)林科技大學(xué) 生命科學(xué)學(xué)院,陜西 楊凌 712100
?
禾本科植物單鋅指家族基因?qū)δ婢硲?yīng)答的研究進(jìn)展
劉文婷,馬田田,周春菊,藏瀟,李浪金,張寶軍,杜威,張煒麗,陳坤明
西北農(nóng)林科技大學(xué) 生命科學(xué)學(xué)院,陜西 楊凌 712100
劉文婷, 馬田田, 周春菊, 等. 禾本科植物單鋅指家族基因?qū)δ婢硲?yīng)答的研究進(jìn)展. 生物工程學(xué)報(bào), 2016, 32(5): 541–553.
Liu WT, Ma TT, Zhou CJ, et al. Advances in stress response of DNA binding with one finger transcription factor family genes in graminaceous plants. Chin J Biotech, 2016, 32(5): 541–553.
摘 要:轉(zhuǎn)錄調(diào)控是植物生長(zhǎng)發(fā)育、逆境反應(yīng)、信號(hào)轉(zhuǎn)導(dǎo)、抗病性等一系列基因表達(dá)的最主要調(diào)控形式,轉(zhuǎn)錄因子是參與基因轉(zhuǎn)錄水平調(diào)控過(guò)程的重要反式因子。單鋅指 (DNA binding with one finger,DOF) 轉(zhuǎn)錄因子是植物特有的一類(lèi)轉(zhuǎn)錄因子,包含一個(gè)C2-C2鋅指結(jié)構(gòu),其N(xiāo)-末端保守的DOF結(jié)構(gòu)域是能與DNA和蛋白相互作用的雙重功能域,在植物生長(zhǎng)發(fā)育過(guò)程中參與多種生物學(xué)過(guò)程。盡管已有研究報(bào)道DOF家族基因參與植物抗逆響應(yīng),但其在禾谷類(lèi)重要糧食作物中的作用機(jī)制還極不明確。本文通過(guò)對(duì)禾本科植物DOF家族基因系統(tǒng)進(jìn)化分析及組織表達(dá)和誘導(dǎo)表達(dá)分析,綜述了DOF家族基因參與植物脅迫應(yīng)答方面的相關(guān)研究進(jìn)展,為進(jìn)一步深入了解禾本科植物抗逆機(jī)制提供重要參考。
關(guān)鍵詞:轉(zhuǎn)錄因子,抗逆性,單鋅指家族基因,禾本科植物
Received: July 31, 2015; Accepted: October 15, 2015
Supported by: National Natural Science Fund of China (No. 31270299), Natural Science Fund of Shaanxi Province (No. K3320215182), Fundamental Research Funds for the Central Universities (No. Z1090201430).
國(guó)家自然科學(xué)基金 (No. 31270299),陜西省自然科學(xué)基金 (No. K3320215182),高校基本科研業(yè)務(wù)費(fèi)基金項(xiàng)目 (No. Z1090201430) 資助。
網(wǎng)絡(luò)出版時(shí)間:2015-11-11 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/11.1998.Q.20151111.1619.002.html
轉(zhuǎn)錄因子又稱(chēng)反式作用因子 (Trans-acting factor),是指能夠與目的基因啟動(dòng)子區(qū)域的順式作用元件 (Cis-acting element) 特異性結(jié)合并對(duì)轉(zhuǎn)錄有激活或抑制作用的DNA結(jié)合蛋白。典型的轉(zhuǎn)錄因子一般含有4個(gè)功能結(jié)構(gòu)域:即DNA結(jié)合區(qū)、轉(zhuǎn)錄調(diào)控區(qū) (包括激活和抑制域)、寡聚化位點(diǎn)及核定位信號(hào)區(qū)[1]。轉(zhuǎn)錄因子通過(guò)這些功能區(qū)域,在特定的時(shí)間進(jìn)入細(xì)胞核內(nèi)與啟動(dòng)子順式作用元件或與其他轉(zhuǎn)錄因子的功能區(qū)域相互作用,進(jìn)而調(diào)控基因的轉(zhuǎn)錄表達(dá)。轉(zhuǎn)錄因子根據(jù)其結(jié)構(gòu)特性可以分為不同的基因家族,這些基因家族又可依據(jù)保守域的數(shù)目、間隔以及保守域外的功能域分為不同的亞家族[1-2]。
植物在生長(zhǎng)發(fā)育過(guò)程中會(huì)經(jīng)歷各種生物及非生物脅迫,這些環(huán)境脅迫往往嚴(yán)重影響植物生長(zhǎng)發(fā)育。植物響應(yīng)環(huán)境脅迫的機(jī)制也極其復(fù)雜,涉及一系列在基因組、細(xì)胞和整體生理水平上的適應(yīng)性改變[3]。在植物抵御各種脅迫反應(yīng)中,轉(zhuǎn)錄因子所介導(dǎo)的基因表達(dá)調(diào)控網(wǎng)絡(luò)起著重要作用,被認(rèn)為是植物響應(yīng)和適應(yīng)逆境的關(guān)鍵途徑之一[4-6]。在逆境條件下,植物中的許多基因被誘導(dǎo)或阻遏[4-5,7-8]。許多轉(zhuǎn)錄因子家族,包括AM/ATAF1/CUC2 (NAC)、WRKY、MYB、鋅指蛋白Cys2(C2) His2(H2) type zinc finger protein (ZFP)、螺旋環(huán)螺旋basic helix–loop–helix (bHLH) 和堿性亮氨酸拉鏈basic leucine zipper (bZIP) families等,參與對(duì)激素和逆境脅迫的響應(yīng)[4-5,7-8]。這些轉(zhuǎn)錄因子與特定的順式作用元件結(jié)合,組成調(diào)控網(wǎng)絡(luò),特異地調(diào)控植物脅迫反應(yīng)中眾多抗性相關(guān)基因的表達(dá),從而提高植物對(duì)環(huán)境脅迫的適應(yīng)能力。
DOF (DNA binding with one finger) 轉(zhuǎn)錄因子是植物特有的一類(lèi)轉(zhuǎn)錄因子,因其具有一個(gè)單鋅指結(jié)構(gòu),因此被稱(chēng)為DOF。在植物生長(zhǎng)發(fā)育過(guò)程中參與多種生物學(xué)過(guò)程,如碳氮代謝[9-10]、光響應(yīng)[11-12]、花和花粉發(fā)育[13-15]、種子發(fā)育和萌發(fā)[16-18]、次生代謝[19-20]、保衛(wèi)細(xì)胞特異基因的調(diào)控[21]、維管發(fā)育和葉片極性等[22]。最近有研究表明,DOF轉(zhuǎn)錄因子也參與植物逆境響應(yīng)過(guò)程[23-26]。DOF家族成員眾多,例如禾本科植物水稻、小麥、高粱和甘蔗中,分別具有31、31、28和26個(gè)DOF轉(zhuǎn)錄因子[23,27-29]。四種禾本科植物中的116個(gè)Dof基因,依據(jù)其進(jìn)化關(guān)系可分為10個(gè)不同的亞族[29],表明DOF轉(zhuǎn)錄因子在禾本科植物生長(zhǎng)發(fā)育及脅迫響應(yīng)中可能具有重要作用。然而,現(xiàn)階段DOF家族基因參與植物尤其是禾谷類(lèi)糧食作物發(fā)育調(diào)控與脅迫響應(yīng)的機(jī)制還極不明確,亟待深入研究。
DOF蛋白在植物生長(zhǎng)發(fā)育過(guò)程中發(fā)揮著重要的作用,目前,對(duì)Dof基因的研究越來(lái)越多。DOF轉(zhuǎn)錄因子系統(tǒng)分類(lèi)對(duì)其結(jié)構(gòu)和功能多樣性的認(rèn)識(shí)具有十分重要的意義。禾本科植物是種子植物中最有經(jīng)濟(jì)價(jià)值的大科,其中水稻、小麥、玉米是世界三大糧食作物,甘蔗、高粱是重要的糖料和能源C4作物,它們作為人類(lèi)糧食和牲畜飼料的主要來(lái)源以及工業(yè)生產(chǎn)的原材料在中國(guó)被廣泛種植[30]。因此,對(duì)整個(gè)禾本科作物DOF家族基因進(jìn)行準(zhǔn)確鑒定與系統(tǒng)發(fā)育分析,具有重要的理論與現(xiàn)實(shí)意義。人們首次對(duì)整個(gè)DOF家族成員進(jìn)行系統(tǒng)分類(lèi),主要是根據(jù)擬南芥的全基因組序列預(yù)測(cè)的Dof基因及來(lái)自玉米、大麥、小麥、煙草和水稻等的部分Dof成員進(jìn)行的[31]。通過(guò)分析,人們對(duì)禾本科Dof基因家族的類(lèi)型、分布以及結(jié)構(gòu)特點(diǎn)有了較全面的認(rèn)識(shí)和理解。
二穗短柄草Brachypodium distachyon是第一個(gè)被測(cè)序的禾本科植物,已成為小麥、大麥等溫帶禾谷類(lèi)研究的模式作物[32]。有人從二穗短柄草 (http://blast.brachypodium.org/) 數(shù)據(jù)庫(kù)中搜集到了27個(gè)Dof轉(zhuǎn)錄因子家族基因,分布在不同的5條染色體上,根據(jù)系統(tǒng)進(jìn)化分析將BdDof基因歸為A、B、C和D四個(gè)亞家族,其中A和C亞家族包括22個(gè)成員,B和D亞家族分別包括3和2個(gè)成員[32]。
2003年,Lijavetzky等首次對(duì)水稻DOF家族成員進(jìn)行系統(tǒng)分類(lèi):收集到了30個(gè)水稻Dof基因序列,它們分布于水稻11條染色體中 (11號(hào)染色體除外),其中,1號(hào)和3號(hào)染色體包含的數(shù)目最多,各含有6個(gè)Dof基因;水稻Dof基因所編碼的蛋白質(zhì)長(zhǎng)度為175?551個(gè)氨基酸,DOF結(jié)構(gòu)域位于其N(xiāo)端的20?171氨基酸之間。將水稻DOF基因家族可分為A、B、C、D四個(gè)亞家族[27]。
江海洋等[33]收集到18個(gè)玉米Dof基因, 其編碼的蛋白長(zhǎng)度變化較大,從211?618氨基酸都有分布,說(shuō)明玉米Dof基因的起源和進(jìn)化模式復(fù)雜,功能多樣,可能參與多種代謝途徑的調(diào)控。另外,對(duì)玉米的Dof基因的結(jié)構(gòu)域和系統(tǒng)進(jìn)化樹(shù)分析表明:玉米Dof進(jìn)化樹(shù)具有3個(gè)明顯的分支,不同成員基因結(jié)構(gòu)相似性較高,家族基因成員相對(duì)水稻和擬南芥較少。水稻和擬南芥的進(jìn)化樹(shù)各有4個(gè)明顯的分支,家族基因成員較多,說(shuō)明Dof基因在不同植物中進(jìn)化模式有所不同,功能上也可能存在差異。
小麥基因組中至少存在31個(gè)Dof基因,分為4個(gè)亞家族[23]。TaDof1/TaDof10、TaDof8、TaDof9和TaDof14、TaDof30 屬于Ⅰ亞家族;TaDof2、TaDof3和TaDof6、TaDof12、TaDof15屬于Ⅱ亞家族;TaDof5、TaDof16、TaDof17、TaDof18、TaDof19、TaDof20、TaDof29、TaDof26 和TaDof31屬于Ⅲ亞家族;TaDof4、TaDof7、TaDof21、TaDof22、TaDof24、TaDof25、TaDof27 和 TaDof28屬于Ⅳ亞家族[23]。目前,已經(jīng)克隆了2個(gè)與玉米ZmDof1同源的相關(guān)小麥Dof (WPBF和TaDof1) 基因,分析了它們?cè)谄胀ㄐ←湶煌M織中的表達(dá)及其在低氮條件下,植株對(duì)N的耐受性[34]。但相對(duì)而言,由于小麥測(cè)序尚未完全完成,人們對(duì)其Dof家族基因結(jié)構(gòu)和功能尚缺乏較系統(tǒng)研究。
近年來(lái),我們實(shí)驗(yàn)室在植物抗逆性及其信號(hào)調(diào)控機(jī)制研究方面進(jìn)行了較為深入的研究,發(fā)現(xiàn)并鑒定了一批與水稻和小麥ROS代謝調(diào)控密切相關(guān)的基因和基因家族,包括DOF家族。其中水稻OsDof1 (LOC_Os02g15350.1) 的表達(dá)受干旱脅迫誘導(dǎo)上調(diào)表達(dá) (圖1),表明其可能參與植物干旱逆境響應(yīng)過(guò)程。
圖1 水稻OsDof1基因在干旱和osnox2突變體中的上調(diào)表達(dá)Fig. 1 The up-regulation expression of OsDof1 gene in wildtype rice and osnox2mutant under drought. (A) Expression of OsDof1 gene by Semi-quantitative RT-PCR. (B) Expression of OsDof1 gene by qRT-PCR.
為了進(jìn)一步明確DOF家族基因在水稻和小麥等禾谷類(lèi)作物中的功能及其逆境脅迫響應(yīng)機(jī)制,我們利用公共的基因組數(shù)據(jù)庫(kù)資源,收集了水稻、小麥和擬南芥3種植物DOF家族的99個(gè)氨基酸序列,系統(tǒng)發(fā)育分析和蛋白結(jié)構(gòu)域分析結(jié)果表明,3種植物的DOF家族成員聚為5個(gè)保守的亞家族即Subs. Ⅰ?Ⅴ (圖2),其中OsDof1屬于亞家族Ⅰ。與水稻OsDof1同源的兩個(gè)小麥Dof基因TaDof1和TaDof2,也屬于亞家族Ⅰ (圖2)。進(jìn)一步利用Genevestigator數(shù)據(jù)庫(kù)中小麥基因芯片數(shù)據(jù)分析表明,TaDof1和TaDof2 基因在小麥不同發(fā)育時(shí)期均有表達(dá)(圖3A),且表現(xiàn)出一定的組織表達(dá)特異性,TaDof1在穎片和旗葉中高量表達(dá)而TaDof2在根中高量表達(dá) (圖3B)。
另外,TaDof1和TaDof2基因的表達(dá)還受PEG脫水、干旱和鹽脅迫的影響 (圖4)。在PEG脫水處理下,TaDof1/2在小麥根和葉子中均明顯下調(diào)表達(dá),而在鹽脅迫下,其在地上部分強(qiáng)烈上調(diào)表達(dá);但在干旱脅迫下,兩基因的表達(dá)表現(xiàn)出一定的品種差異 (圖4)。這些結(jié)果初步說(shuō)明TaDof1/2基因是干旱、鹽等脅迫的應(yīng)答基因,但其如何參與植物逆境脅迫響應(yīng),是否與植物的抗逆性相關(guān),其表達(dá)調(diào)控機(jī)制如何等問(wèn)題,有待進(jìn)一步深入研究。
基因的組織表達(dá)譜通??梢园凳驹摶蛟谙鄳?yīng)表達(dá)部位的生物學(xué)功能[35]。EST數(shù)據(jù)及定量RT-PCR結(jié)果均表明:在禾本科植物水稻、玉米和小麥中,大部分Dof基因在各個(gè)組織或器官中都有不同程度的表達(dá),表明這些基因可能在植物生長(zhǎng)的各個(gè)發(fā)育時(shí)期都發(fā)揮功能。其中,部分基因特異器官和優(yōu)勢(shì)表達(dá)特征,可能在植物生長(zhǎng)發(fā)育的某一個(gè)或某幾個(gè)發(fā)育階段發(fā)揮特殊功能。
圖2 植物DOF家族基因系統(tǒng)發(fā)育分析Fig. 2 The phylogenetic tree constructed from a complete alignment of OsDof, AtDof and TaDof 99 proeins by NJ method.
圖3 利用芯片數(shù)據(jù)庫(kù)Genevestigator分析TaDof1/2基因在不同發(fā)育時(shí)期和組織中的差異表達(dá)Fig. 3 Differential expression profiles of TaDof1/2 genes in different development stage and tisssues with Genevestigator. (A) Expression of TaDof1/2 genes in different development stage. Note: Blue color represents Tadof1; Red color represents TaDof2. (B) Exprssion profiles of TaDof1/2 genes in different tissues. Note: color scale represents log2 expression values, white represents low level and red indicates high level of transcript abundances.
周淑芬等[36]利用RT-PCR技術(shù)分析了DOF家族基因在粳稻日本晴Oryza sativa L. Japonica植株幼苗、根、莖、葉、種子等組織中的表達(dá)情況發(fā)現(xiàn),在30個(gè)水稻Dof基因中,除了OsDof9在所檢測(cè)的組織中沒(méi)有表達(dá)外,其他Dof基因均能在1個(gè)或多個(gè)組織中差異表達(dá),其中22個(gè)基因在3個(gè)及以上的組織中表達(dá)。依據(jù)表達(dá)水平的高低,將水稻Dof基因家族成員分為低、中、高豐度表達(dá)3大類(lèi):低豐度表達(dá)基因的相對(duì)表達(dá)量為0–5,包括OsDof1、OsDof4、OsDof6、OsDof13、OsDof14、OsDof15、OsDof21、OsDof19、OsDof20、OsDof25和OsDof29共11個(gè)成員;中豐度表達(dá)基因的相對(duì)表達(dá)量為5–50,也有11個(gè)成員,包括OsDof3、OsDof5、OsDof8、OsDof12、OsDof16、OsDof17、OsDof18、OsDof22、OsDof23、OsDof26和OsDof30;高豐度表達(dá)基因7個(gè)成員,包括OsDof2、OsDof7、OsDof10、OsDof11、OsDof24、OsDof27和OsDof28。另外他們還發(fā)現(xiàn),在這些表達(dá)的Dof基因中,OsDof 9基因具有器官特異或優(yōu)勢(shì)表達(dá)特征,OsDof6和OsDof15在根中特異表達(dá),OsDof7在種子特異表達(dá),OsDof8在種子中優(yōu)勢(shì)表達(dá),OsDof2在苗中優(yōu)勢(shì)表達(dá),而OsDof11、OsDof24、OsDof27和OsDof30在葉中優(yōu)勢(shì)強(qiáng)表達(dá),顯示這些基因在水稻特定器官的發(fā)育與調(diào)節(jié)中發(fā)揮重要功能。然而,目前僅有兩個(gè)水稻特異或優(yōu)勢(shì)表達(dá)DOF基因的生物學(xué)功能得到較深入的研究,分別為種子特異表達(dá)基因OsDof7 (RPBF) 和葉中優(yōu)勢(shì)表達(dá)基因OsDof11。OsDof7可能通過(guò)赤霉素信號(hào)途徑在水稻種子萌發(fā)過(guò)程中發(fā)揮重要調(diào)控作用[37],而OsDof11在長(zhǎng)日照條件下通過(guò)調(diào)控長(zhǎng)日控制因子如Hd3a和OsMADS14的表達(dá)水平而促進(jìn)水稻開(kāi)花[38]。
圖4 利用芯片數(shù)據(jù)庫(kù)Genevestigator分析小麥TaDof1/2基因在不同非生物逆境條件下的差異表達(dá)Fig. 4 Differential expression profile of TaDof1/2 genes in different abiotic stress with Genevestigator. Note: color scale represents log2 expression values, green represents low level and red indicates high level of transcript abundances.
ZmDof1是首個(gè)從玉米中分離的DOF蛋白,定位于細(xì)胞核,可與磷酸烯醇式丙酮酸酶PEPC (Phosphoenolpyruvate carboxylase) 基因的啟動(dòng)子區(qū)域結(jié)合,提高植物的C4光合效率;而另一個(gè)DOF轉(zhuǎn)錄因子ZmDof2,可阻遏PEPC基因的表達(dá),降低C4光合效率[39]。ZmDof1和ZmDof2在玉米營(yíng)養(yǎng)器官包括根、莖、葉中都有表達(dá)[40],且ZmDof1能夠促進(jìn)碳同化和促進(jìn)植物在低氮環(huán)境條件下的生長(zhǎng)[41]。最近的研究發(fā)現(xiàn),ZmDof1基因不僅在營(yíng)養(yǎng)器官中表達(dá),而且也能在花和花粉器官中表達(dá),調(diào)控花粉特異基因的表達(dá),在光合作用和花粉發(fā)育中有雙重作用[15]。
如上所述,小麥的31個(gè)DOF家族基因可歸為4個(gè)亞家族。總體而言,屬于Ⅰ亞家族的TaDof1/TaDof10、TaDof8、TaDof9和TaDof14,除了TaDof9在胚乳中高表達(dá)外,其他基因均在根和葉中高量表達(dá)。而屬于Ⅱ亞家族的TaDof2、 TaDof3和TaDof6均在胚乳中表達(dá)量高,類(lèi)似于TaDof9在胚乳中的表達(dá)。TaDof2、TaDof3和TaDof6與WPBF同源[35],WPBF是一類(lèi)胚乳特異表達(dá)基因的正調(diào)控因子,其表達(dá)受到赤霉素(GA) 的誘導(dǎo)[42]。TaDof5、TaDof6、TaDof18、TaDof19和TaDof26屬于Ⅲ亞家族,這一亞家族的基因主要在營(yíng)養(yǎng)器官中高表達(dá),但是TaDof26在胚乳中表達(dá)量高。而屬于Ⅳ亞家族TaDof4、TaDof7、TaDof21、TaDof22、TaDof24、TaDof25 和TaDof27均在根和莖中高量表達(dá)。此外,TaDof1/2在根中表達(dá)量高,而TaDof15在穗中表達(dá)量高。然而,小麥Dof基因的具體生物學(xué)功能,尚缺乏深入研究。
自然界中的植物在整個(gè)生育期內(nèi)不可避免受到多種不良環(huán)境變化的影響,有時(shí)甚至遭受?chē)?yán)酷的環(huán)境脅迫。逆境脅迫主要包括生物脅迫和非生物脅迫兩大類(lèi)。在農(nóng)業(yè)生產(chǎn)中生物脅迫主要包括病害、蟲(chóng)害、雜草等,而非生物脅迫主要包括干旱、水澇、低溫、高溫、鹽堿等。這些逆境脅迫是影響和限制植物正常生長(zhǎng)發(fā)育、并造成作物嚴(yán)重減產(chǎn)的主要因素之一。許多轉(zhuǎn)錄因子在植物響應(yīng)干旱、激素、高鹽、病原等脅迫反應(yīng)中起重要作用?,F(xiàn)有研究表明,DOF蛋白作為轉(zhuǎn)錄激活子或抑制子可參與調(diào)節(jié)植物的光、激素及防御反應(yīng)等[43],表明其在植物逆境脅迫響應(yīng)中具有重要功能。對(duì)禾本科植物Dof基因的逆境響應(yīng)表達(dá)譜進(jìn)行分析,可為進(jìn)一步了解并明確Dof基因的功能及其對(duì)逆境脅迫響應(yīng)機(jī)制提供有價(jià)值的線索,為闡明Dof基因與作物抗逆性之間的關(guān)系及其分子調(diào)控機(jī)制提供參考。
研究表明,31個(gè)小麥Dof基因中,17個(gè)基因能夠響應(yīng)干旱脅迫。這些干旱響應(yīng)基因,除了TaDof14和TaDof15基因在干旱條件下的表達(dá)明顯上調(diào)外,其余15個(gè)下調(diào)[23],表明多數(shù)Dof基因可能負(fù)向調(diào)控植物的干旱適應(yīng)性。另外,基因芯片分析數(shù)據(jù)表明,在熱脅迫時(shí),TaDof5、TaDof17和TaDof19隨著脅迫時(shí)間的推移,其表達(dá)均明顯下調(diào);而在鹽脅迫處理下,只有TaDof1在莖中有明顯的上調(diào)表達(dá),其余的Dof基因的表達(dá)變化很小或者不表達(dá),表明TaDof1基因可能與抗鹽適應(yīng)性密切相關(guān)[23]。此外研究還發(fā)現(xiàn),TaDof1參與氮同化過(guò)程,能誘導(dǎo)氮同化相關(guān)基因如GS和GOGAT的表達(dá)[44]。
周淑芬等[36]在水稻中的研究表明,7個(gè)Dof基因,包括OsDof2、OsDof5、OsDof12、OsDof22、OsDof24和OsDof27,受ABA誘導(dǎo)上調(diào)表達(dá),而9個(gè)基因,包括OsDof1、OsDof3、OsDof8、OsDof11、OsDof13、OsDof17、OsDof18、OsDof20 和OsDof26,受ABA誘導(dǎo)下調(diào)表達(dá),其中OsDof2、OsDof3、OsDof11、OsDof12、OsDof27 和OsDof24基因受ABA影響強(qiáng)烈。在NaCl逆境下,8個(gè)基因的表達(dá)受到誘導(dǎo),10個(gè)基因表達(dá)受到抑制,其中OsDof27、OsDof11、OsDof2、OsDof24、OsDof5誘導(dǎo)表達(dá)豐度及上調(diào)倍數(shù)較高。在PEG處理中,30個(gè)基因中僅有OsDof11、OsDof2和OsDof10三個(gè)基因的表達(dá)受到顯著抑制,而多達(dá)20個(gè)基因的表達(dá)被明顯上調(diào),其中4個(gè)基因 (OsDof2、OsDof27、OsDof11和OsDof10) 上調(diào)倍數(shù)較高。另外,定量RT-PCR分析結(jié)果表明,水稻Dof基因在幼苗期正常生長(zhǎng)、暗處理、ABA、NaCl和PEG等脅迫條件下,除了2個(gè)基因 (OsDof9和OsDof25) 的表達(dá)不受任何脅迫的影響和1個(gè)基因 (OsDof10) 只受PEG調(diào)節(jié)外,其他27個(gè)基因的表達(dá)水平在2種及以上脅迫條件下均發(fā)生了不同程度的上調(diào)或下調(diào),暗示水稻Dof基因廣泛參與各種脅迫的應(yīng)答反應(yīng)及其逆境信號(hào)傳遞與調(diào)控,但其具體的作用機(jī)制尚不明確,需進(jìn)一步的深入研究。
轉(zhuǎn)錄因子不但參與植物對(duì)生物與非生物脅迫的應(yīng)答,同時(shí)還作為信號(hào)分子直接調(diào)控植物的生長(zhǎng)發(fā)育。轉(zhuǎn)錄因子往往通過(guò)影響下游一系列基因的表達(dá)來(lái)調(diào)控發(fā)育過(guò)程或響應(yīng)環(huán)境脅迫,因此往往是發(fā)育調(diào)控的“開(kāi)關(guān)分子”,相對(duì)于其他單基因的操縱,人為控制某些關(guān)鍵轉(zhuǎn)錄因子的表達(dá)更能影響植物在脅迫下的生長(zhǎng)和產(chǎn)量。隨著轉(zhuǎn)錄因子功能研究技術(shù)與方法的日益成熟,眾多具有重要生物學(xué)功能的轉(zhuǎn)錄因子將得到深入研究,這為通過(guò)操縱轉(zhuǎn)錄因子提高農(nóng)作物產(chǎn)量和脅迫抗性提供了可能。尤其是在氣候?yàn)?zāi)害頻繁威脅農(nóng)作物生產(chǎn)和產(chǎn)量的今天,通過(guò)轉(zhuǎn)錄因子對(duì)農(nóng)作物進(jìn)行改良,具有極其重要的現(xiàn)實(shí)意義。通過(guò)基因工程手段導(dǎo)入某些轉(zhuǎn)錄因子,有望通過(guò)觸發(fā)一系列信號(hào)傳遞過(guò)程,激發(fā)相關(guān)轉(zhuǎn)錄因子與相應(yīng)的順式作用元件的結(jié)合,從而啟動(dòng)特定基因的表達(dá)以對(duì)內(nèi)、外界信號(hào)作出適應(yīng)性反應(yīng)。
自從1993年首次從玉米中鑒定報(bào)道第一個(gè)植物DOF轉(zhuǎn)錄因子以來(lái)[45],許多的植物Dof基因被克隆鑒定或從基因組數(shù)據(jù)庫(kù)中預(yù)測(cè)出來(lái)。從單細(xì)胞藻類(lèi)到高等植物,都有Dof基因被鑒定的報(bào)道。在苔蘚植物小立碗蘚中預(yù)測(cè)有19個(gè)Dof基因,綠藻植物萊因衣藻中預(yù)測(cè)有1個(gè)Dof基因[46],蕨類(lèi)植物中預(yù)測(cè)有8個(gè)Dof基因。在高等植物中,裸子植物火炬松中被預(yù)測(cè)有8個(gè)Dof基因[47];擬南芥基因組中存在37個(gè) (其中AtDofl.9 隨后被證明是一個(gè)假基因)[24,31]、水稻中30個(gè)[27]、白楊中41個(gè)[48]、大麥中28個(gè)[47]、大豆中31個(gè)[16]、面包小麥中18個(gè)[23]、玉米中18個(gè)[33]和高粱中28[28];另外,在穇子[49]、海岸松[50]、甘薯[51]、馬鈴薯[52]、豌豆[53]和煙草[54]等植物中也鑒定到了多個(gè)Dof基因。
盡管已有研究表明DOF廣泛參與植物生長(zhǎng)發(fā)育調(diào)控過(guò)程,且部分Dof基因被克隆。比如,在煙草Nicotian tabacum cv. Xanthi中,有研究報(bào)道,BBF1 (屬于煙草中的Dof基因) 涉及到許多防御相關(guān)基因的轉(zhuǎn)錄調(diào)控,BBF1超表達(dá)能夠促進(jìn)了活性氧的產(chǎn)生和防御相關(guān)基因的表達(dá)[55]。在白菜Brassica rapa L. ssp. Pekinensis中,已鑒定到了76個(gè)Dof家族成員,其中9個(gè)BraDof基因進(jìn)行冷、熱、鹽和干旱非生物逆境脅迫處理,大部分基因在4種脅迫處理下均上調(diào)表達(dá),顯示BraDof轉(zhuǎn)錄因子通過(guò)復(fù)雜的作用機(jī)制在植物對(duì)非生物脅迫抗性中發(fā)揮重要作用[25]。在西紅柿中,與擬南芥Cycling DOF Factors (CDFs) 同源的西紅柿SlCDF1和SlCDF3主要參與光周期開(kāi)花響應(yīng)和非生物逆境抗性響應(yīng),與野生型植物相比,轉(zhuǎn)基因SlCDF1 和SlCDF3植株抗鹽和抗旱性提高[26]。在轉(zhuǎn)基因水稻中,超表達(dá)OsDof12促進(jìn)早期開(kāi)花[56];OsDof3基因參與赤霉素調(diào)控的目的基因的表達(dá)[37]。在大麥中,HvDof24、HvDof23和HvDof17 3個(gè)HvDof基因參與調(diào)控赤霉素和細(xì)胞分裂素之間的平衡[57-59]。這些研究證明,植物的DOF家族基因參與植物非生物逆境脅迫應(yīng)答過(guò)程,在植物抗逆中具有重要作用。隨著基因組學(xué)和生物信息學(xué)的發(fā)展及對(duì)DOF蛋白的深入研究,越來(lái)越多的DOF蛋白將會(huì)被發(fā)現(xiàn)、鑒定與克隆,這對(duì)闡釋DOF蛋白參與作物逆境脅迫響應(yīng)及在抗逆性中的作用和地位具有重要意義。
如前所述,目前人們對(duì)禾本科植物DOF蛋白參與植物生物與非生物逆境響應(yīng)的機(jī)制還極不清楚,相關(guān)研究大多仍局限在表達(dá)部位、亞細(xì)胞定位和脅迫誘導(dǎo)檢測(cè)等方面,對(duì)其參與逆境應(yīng)答的方式、作用機(jī)制及分子調(diào)控途徑等仍未闡明,人們對(duì)其功能的認(rèn)識(shí)依然十分有限。因此,禾本科糧食作物DOF家族基因的逆境應(yīng)答機(jī)制的闡明,將是未來(lái)研究的重要方向之一,具有重要科學(xué)與現(xiàn)實(shí)意義。
REFERENCES
[1] Liu LS, White MJ, MacRae TH. Transcription factors and their genes in higher plants: functional domains, evolution and regulation. Eur J Biochem, 1999, 262(2): 247–257.
[2] Cai XF, Zhang YY, Zhang JH, et al. Advances in research on function of the Dof gene family in plant. Plant Physiol J, 2013, 49(1): 1–12 (in Chinese).蔡曉鋒, 張余洋, 張俊紅, 等. 植物Dof基因家族功能研究進(jìn)展. 植物生理學(xué)報(bào), 2013, 49(1): 1–12.
[3] Arkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses, from genes to the field. J Exp Bot, 2012, 63(10): 3523–3543.
[4] Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Rev Plant Biol, 2006, 57, 781–803.
[5] Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. PlantPhysiol, 2009, 149: 88–95.
[6] Kodaira KS, Qin F, Phan Tran LS, et al. Arabidopsis Cys2/His2 zinc-fingerproteins AZF1 and AZF2 negatively regulate abscisic acidrepressive and auxin-inducible genes under abiotic stress conditions. Plant Physiol, 2011, 157(2): 742–756.
[7] Golldack D, Lüking I, Yang O. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep, 2011, 30(8): 1383–1391.
[8] Lindemose S, O’Shea C, Jensen MK, et al. Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci, 2013, 14(3): 5842–5878.
[9] de Dios Barajas-López J, Tezycka J, Travaglia CN, et al. Expression of the chloroplast thioredoxins f and m is linked to short-term changes in the sugar and thiol status in leaves of Pisum sativum. J Exp Bot, 2012, 63(13): 4887–4900.
[10] Yanagisawa S, Akiyama A, Kisaka H, et al. Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci USA, 2004, 101(20): 7833–7838.
[11] Imaizumi T, Schultz TF, Harmon FG, et al. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309(5732): 293–297.
[12] Sawa M, Nusinow DA, Kay SA, et al. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science, 2007, 318(5848): 261–265.
[13] Iwamoto M, Higo K, Takano M. Circadian clockand phytochrome-regulated Dof-like gene, Rdd1, is associated with grain size in rice. Plant Cell Environ, 2009, 32(5): 592–603.
[14] Li CL, Lü J, Zhao X, et al. TaCHP, a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance. Plant Physiol, 2010, 154(1): 211–221.
[15] Chen XY, Wang DX, Liu C, et al. Maize transcription factor Zmdof1 involves in the regulation of Zm401 gene. Plant Growth Regul, 2012, 6(3): 271–284.
[16] Wang HW, Zhang B, Hao YJ, et al. The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J, 2007, 52(4): 716–729.
[17] Mena M, Vicente-Carbajosa J, Schmidt RJ, et al. An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from the prolaminbox of a native B-hordein promoter in barley endosperm. Plant J, 1998, 16(1): 53–62.
[18] Dong GQ, Ni ZF, Yao YY, et al. Wheat Dof transcription factor WPBF interacts with TaQM and activates transcription of an alpha-gliadin gene during wheat seed development. Plant Mol Biol, 2007, 63(1): 73–84.
[19] Skirycz A, Jozefczuk S, Stobiecki M, et al. Transcription factor AtDOF4; 2 affects phenylpropanoid metabolism in Arabidopsis thaliana. New Phytol, 2007, 175(3): 425–438.
[20] Skirycz A, Reichelt M, Burow M, et al. DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J, 2006, 47(1): 10–24.
[21] Cominelli E, Galbiati M, Albertini A, et al. DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter. BMC Plant Biol, 2011, 11: 162.
[22] Kim HS, Kim SJ, Abbasi N, et al. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis. Plant J, 2010, 64(3): 524–535.
[23] Shaw LM, McIntyre CL, Gresshoff P M. Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation. Funct Integr Genomics, 2009, 9(4): 485–498.
[24] Malviya N, Gupta S, Singh VK, et al. Genome wide in silico characterization of Dof gene families of pigeonpea (Cajanus cajan (L) Millsp.). Mol Biol Rep, 2015, 42(2): 535–552.
[25] Ma J, Li MY, Wang F, et al. Genome-wide analysis of Dof family transcription factors and their responses to abiotic stresses in Chinese cabbage. BMC Genomics, 2015, 16: 33.
[26] Corrales AR, Nebauer SG, Carrillo L, et al. Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. J Exp Bot, 2014, 65(4): 995–1012.
[27] Lijavetzky D, Carbonero P, Vicente-Carbajosa J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis DOF gene families. BMC Evolutionary Biology, 2003, 3: 17.
[28] Kushwaha H, Gupta S, Singh VK, et al. Genome wide identification of Dof transcription factor gene family in Sorghum and its comparative phylogenetic analysis with rice and Arabidopsis. Mol Biol Rep, 2011, 38(8): 5037–5053.
[29] Gupta S, Kushwaha H, Singh VK, et al. Genome wide in silico characterization of Dof transcription factor gene family of sugarcane and its comparative phylogenetic analysis with Arabidopsis, rice and sorghum. Sugar Tech, 2014, 16(4): 372–384.
[30] Aragón C, Carvalho LC, González J, et al. Sugarcane (Saccharum sp. Hybrid) propagated in headspace renovating systems shows autotrophic characteristics and develops improved anti-oxidative response. Tropic Plant Biol, 2009, 2(1): 38–50.
[31] Yanagisawa S. The Dof family of plant transcription factors. Trends Plant Sci, 2002, 7(12): 555–560.
[32] The International Brachypodium Initiative: Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010, 463(11): 763–768.
[33] Jiang HY, Luo C, Jiang T, et al. Genome-wide analysis of Dof transcription factor family genes in maize. China J Bioinform, 2010, 8(3): 198–201 (in Chinese).江海洋, 駱晨, 江騰, 等. 玉米Dof轉(zhuǎn)錄因子家族基因的全基因組分析. 生物信息學(xué), 2010, 8(3): 198–201.
[34] Dong GQ. Study on function of transcription factor WPBF and TaDof1 in wheat[D]. Beijing: China Agricultural University, 2006 (in Chinese).董國(guó)清. 普通小麥轉(zhuǎn)錄因子WPBF和TaDof1功能研究[D]. 北京: 中國(guó)農(nóng)業(yè)大學(xué), 2006.
[35] Ravel C, Praud S, Murigneux A. Single-nucleotide polymorphism frequency in a set of selected lines of bread wheat ( Triticum aestivum L.) . Genome, 2006, 49(9): 1131–1139.
[36] Zhou SF, Yan JW, Liu HQ, et al. Transcriptional profiling analysis of OsDof gene family in various rice tissues and their expression characteristics under different stresses. Mol Plant Breed, 2012, 10(6): 635–643 (in Chinese).周淑芬, 顏靜宛, 劉華清, 等. 水稻DOF基因家族的組織表達(dá)譜及脅迫誘導(dǎo)表達(dá)特征分析. 分子植物育種, 2012, 10(6): 635–643.
[37] Washio K. Identification of Dof proteins with implication in the gibberellin-regulated expression of a peptidase gene following the germination of rice grains. Biochim Biophys Acta (BBA): Gene Struct Exp, 2001, 1520(1): 54–62.
[38] Li DJ, Yang CH, Li XB, et al. Functional characterization of rice OsDof12. Planta, 2009, 229(6): 1159–1169.
[39] Noguero M, Atif RM, Ochatt S, et al. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Sci, 2013, 209: 32–45.
[40] Yanagisawa S. Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J, 2000, 21(3): 281–288.
[41] Yanagisawa S. Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol, 2004, 45(4): 386–391.
[42] Vicent-Carbajosa J, Moose SP, Parsons RL, et al. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Aci USA, 1997, 94: 7685–7690.
[43] Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin PlantBiol, 2003, 6(5): 410–417.
[44] Kumar R, Taware R, Gaur VS, et al. Influence of nitrogen on the expression of TaDof1 transcription factor in wheat and its relationship with photosynthetic and ammonium assimilating efficiency. Mol Biol Rep, 2009, 36: 2209–2220.
[45] Yanagisawa S, Izui K. Molecular cloning of two DNAbinding proteins of maize that are structurally different but interact with the same sequence motif. J Biol Chem, 1993, 268:16028–16036.
[46] Shigyo M, Tabei N, Yoneyama T, et al. Evolutionary processes during the formation the plant-specific Dof transcription factor family. Plant Cell Physiol, 2007, 48(I): 179–185.
[47] Moreno-Risueno MA, Martinez M, Vicente-Carbajosa J, et al. The family of DOF transcription factors: from green unicellular algae to vascular plants. Mol Genet Genomics, 2007, 277: 379–390.
[48] Yang X, Tuskan GA, Cheng ZM. Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiol, 2006,142: 820–830.
[49] Gupta N, Gupta AK, Kumar A. Spatial distribution pattern analysis of Dofl transcription factor in different tissues of three Eleusine coracana genotypes differing in their grain colour, yield and photosynthetic efficiency. Mol Biol Rep, 2012, 39(3): 2089–2095.
[50] Rueda-Lopez M, Crespillo R, Canovas FM, et al. Differential regulation of two glutamine synthetase genes by a single Dof transcription factor. Plant J, 2008, 56(1): 73–85.
[51] Tanaka M, TakahataY, Nakayama H, et al. Altered carbohydrate metabolism in the storage roots of sweet potato plants overexpressing the zinc finger transcription factor. Planta, 2009, 230(4): 737–746. [52] Plesch G, Ehrhardt T, Mueller-Roeber B. Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. Plant J, 2001, 28(4): 455–464.
[53] Seki H, Nakamura N, Marutani M, et al. Molecular cloning of cDNA for a novel pea Dof protein, PsDofl, and its DNA-binding activity to the promoter of PsDofl gene. Plant Biotechnol, 2002, 19(4): 251–260.
[54] De Paolis A, Sabatini S, De Pascalis L, et al. A ro1B regulatory factor belongs to a new class of single zinc finger plant proteins. Plant J, 1996, 10(2): 215–223.
[55] Mayumi T, Md. A H, Shota O, Keiko N,et al. Overexpression of a tobacco Dof transcription factor BF1stimulates the transcription of the tobacco mosaic virus resistance gene N and defense-related responses including ROS production. Plant Biotechnol, 2013, 30, 37–46.
[56] Washio K. Functional dissections between GAMYB and Dof transcription factors suggest a role for protein-protein associations in the gibberellin-mediated expression of the RAmy1A gene in the rice aleurone. Plant Physiol, 2003, 133(2): 850–863.
[57] Diaz I, Vicente-Carbajosa J, Abraham Z, et.al. The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant J: Cell Mol Biol, 2002, 29(4): 453–464.
[58] Diaz I, Martinez M, Isabel-LaMoneda I, et al. The DOF protein, SAD, interacts with GAMYB in plant nuclei and activates transcription of endospermspecific genes during barley seed development. Plant J: Cell Mol Biol, 2005, 42(5): 652–662.
[59] Moreno-Risueno MA, Diaz I, Carrillo L, et al. The HvDOF19 transcription factor mediates the abscisic acid-dependent repression of hydrolase genes in germinating barley aleurone. Plant J: Cell Mol Biol, 2007, 51(3): 352–365.
(本文責(zé)編 陳宏宇)
Advances in stress response of DNA binding with one finger transcription factor family genes in graminaceous plants
Wenting Liu, Tiantian Ma, Chunju Zhou, Xiao Zang, Langjin Li, Baojun Zhang, Wei Du, Weili Zhang, and Kunming Chen
College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
Abstract:Transcription factor is a key trans-acting factor to mediate stress response by regulating gene expression. Plants have developed a series of mechanisms to modulate development, stress response, signaling and disease resistance attranscription level. DNA binding with one finger (DOF), containing one C2-C2zinc finger domain, is a special plant transcription factor. Specifically, the conserved domain at N-terminus of DOF has multiple functions, including interacting with DNA and protein, which could be involved in plant development and stress response. Although many DOF family genes are characterized in plant stress response, it is not clear if DOF genes have functions in cereal plants. In the present paper, the role of DOF family genes on cereal plants were discussed based on a comprehensive phylogenetic relationship analysis, expression profiles in different tissues and various environmental conditions. The results obtained here will provide an important reference for further understanding the mechanism of gramineous crops in stress resistance.
Keywords:transcription factor, stress resistance, DOF family genes, graminaceous plants
Corresponding author:Kunming Chen. Tel: +86-29-87092262; E-mail: kunmingchen@nwsuaf.edu.cn