王 超,孫春曉,喬洪金**,叢 超,3,王際英,張利民
(1.青島大學(xué)生命科學(xué)學(xué)院,山東青島 266071;2.山東省海洋資源與環(huán)境研究院,山東省海洋生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室,山東煙臺(tái) 264006;3.上海海洋大學(xué)水產(chǎn)與生命學(xué)院,上?!?01306)
不同營(yíng)養(yǎng)方式下小球藻生長(zhǎng)與光合作用的變化*
王超1,孫春曉2,喬洪金2**,叢超2,3,王際英2,張利民2
(1.青島大學(xué)生命科學(xué)學(xué)院,山東青島266071;2.山東省海洋資源與環(huán)境研究院,山東省海洋生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室,山東煙臺(tái)264006;3.上海海洋大學(xué)水產(chǎn)與生命學(xué)院,上海201306)
摘要:【目的】研究小球藻在自養(yǎng)條件下和以乙酸為碳源的異養(yǎng)、混養(yǎng)條件下生長(zhǎng)以及光合作用的變化?!痉椒ā恳孕∏蛟錍hlorella sorokiniana為研究對(duì)象,通過(guò)測(cè)定OD550和光系統(tǒng)Ⅱ(PSⅡ)葉綠素?zé)晒庋芯科渖L(zhǎng)情況和光合作用的變化。【結(jié)果】小球藻在初始接種濃度為5×106個(gè)/mL的條件下,異養(yǎng)和混養(yǎng)的生長(zhǎng)速度顯著快于自養(yǎng),到達(dá)穩(wěn)定期僅需1.5 d,而自養(yǎng)生長(zhǎng)需要9 d;葉綠素?zé)晒鈪?shù)自養(yǎng)大于混養(yǎng),而混養(yǎng)又大于異養(yǎng),有效光量子產(chǎn)量混養(yǎng)比自養(yǎng)降低21.5%,異養(yǎng)比自養(yǎng)降低98.1%;混養(yǎng)的Rubisco酶基因mRNA表達(dá)量最高,分別是異養(yǎng)和自養(yǎng)的3.2倍和1.8倍?!窘Y(jié)論】小球藻在混養(yǎng)條件下光系統(tǒng)僅受到微弱抑制,生長(zhǎng)速度和最高細(xì)胞密度均高于其它營(yíng)養(yǎng)方式,適合規(guī)?;囵B(yǎng)。
關(guān)鍵詞:小球藻自養(yǎng)異養(yǎng)混養(yǎng)光合作用
0引言
【研究意義】小球藻是一種可進(jìn)行多種營(yíng)養(yǎng)方式的單細(xì)胞綠藻,其營(yíng)養(yǎng)方式主要分為3種:一是利用光能和CO2進(jìn)行光合自養(yǎng)生長(zhǎng);二是在黑暗條件下利用有機(jī)碳源和O2進(jìn)行異養(yǎng)生長(zhǎng),類(lèi)似于微生物的發(fā)酵作用[1-2];三是在光照條件下利用有機(jī)碳源進(jìn)行混養(yǎng)生長(zhǎng),光合作用和發(fā)酵作用同時(shí)進(jìn)行[3-4]。由于營(yíng)養(yǎng)方式多樣,生長(zhǎng)快,光合效率高,且富含蛋白、脂肪和多糖等物質(zhì),小球藻在光合作用機(jī)理研究[5-6],抗生素與抗腫瘤等藥物的開(kāi)發(fā)[7-8],食品和水產(chǎn)飼料[8-9],高密度規(guī)?;囵B(yǎng)與生物柴油煉制[10-12],以及污水處理[13-14]等方面都有應(yīng)用。【前人研究進(jìn)展】乙酸是一種很多種類(lèi)的微藻都可以利用的碳源,可顯著促進(jìn)微藻在異養(yǎng)和混養(yǎng)條件下快速生長(zhǎng)。早在1960年,Pringsheim等[15]就報(bào)道乙酸能引起衣藻的不正常光合作用,并微弱地抑制小球藻的光合活性。接著,Eppley等[16]在衣藻中發(fā)現(xiàn)光合作用產(chǎn)生的ATP和還原力被直接用于同化乙酸。此后,許多學(xué)者以衣藻作為材料對(duì)乙酸的效應(yīng)進(jìn)行研究。一方面,乙酸抑制衣藻光反應(yīng)及其相關(guān)過(guò)程:減少氧氣釋放[17],抑制光捕獲蛋白的表達(dá)[18];另一方面,乙酸降低衣藻暗反應(yīng)的相關(guān)活性:降低碳酸酐酶活性[19],抑制Rubisco酶的表達(dá)[20]和光合固碳[17]。【本研究切入點(diǎn)】盡管在20世紀(jì)60年代乙酸被成功地應(yīng)用于研究小球藻的乙醛酸循環(huán)[21-23],但是之后有關(guān)此方面的研究報(bào)道很少。隨著小球藻規(guī)?;a(chǎn)的開(kāi)展,需進(jìn)一步研究小球藻在乙酸條件下的光合營(yíng)養(yǎng)機(jī)制?!緮M解決的關(guān)鍵問(wèn)題】以小球藻為材料,研究其在添加乙酸的條件下,自養(yǎng)、異養(yǎng)和混養(yǎng)條件下的生長(zhǎng)變化,以及光合作用光反應(yīng)和暗反應(yīng)的變化,旨在為小球藻的異養(yǎng)和混養(yǎng)規(guī)模化生產(chǎn)提供理論依據(jù)。
1材料與方法
1.1材料與培養(yǎng)條件
所用小球藻藻種(Chlorella sorokiniana)由中國(guó)科學(xué)院海洋研究所饋贈(zèng)。細(xì)胞培養(yǎng)在光照恒溫?fù)u床中,轉(zhuǎn)速150 r·min-1,溫度30℃,由冷熒光燈管提供的光照強(qiáng)度為80 μmol ·m-2·s-1,光暗比12 h∶12 h。自養(yǎng)(AT)培養(yǎng)采用BBM培養(yǎng)基[24],異養(yǎng)(HT)和混養(yǎng)(MT)培養(yǎng)則采用BBM培養(yǎng)基加上30 mmol/L的乙酸鈉,初始接種濃度為5×106個(gè)/mL,其中異養(yǎng)培養(yǎng)瓶以黑色塑料布包裹避光,每種處理均重復(fù)3次。
1.2細(xì)胞生長(zhǎng)的測(cè)定
微藻的生長(zhǎng)通過(guò)在紫外分光光度計(jì)上(Shimadzu UV-1800,日本)測(cè)量550 nm處吸光度的變化來(lái)反映。同時(shí)用血球計(jì)數(shù)板進(jìn)行細(xì)胞計(jì)數(shù),得到細(xì)胞個(gè)數(shù)與OD550的標(biāo)準(zhǔn)曲線,根據(jù)OD550值就可以轉(zhuǎn)換出每毫升細(xì)胞數(shù)。自養(yǎng)培養(yǎng)每天取樣一次,異養(yǎng)和混養(yǎng)培養(yǎng)每隔半天取樣一次。
1.3光系統(tǒng)Ⅱ(PSⅡ)葉綠素?zé)晒獾臏y(cè)定
使用具有調(diào)制熒光技術(shù)的Imaging-PAM系統(tǒng)(Heinz Walz,德國(guó))測(cè)量PSⅡ的原位葉綠素?zé)晒猓撓到y(tǒng)連接到一臺(tái)安裝有視窗軟件的PC獲取數(shù)據(jù)。使用慢速動(dòng)力學(xué)程序自動(dòng)誘導(dǎo)葉綠素?zé)晒狻7謩e取自養(yǎng)、異養(yǎng)和混養(yǎng)條件下對(duì)數(shù)生長(zhǎng)期中期的藻液,首先暗適應(yīng)15 min,然后使用飽和脈沖激發(fā)藻液,立即測(cè)量最小(F0)和最大(Fm)熒光值,計(jì)算出PSⅡ的最大光化學(xué)量子產(chǎn)量(Fv/Fm)。然后,光化光被打開(kāi),藻液開(kāi)始光合作用,光照樣品的最大熒光值(Fm′)被記錄。PSⅡ的有效光化學(xué)量子產(chǎn)量Y(Ⅱ)、相對(duì)電子傳遞速率rETR,非光化學(xué)淬滅NPQ按照下列公式計(jì)算:
Y(Ⅱ) = (Fm′-F)/Fm′,
(1)
rETR=Y(Ⅱ)·PAR·0.84·0.5,
(2)
NPQ=(Fm-Fm′)/Fm′。
(3)
其中,PAR是光合有效輻射,0.84是植物的經(jīng)驗(yàn)性吸光系數(shù),0.5是假設(shè)植物吸收的光能被兩個(gè)光系統(tǒng)均分。
1.4Rubisco酶mRNA表達(dá)量的測(cè)定
分別取自養(yǎng)、異養(yǎng)和混養(yǎng)條件下對(duì)數(shù)生長(zhǎng)期中期的藻液,離心收集后采用Trizol法提取總RNA,并反轉(zhuǎn)錄為cDNA。使用定量PCR,設(shè)計(jì)引物擴(kuò)增Rubisco大亞基上的片段(正向引物:5′-CAGCGGTAGCGGCAGAATC-3′;反向引物:5′-CTTCACCAGGAACAGGCTCG-3′)和內(nèi)參基因18S rRNA上的片段(正向引物:5′-CTGAGAAACGGCTACCACATC-3′;反向引物:5′-CCCCACCCGAAATCCAAC-3′),PCR體系包含:10 μmol·L-1正向和反向引物各0.5 μL、無(wú)菌雙蒸水10.5 μL和PCR mix (SYBR Green Realtime PCR Master Mix,大連寶生物公司) 12.5 μL,待測(cè)樣品cDNA 1 μL,每個(gè)樣品重復(fù)3次。反應(yīng)條件:94℃預(yù)變性3 min;94℃變性10 s,60℃退火延伸1 min,35個(gè)循環(huán),然后進(jìn)行55~95℃的熔解曲線分析,熒光波長(zhǎng)為490 nm,在icycler real-time quantity PCR儀(BIO-RAD公司,美國(guó))上進(jìn)行反應(yīng)。數(shù)據(jù)處理采用△△Ct相對(duì)定量法。
1.5數(shù)據(jù)處理
采用SPSS 11.0(SPSS Inc.,美國(guó))對(duì)數(shù)據(jù)進(jìn)行單因素方差分析(one-way ANOVAs),結(jié)果用平均數(shù)±標(biāo)準(zhǔn)差(M±SD)表示。若存在顯著差異,則應(yīng)用Duncan多重比較法確定組間差異,當(dāng)P < 0.05時(shí),表示差異顯著。
2結(jié)果與分析
2.1不同營(yíng)養(yǎng)方式下小球藻的生長(zhǎng)情況
經(jīng)測(cè)定,小球藻藻液OD550值與細(xì)胞個(gè)數(shù)的換算公式為y=2×107x(R2=0.99,y是每毫升細(xì)胞個(gè)數(shù),x是OD550值)。小球藻在自養(yǎng)條件下經(jīng)歷0.5 d的延滯期后進(jìn)入對(duì)數(shù)生長(zhǎng)期,9 d左右結(jié)束對(duì)數(shù)生長(zhǎng)期,然后進(jìn)入一個(gè)緩慢生長(zhǎng)的穩(wěn)定期;在異養(yǎng)和混養(yǎng)條件下,經(jīng)歷0.5 d的延滯期后迅速進(jìn)入對(duì)數(shù)生長(zhǎng)期,在1.5 d左右完成對(duì)數(shù)生長(zhǎng)進(jìn)入穩(wěn)定期,混養(yǎng)生長(zhǎng)基本維持細(xì)胞密度不變,而異養(yǎng)生長(zhǎng)出現(xiàn)細(xì)胞密度緩慢下降的現(xiàn)象(圖1)?;祓B(yǎng)生長(zhǎng)最高細(xì)胞密度可達(dá)(3.0±0.2)×107個(gè)/mL,顯著高于異養(yǎng)生長(zhǎng)的最高細(xì)胞密度(2.7±0.4)×107個(gè)/mL(P<0.05),混養(yǎng)和異養(yǎng)生長(zhǎng)的最高細(xì)胞密度又顯著高于自養(yǎng)生長(zhǎng)的最高細(xì)胞密度(2.3±0.2)×107個(gè)/mL(P<0.05)。
2.2不同營(yíng)養(yǎng)方式下小球藻的葉綠素?zé)晒鈪?shù)
如表1所示,小球藻在自養(yǎng)條件下的各項(xiàng)葉綠素?zé)晒鈪?shù)均顯著高于異養(yǎng)和混養(yǎng)條件(P<0.05),而混養(yǎng)條件的各項(xiàng)參數(shù)又顯著高于異養(yǎng)條件(P<0.05)。在異養(yǎng)條件下,F(xiàn)v/Fm、Y(Ⅱ)和rETR值均不到自養(yǎng)和混養(yǎng)條件下的10%,NPQ值分別是自養(yǎng)和混養(yǎng)條件下的21.7%和36.0%?;祓B(yǎng)條件下Fv/Fm、Y(Ⅱ)、rETR和NPQ分別比自養(yǎng)條件下下降13.2%、21.5%、21.9%和40.0%。
圖1不同營(yíng)養(yǎng)方式下小球藻的生長(zhǎng)曲線
Fig.1Growth curves of Chlorella sorokiniana under different trophic modes
2.3不同營(yíng)養(yǎng)方式下小球藻Rubisco酶的mRNA表達(dá)量
如圖2所示,以Rubisco酶大亞基基因(rbcL)mRNA的表達(dá)量代表Rubisco酶的表達(dá)量,小球藻在混養(yǎng)條件下Rubisco酶的表達(dá)量最高,分別是異養(yǎng)和自養(yǎng)條件下的3.2倍和1.8倍,而自養(yǎng)條件下的表達(dá)量是異養(yǎng)條件的1.8倍,三者之間的差異顯著(P<0.05)。
以HT組為參照進(jìn)行歸一化處理,標(biāo)注不同英文字母的組具有顯著性差異(P<0.05)
Transcript level of rbcL in AT and MT is normalized to that in HT.Values with different letters are significantly different (P<0.05)
圖2不同營(yíng)養(yǎng)方式下小球藻rbcL基因mRNA的相對(duì)表達(dá)量
Fig.2Messenger RNA expression of rbcL gene under different trophic modes in Chlorella sorokiniana
表1不同營(yíng)養(yǎng)方式下小球藻葉綠素?zé)晒鈪?shù)的比較
Table 1Comparison of chlorophyll fluorescence parameters under different trophic modes in Chlorella sorokiniana
樣品SampleFv/FmY(Ⅱ)rETRNPQAT0.713±0.003a0.538±0.009a18.000±0.265a0.060±0.012aHT0.061±0.010b0.010±0.004b0.250±0.212b0.013±0.004bMT0.619±0.005c0.422±0.008c14.067±0.252c0.036±0.003c
注:同一列中上標(biāo)英文字母不同的組與同組數(shù)據(jù)相比差異顯著,P<0.05
Note:Values within the same column with different letters are significantly different (P<0.05)
3討論
小球藻在無(wú)光和有光條件下均可以利用乙酸進(jìn)行生長(zhǎng),并且生長(zhǎng)速度顯著快于自養(yǎng)生長(zhǎng),對(duì)數(shù)生長(zhǎng)期顯著縮短,據(jù)報(bào)道,混養(yǎng)條件下的細(xì)胞生長(zhǎng)速率可以大約看作是自養(yǎng)和異養(yǎng)生長(zhǎng)速率之和[3,25-26],這與文章的結(jié)果基本一致(圖1)。許多研究者證明乙酸主要是經(jīng)過(guò)乙醛酸循環(huán)被利用[21,23,27],而乙醛酸循環(huán)是獨(dú)立于光合作用的,因而乙酸可以在黑暗條件下被小球藻利用。
小球藻在異養(yǎng)條件下表現(xiàn)出極低的光合效率(表1,圖2),表明其光系統(tǒng)已經(jīng)大部分失去活性,暗反應(yīng)的關(guān)鍵酶Rubisco酶也僅維持本底表達(dá)量,在此條件下小球藻完全依賴(lài)發(fā)酵作用產(chǎn)生的能量維持生長(zhǎng)和分裂,表現(xiàn)出類(lèi)似于真菌的營(yíng)養(yǎng)特性。而在混養(yǎng)條件下,其光合效率與自養(yǎng)條件相比也受到一定的抑制(表1),其中代表潛在最大光合作用效率的Fv/Fm以及實(shí)際光合作用效率的Y(Ⅱ)均低于自養(yǎng)條件,這與Pringsheim等[15]、Heifetz等[17]、Kroymann等[28]的報(bào)道一致。然而,混養(yǎng)條件下的Rubisco酶的mRNA表達(dá)量要顯著高于自養(yǎng)條件,表明至少在轉(zhuǎn)錄水平上Rubisco酶未受到抑制。但是mRNA表達(dá)量不能代表最終蛋白表達(dá)量,因此需要進(jìn)一步研究Rubisco酶活性以確定暗反應(yīng)是否也受到混養(yǎng)條件的抑制。
4結(jié)論
小球藻在乙酸為碳源的異養(yǎng)和混養(yǎng)條件下均能極快生長(zhǎng),僅1.5 d就可以到達(dá)穩(wěn)定期,但異養(yǎng)條件下光系統(tǒng)已大部分失去活性,而混養(yǎng)生長(zhǎng)光系統(tǒng)僅受到微弱抑制,既保留異養(yǎng)發(fā)酵生長(zhǎng)的特性,又可以進(jìn)行自養(yǎng)條件下的光合作用,因此生長(zhǎng)速度和最終的生物量均高于其它營(yíng)養(yǎng)方式,適合規(guī)模化放大培養(yǎng)。
參考文獻(xiàn):
[1]GRIFFITHS D A,GRIFFITHS D J.The fine structure of autotrophic and heterotrophic cells of Chlorella vulgaris (Emerson strain)[J].Plant Cell and Physiology,1969,10(1):11-19.
[2]WALTER J,RICKERT M,AACH H.The role of glucose on the enzymes involved in the release of mature spores of Chlorella fusca[J].Physiologia Plantarum,1987,71(2):219-223.
[3]ENDO H,SANSAWA H,NAKAJIMA K.Studies on
Chlorella regularis,heterotrophic fast-growing strain Ⅱ.Mixotrophic growth in relation to light-intensity and acetate concentration[J].Plant and Cell Physiology,1977,18(1):199-205.
[4]吳慶余,匡梅,GRANT N G.小球藻兩個(gè)品系在自養(yǎng)與異養(yǎng)條件下的生長(zhǎng)、能荷與色素差異[J].植物生理學(xué)報(bào),1992,18(3): 293-299.
WU Q Y,KUANG M,GRANT N G.Growth,AEC and pigments of Chlorella protothecoides in two strains under the autotrohic and heterotrophic conditions[J].Acta Phytophysiologica Sinica,1992,18(3):293-299.
[5]BASSHAM J A,CALVIN M.The Path of Carbon in
Photosynthesis [M].Berkeley:Interscience Publishers,1960:1-66.
[6]LEY A,MAUZERALL D.Absolute absorption crossse-
ctions for photosystem Ⅱ and the minimum quantum requirement for photosynthesis in Chlorella vulgaris[J].BBA-Bioenergetics,1982,680(1):95-106.
[7]江紅霞,鄭怡.微藻的藥用、保健價(jià)值及研究開(kāi)發(fā)現(xiàn)狀[J].亞熱帶植物科學(xué),2003,32(1):68-72.
JIANG H X,ZHENG Y.A review of pharmaceutical and health care value of microalgae and their current status of research and development [J].Subtropical Plant Science,2003,32(1):68-72.
[8]BOROWITZKA M A.Microalgae source of pharmaceuticals and other biologically active compounds[J].Journal of Applied Phycology,1995,7(1):3-15.
[9]PULZ O,GROSS W.Valuable products from biotechnology of microalgae[J].Applied Microbiology and Biotechnology,2004,65(6):635-648.
[10]賀立燕,韓笑天,俞志明.基于熵權(quán)的產(chǎn)生物柴油微藻開(kāi)發(fā)潛力評(píng)價(jià)[J].海洋與湖沼,2015,46(2):305-310.
HE L Y,HAN X T,YU Z M.Evaluation of microalgae potential for biodiesel production in entropy weight theory[J].Oceanologia et Limnologia Sinica,2015,46(2):305-310.
[11]RODOLFI L,ZITTELLI G C,BASSI N,et al.Microalgae for oil:Strain selection,induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor[J].Biotechnology and Bioengineering,2009,102(1):100-112.
[12]尹繼龍,唐小紅,鄭洪立,等.不同光質(zhì)對(duì)小球藻光自養(yǎng)培養(yǎng)積累油脂的影響[J].生物加工過(guò)程,2014,12(05):62-68.DOI:10.3969/j.issn.1672-3678.2014.05.011.
YIN J L,TANG X H,ZHENG H L,et al.Effect of light wavelengths on lipid accumulation of Chlorella vulgaris in photoautotrophic culture[J].Chinese Journal of Bioprocess Engineering,2014,12(05):62-68.DOI:10.3969/j.issn.1672-3678.2014.05.011.
[13]胡沅勝,劉斌,郝曉地,等.微藻處理污水中的絮凝分離/采收研究現(xiàn)狀與展望[J].環(huán)境科學(xué)學(xué)報(bào),2015,35(1):12-29.
HU Y S,LIU B,HAO X D,et al.Current status and outlook of microalgae flocculation in wastewater treatment[J].Acta Scientiae Circumstantiae,2015,35(1):12-29.
[14]ASLAN S,KAPDAN I K.Batch kinetics of nitrogen
and phosphorus removal from synthetic wastewater by algae[J].Ecological Engineering,2006,28(1):64-70.
[15]PRINGSHEIM E G,WIESSENER W.Photo-assimilation of acetate by green organisms [J].Nature,1960,188:919-921.
[16]EPPLEY R W,MACIAS F M.Role of the alga Chlam-
ydomonas mundana in anaerobic waste stabilization lagoons [J].Limnology and Oceanography,1963,8(4):411-416.
[17]HEIFETZ P B,FORSTER B,OSMOND C B,et al.
Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses[J].Plant Physiology,2000,122(4):1439-1445.
[18]KINDLE K L.Expression of a gene for a light-harvesting chlorophyll-a-binding chlorophyll-b-binding protein in Chlamydomonas reinhardtii:Effect of light and acetate[J].Plant Molecular Biology,1987,9(6):547-563.
[19]FETT J P,COLEMAN J R.Regulation of periplasmic carbonic-anhydrase expression in Chlamydomonas reinhardtii by acetate and pH [J].Plant Physiology,1994,106(1):103-108.
[20]GOLDSCHMIDT-CLERMONT M.The two genes for the small subunit of RuBP Carboxylase/oxygenase are closely linked in Chlamydomonas reinhardtii[J].Plant Molecular Biology,1986,6(1):13-21.
[21]SYRETT P J,MERRETT M J,BOCKS S M.Enzymes of glyoxylate cycle in Chlorella vulgaris [J].Journal of Experimental Botany,1963,14(2):249-264.
[22]SYRETT P J.Kinetics of isocitrate lyase formation in Chlorella-Evidence for promotion of enzyme synthesis by photophosphorylation[J].Journal of Experimental Botany,1966,17(53):641-654.
[23]GOULDING K,MERRETT M.The role of glycollic
acid in the photoassimilation of acetate by Chlorella pyrenoidosa [J].Journal of Experimental Botany,1967,18(4):620-630.
[24]BISCHOFF H W,BOLD H C.Phycological Studies
Ⅳ.Some Soil Algae from Enchanted Rock and Related Algal Species[M].Austin:University of Texas Publication,1963.
[25]OGAWA T,AIBA S.Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus [J].Biotechnology and Bioengineering,1981,23 (5):1121-1132.
[26]MARQUEZ F J,SASAKI K,KAKIZONO T,et al.
Growth-characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions [J].Journal of Fermentation and Bioengineering,1993,76(5):408-410.
[27]LALIBERTéG,NOüE J.Auto-,hetero- and mixotrophic growth of Chlamydomonas humicola (Chlorophyceae) on acetate [J].Journal of Phycology,1993,29(5):612-620.
[28]KROYMANN J,SCHNEIDER W,ZETSCHE K.Opposite regulation of the copy number and the expression of plastid and mitochondrial genes by light and acetate in the green flagellate Chlorogonium[J].Plant Physiology,1995,108(4):1641-1646.
(責(zé)任編輯:米慧芝)
Variation of Growth and Photosynthesis in Chlorella sorokiniana Under Different Trophic Modes
WANG Chao1,SUN Chunxiao2,QIAO Hongjin2,CONG Chao2,3,WANG Jiying2,ZHANG Limin2
(1.College of Life Science,Qingdao University,Qingdao,Shandong,266071,China;2.Key Laboratory of Marine Ecological Restoration,Shandong Marine Resource and Environment Research Institute,Yantai,Shandong,264006,China;3.College of Fisheries and Life Science,Shanghai Ocean University,Shanghai,201306,China)
Abstract:【Objective】The variation of growth and photosynthesis of microalgae was studied and compared under autotrophic condition and hetero- and mixotrophic conditions with acetate as carbon source.【Methods】With Chlorella sorokiniana as material,the changes of growth and photosynthesis were reflected by determining the OD550and the chlorophyll fluorescence from photosystem Ⅱ(PS Ⅱ).【Results】The growth rates of hetero- and mixotrophic conditions were significantly higher than that of autotrophic condition.It was only 1.5 d for cells reaching stationary phase under hetero- and mixotrophic conditions,but 9 d for cells under autotrophic condition.The parameters of chlorophyll fluorescence under autotrophic condition were significantly higher than that under hetero- and mixotrophic conditions,and that under mixotrophic condition were significantly higher than that under heterotrophic condition.The effective PS Ⅱ quantum yield under mixo- and heterotrophic condition was reduced 21.5% and 98.1%,respectively,compared with that of autotrophic condition.The mRNA expression of Rubisco gene under mixotrophic condition were highest,and 3.2-fold and 1.8-fold of that under hetero- and autotrophic conditions,respectively.【Conclusion】The photosystems of Chlorella under mixotrophic condition only slightly inhibited.In addition,the growth rate and maximal cell density under mixotrophic condition were higher than other conditions.Therefore,mixotrophic growth mode is suitable for large-scale cultivation.
Key words:Chlorella sorokiniana,autotrophic,heterotrophic,mixotrophic,photosynthesis
收稿日期:2016-02-21
作者簡(jiǎn)介:王超(1982-),女,講師,主要從事藻類(lèi)生物技術(shù)研究。
中圖分類(lèi)號(hào):Q945.1
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1005-9164(2016)02-0115-05
修回日期:2016-04-05
*山東省優(yōu)秀中青年科學(xué)家科研獎(jiǎng)勵(lì)基金項(xiàng)目(BS2013HZ018),國(guó)家自然科學(xué)基金青年基金項(xiàng)目(31201973),海洋生物產(chǎn)業(yè)——水生動(dòng)物營(yíng)養(yǎng)與飼料研發(fā)創(chuàng)新示范平臺(tái)項(xiàng)目(201303003)和山東省科技發(fā)展計(jì)劃項(xiàng)目(2014GHY115006)資助。
**通訊作者:?jiǎn)毯榻?1983-),男,副研究員,碩士生導(dǎo)師,主要從事藻類(lèi)生物技術(shù)研究,E-mail:hongjinqiao@hotmail.com。
廣西科學(xué)Guangxi Sciences 2016,23(2):115~119
網(wǎng)絡(luò)優(yōu)先數(shù)字出版時(shí)間:2016-05-12
網(wǎng)絡(luò)優(yōu)先數(shù)字出版地址:http://www.cnki.net/kcms/detail/45.1206.G3.20160512.0904.002.html