龍 城 陳 磊 王 晶 武書(shū)庚 張海軍 岳洪源 齊廣海
(中國(guó)農(nóng)業(yè)科學(xué)院飼料研究所,農(nóng)業(yè)部飼料生物技術(shù)重點(diǎn)開(kāi)放實(shí)驗(yàn)室,北京100081)
飼糧雙低菜籽粕水平對(duì)含黃素單氧化酶3基因型產(chǎn)蛋雞生產(chǎn)性能、蛋品質(zhì)和蛋黃三甲胺含量的影響
龍城陳磊王晶武書(shū)庚*張海軍岳洪源齊廣海*
(中國(guó)農(nóng)業(yè)科學(xué)院飼料研究所,農(nóng)業(yè)部飼料生物技術(shù)重點(diǎn)開(kāi)放實(shí)驗(yàn)室,北京100081)
摘要:本試驗(yàn)研究了飼糧雙低菜籽粕水平對(duì)含黃素單氧化酶3(FMO3)基因型產(chǎn)蛋雞生產(chǎn)性能、蛋品質(zhì)和蛋黃三甲胺(TMA)含量的影響。選用已知FMO3基因型褐殼產(chǎn)蛋雞336只,其中雜合型(AT)、突變型(TT)基因型各144只,每個(gè)基因型隨機(jī)分為4組,每組6個(gè)重復(fù),每個(gè)重復(fù)6只雞;野生型(AA)基因型48只,隨機(jī)分為4組,每組6個(gè)重復(fù),每個(gè)重復(fù)2只雞。各組分別飼喂雙低菜籽粕添加水平為0(對(duì)照)、7%、14%和21%的試驗(yàn)飼糧,試驗(yàn)期6周。結(jié)果表明:1)飼糧雙低菜籽粕水平、FMO3基因型及其交互作用顯著影響產(chǎn)蛋雞的平均日采食量(P<0.05),但對(duì)平均蛋重、料蛋比無(wú)顯著影響(P>0.05);14%和21%雙低菜籽粕水平組平均日采食量顯著低于對(duì)照組(P<0.05);AA基因型組平均日采食量和產(chǎn)蛋率顯著低于其他基因型組(P<0.05)。2)飼糧雙低菜籽粕水平、FMO3基因型及其交互作用對(duì)產(chǎn)蛋雞的蛋形指數(shù)、蛋殼強(qiáng)度、蛋白高度和哈氏單位均無(wú)顯著影響(P>0.05);但雙低菜籽粕水平顯著影響了蛋黃顏色值(P<0.05),21%雙低菜籽粕水平組蛋黃顏色值顯著小于其他組(P<0.05)。3)飼糧雙低菜籽粕水平、FMO3基因型及其交互作用顯著影響產(chǎn)蛋雞的蛋黃TMA含量(P<0.05);蛋黃TMA含量隨飼糧中雙低菜籽粕添加水平的增加而增加,21%雙低菜籽粕水平組蛋黃TMA含量顯著高于其他組(P<0.05);TT基因型組蛋黃TMA含量顯著高于AA和AT基因型組(P<0.05)。根據(jù)產(chǎn)蛋雞蛋黃TMA含量(Y)和飼糧雙低菜籽粕水平(X)的關(guān)系得出回歸方程:Y=25.457 0X+2.852 0(R2=0.976 5)(TT基因型);Y=7.685 7X+1.943 0(R2=0.952 5)(AA基因型),若使蛋黃TMA含量低于嗅覺(jué)閾值,對(duì)TT基因型產(chǎn)蛋雞而言,飼糧雙低菜籽粕水平應(yīng)低于4.62%,對(duì)AA基因型產(chǎn)蛋雞而言,飼糧雙低菜籽粕水平應(yīng)低于26.76%。結(jié)果提示,當(dāng)飼喂產(chǎn)蛋雞含雙低菜籽粕飼糧時(shí),如TT基因型產(chǎn)蛋雞不產(chǎn)魚(yú)腥味雞蛋,AA和AT基因型產(chǎn)蛋雞即不會(huì)產(chǎn)魚(yú)腥味雞蛋;飼糧雙低菜籽粕水平低于4.62%時(shí),TT基因型產(chǎn)蛋雞不會(huì)產(chǎn)生魚(yú)腥味雞蛋,并且對(duì)生產(chǎn)性能和蛋品質(zhì)無(wú)不良影響。
關(guān)鍵詞:雙低菜籽粕;產(chǎn)蛋雞;生產(chǎn)性能;三甲胺
雙低菜籽粕極易誘發(fā)產(chǎn)生魚(yú)腥味雞蛋,因其所含的芥子堿是形成魚(yú)腥味的前體物質(zhì)。隨著我國(guó)雙低化菜籽品種的選育成功和大力推廣,雙低菜籽粕中的有害成分異硫氰酸酯和唑烷硫酮已經(jīng)大大降低,芥子堿已成為目前影響雙低菜籽粕飼用價(jià)值的重要抗?fàn)I養(yǎng)因子[1]。雞蛋魚(yú)腥味問(wèn)題限制了雙低菜籽粕在蛋雞飼料中的應(yīng)用,所以降低魚(yú)腥味雞蛋的檢出率對(duì)于改善雞蛋風(fēng)味、合理使用雙低菜籽粕具有重要的理論和現(xiàn)實(shí)意義。芥子堿是膽堿與芥酸形成的膽堿酯,在盲腸微生物作用下水解為膽堿,繼而產(chǎn)生三甲胺(trimethylamine,TMA)[2-3]。魚(yú)腥味綜合征系因產(chǎn)蛋雞含黃素單氧化酶3(flavin-containing monooxygenases 3,FMO3)基因突變導(dǎo)致雞體無(wú)法正常代謝TMA,從而使得TMA逐漸累積并沉積于雞蛋中,散發(fā)出難聞的類似魚(yú)腥味的氣味,且多發(fā)生于褐殼蛋雞品系[3-5]。Honkatukia等[6]檢測(cè)出雞FMO3基因有17個(gè)多態(tài)位點(diǎn),只有位于編碼區(qū)第984個(gè)堿基位置的突變(由腺嘌呤A突變成胸腺嘧啶T)與蛋雞魚(yú)腥味綜合征顯著相關(guān)。該位點(diǎn)突變導(dǎo)致FMO3基因第329個(gè)氨基酸由蘇氨酸突變?yōu)榻z氨酸。針對(duì)T329S位點(diǎn)的變化,可將個(gè)體分為3種基因型:雜合型(AT)、突變型(TT)、野生型(AA)。相關(guān)研究多集中在遺傳突變、飼糧TMA前體物質(zhì)水平對(duì)雞蛋TMA含量的影響和機(jī)制,然而關(guān)于生產(chǎn)中雞蛋風(fēng)味問(wèn)題和雙低菜籽粕使用方面的報(bào)道卻較少。本試驗(yàn)研究了飼糧中添加不同水平雙低菜籽粕時(shí),3種FMO3基因型產(chǎn)蛋雞的生產(chǎn)性能、蛋品質(zhì)和蛋黃TMA的沉積,并探討了飼糧雙低菜籽粕添加水平與蛋黃TMA含量之間的關(guān)系,旨在為雙低菜籽粕的合理應(yīng)用和雞蛋風(fēng)味的研究提供參考。
1材料與方法
1.1試驗(yàn)動(dòng)物
于中國(guó)農(nóng)業(yè)科學(xué)院飼料研究所平谷蛋雞試驗(yàn)基地,選擇健康的47周齡京紅產(chǎn)蛋雞,雞冠采血,提取DNA。采用課題組建立的聚合酶鏈?zhǔn)椒磻?yīng)-限制性片段長(zhǎng)度多態(tài)性(PCR-RFLP)分析方法檢測(cè)產(chǎn)蛋雞FMO3基因型[7]。試驗(yàn)共檢測(cè)了3 018只產(chǎn)蛋雞基因型,其中AA基因型48只,AT基因型2 556只,TT基因型414只。
1.2試驗(yàn)設(shè)計(jì)
按雙低菜籽粕水平和FMO3基因型,采用4×3雙因子重復(fù)設(shè)計(jì)。選用55周齡、已知FMO3基因型褐殼產(chǎn)蛋雞336只,其中AT、TT基因型各144只,每個(gè)基因型隨機(jī)分為4組,每組6個(gè)重復(fù),每個(gè)重復(fù)6只雞;AA基因型48只,隨機(jī)分為4組,每組6個(gè)重復(fù),每個(gè)重復(fù)2只雞。每個(gè)基因型設(shè)4個(gè)雙低菜籽粕水平,分別為0(對(duì)照)、7%、14%和21%。預(yù)試期1周,試驗(yàn)期6周。
1.3試驗(yàn)飼糧與飼養(yǎng)管理
試驗(yàn)飼糧參照NRC(1994)和《雞飼養(yǎng)標(biāo)準(zhǔn)》(NY/T 33—2004),結(jié)合《京紅產(chǎn)蛋雞飼養(yǎng)手冊(cè)》配制。對(duì)照組飼糧為玉米-豆粕型飼糧(雙低菜籽粕水平為0),按等能等氮原則,分別配制雙低菜籽粕添加水平為7%、14%和21%的試驗(yàn)組飼糧。試驗(yàn)飼糧組成及營(yíng)養(yǎng)水平見(jiàn)表1。所有參試產(chǎn)蛋雞采用相同的常規(guī)飼養(yǎng)管理。
表1 試驗(yàn)飼糧組成及營(yíng)養(yǎng)水平(風(fēng)干基礎(chǔ))
續(xù)表1項(xiàng)目Items雙低菜籽粕水平Canolameallevel/%071421植酸酶Phytase0.050.050.050.05沸石粉Zeolitepowder0.70合計(jì)Total100.00100.00100.00100.00營(yíng)養(yǎng)水平Nutrientlevels2)代謝能ME/(MJ/kg)10.8810.8810.8810.88粗蛋白質(zhì)CP16.0216.0116.0216.02鈣Ca3.823.813.823.81總磷TP0.510.530.550.57有效磷AP0.320.320.320.32賴氨酸Lys0.810.810.830.84蛋氨酸Met0.330.330.340.33芥子堿Sinapine/(mg/g)0.140.400.731.33膽堿Choline0.110.110.110.12
1)預(yù)混料為每千克飼糧提供Premix provided the following per kg of diets:VA 12 500 IU,VD34 152 IU,VE 15 IU,VK 2 mg,硫胺素 thiamine 1 mg,核黃素 riboflavin 8.5 mg,泛酸 pantothenic acid 50 mg,煙酸 nicotinic acid 32.5 mg,吡哆醇 pyridoxine 8 mg,生物素 biotin 2 mg,葉酸 folic acid 5 mg,VB125 mg,膽堿 choline 500 mg,Mn 65 mg,I 1 mg,F(xiàn)e 60 mg,Cu 8 mg,Zn 66 mg,Se 0.3 mg。
2)芥子堿、膽堿為實(shí)測(cè)值,其余為計(jì)算值。Sinapine and choline were measured values, while the others were calculated values.
1.4測(cè)定指標(biāo)和方法
1.4.1生產(chǎn)性能
試驗(yàn)期間,每天以重復(fù)為單位記錄產(chǎn)蛋數(shù)和蛋重,計(jì)算產(chǎn)蛋率(egg production,EP)和平均蛋重(average egg weight,AEW)。每2周稱剩料量,以重復(fù)為單位計(jì)算平均日采食量(average daily feed intake,ADFI)和料蛋比(the ratio of feed to egg,F/E)。
1.4.2蛋品質(zhì)
試驗(yàn)第42天,每個(gè)重復(fù)隨機(jī)選取接近平均蛋重的雞蛋3枚(AA基因型2枚),雞蛋蛋殼強(qiáng)度(egg shell strength)、蛋白高度(albumen height)、哈氏單位(Haugh uint)和蛋黃顏色(egg yolk color)采用以色列ORKA公司生產(chǎn)的系列雞蛋品質(zhì)測(cè)定儀測(cè)定;蛋形指數(shù)(egg shape index)采用日本富士坪公司生產(chǎn)的蛋形指數(shù)測(cè)定儀測(cè)定。
1.4.3蛋黃TMA含量
試驗(yàn)第14天,每個(gè)重復(fù)隨機(jī)選取接近平均蛋重的雞蛋3枚(AA基因型2枚),分離蛋黃,混勻。采用美國(guó)Bruker公司生產(chǎn)的頂空氣相色譜儀測(cè)定蛋黃TMA含量。
1.5數(shù)據(jù)處理
試驗(yàn)數(shù)據(jù)采用SPSS 16.0統(tǒng)計(jì)軟件,GLM模型進(jìn)行4×3雙因子分析,并對(duì)基因型和雙低菜籽粕水平的主效應(yīng)及其交互作用進(jìn)行多元方差分析。相同雙低菜籽粕水平下,基因型間蛋黃TMA含量的差異顯著性檢驗(yàn)采用單因素方差分析(one-way ANOVA),并用Duncan氏法進(jìn)行多重比較,以P<0.05作為差異顯著水平。
2結(jié)果
2.1飼糧雙低菜籽粕水平和FMO3基因型對(duì)產(chǎn)蛋雞生產(chǎn)性能的影響
統(tǒng)計(jì)分析表明,試驗(yàn)1~2周、3~4周、5~6周時(shí)各組產(chǎn)蛋雞生產(chǎn)性能均無(wú)顯著差異(結(jié)果未列出)。表2為試驗(yàn)1~6周時(shí)的結(jié)果。由表3可知,飼糧雙低菜籽粕水平、FMO3基因型及其交互作用顯著影響產(chǎn)蛋雞的平均日采食量(P<0.05),但對(duì)平均蛋重、料蛋比無(wú)顯著影響(P>0.05)。隨著飼糧雙低菜籽粕水平的增加,平均日采食量降低,與對(duì)照組相比,14%和21%雙低菜籽粕水平組平均日采食量顯著降低(P<0.05),但與7%雙低菜籽粕水平組差異不顯著(P>0.05)。AA基因型組的平均日采食量和產(chǎn)蛋率顯著低于其他基因型組(P<0.05)。
2.2飼糧雙低菜籽粕水平和FMO3基因型對(duì)產(chǎn)蛋雞蛋品質(zhì)的影響
飼糧雙低菜籽粕水平和FMO3基因型對(duì)產(chǎn)蛋雞蛋品質(zhì)的影響見(jiàn)表2。多元方差分析(表3)顯示,雙低菜籽粕水平、FMO3基因型及其交互作用對(duì)蛋形指數(shù)、蛋殼強(qiáng)度、蛋白高度和哈氏單位均無(wú)顯著影響(P>0.05),但雙低菜籽粕水平顯著影響了蛋黃顏色值(P<0.05)。隨著飼糧雙低菜籽粕水平的增加,蛋黃顏色值減小,21%雙低菜籽粕水平組蛋黃顏色值顯著小于其他組(P<0.05)。
表2 FMO3基因型和飼糧雙低菜籽粕水平對(duì)產(chǎn)蛋雞生產(chǎn)性能、蛋品質(zhì)和蛋黃三甲胺含量的影響
同行數(shù)據(jù)肩標(biāo)不同小寫(xiě)字母表示差異顯著(P<0.05)。下表同。
In the same row, values with different small letter superscripts mean significant difference (P<0.05). The same as below.
表3 FMO3基因型和飼糧雙低菜籽粕水平對(duì)產(chǎn)蛋雞生產(chǎn)性能、蛋品質(zhì)和蛋黃三甲胺含量影響的主效應(yīng)分析
續(xù)表3項(xiàng)目Items主效應(yīng)均值Meansofmaineffects基因型GenotypeAAATTT雙低菜籽粕水平Canolameallevel/%071421變異源(P值)Sourceofvariation(P-value)雙低菜籽粕水平Canolameallevel基因型Genotype基因型×雙低菜籽粕水平Genotype×Canolameallevel蛋形指數(shù)Eggshapeindex1.331.341.341.341.341.341.340.930.630.60蛋殼強(qiáng)度Eggshellstrength/N26.4926.0225.2825.7826.2826.4124.690.380.580.11蛋白高度Albumenheight/mm5.264.904.885.004.894.944.930.880.700.37哈夫單位Haughunit70.2770.6373.1670.1370.7670.7371.820.900.650.46蛋黃顏色Eggyolkcolor4.294.294.474.63a4.42ab4.27b3.90c<0.050.500.11蛋黃TMA含量TMAcontentineggyolk/(μg/g)2.75b3.79b5.53a2.26c3.71b4.36b5.76a<0.05<0.05<0.05
2.3飼糧雙低菜籽粕水平和FMO3基因型對(duì)產(chǎn)蛋雞蛋黃TMA含量的影響
由表2和表3可知,飼糧雙低菜籽粕水平、FMO3基因型及其交互作用顯著影響產(chǎn)蛋雞的蛋黃TMA含量(P<0.05)。隨飼糧雙低菜籽粕水平的增加,蛋黃TMA含量增加。主效應(yīng)分析(表3)顯示,與對(duì)照組相比,添加7%、14%、21%雙低菜籽粕顯著升高蛋黃TMA含量(P<0.05),21%雙低菜籽粕水平組(5.76 μg/g)顯著高于14%雙低菜籽粕水平組(4.36 μg/g)和7%雙低菜籽粕水平組(3.71 μg/g)(P<0.05)?;蛐头矫?,TT基因型組蛋黃TMA含量顯著高于AA和AT基因型組(P<0.05),AA基因型組TMA含量最低。飼糧雙低菜籽粕水平和FMO3基因型對(duì)蛋黃TMA含量的交互作用體現(xiàn)在,飼喂對(duì)照組飼糧時(shí)基因型間無(wú)顯著差異(P>0.05),飼喂7%和14%雙低菜籽粕飼糧時(shí)TT基因型組顯著高于AA和AT基因型組(P<0.05),而飼喂21%雙低菜籽粕飼糧時(shí)TT基因型組顯著高于AT基因型組,AT基因型組顯著高于AA基因型組(P<0.05)。
此外,除AT基因型外,TT和AA基因型產(chǎn)蛋雞蛋黃TMA含量與飼糧雙低菜籽粕水平間呈顯著線性相關(guān)(P<0.05)。TT基因型產(chǎn)蛋雞,蛋黃TMA含量(Y)和飼糧雙低菜籽粕水平(X)關(guān)系的回歸方程為:Y=25.457 0X+2.852 0(R2=0.976 5)。AA基因型產(chǎn)蛋雞,蛋黃TMA含量(Y)和飼糧雙低菜籽粕水平(X)關(guān)系的回歸方程為:Y=7.685 7X+1.943 0(R2=0.952 5)。根據(jù)蛋黃TMA含量的嗅覺(jué)閾值為4 μg/g[8]計(jì)算,當(dāng)飼糧雙低菜籽粕水平低于4.62%時(shí),TT基因型產(chǎn)蛋雞蛋黃中TMA含量將不會(huì)被感官覺(jué)察到;當(dāng)飼糧雙低菜籽粕水平低于26.76%時(shí),AA基因型產(chǎn)蛋雞蛋黃中TMA含量將不會(huì)被感官覺(jué)察到。而在本試驗(yàn)中,飼糧雙低菜籽粕水平添加至21%時(shí),AA基因型組蛋黃TMA含量也未超過(guò)嗅覺(jué)閾值。
3討論
3.1飼糧雙低菜籽粕水平和FMO3基因型對(duì)產(chǎn)蛋雞生產(chǎn)性能的影響
本試驗(yàn)表明,飼料雙低菜籽粕水平、FMO3基因型及其交互作用對(duì)產(chǎn)蛋雞的平均蛋重、料蛋比無(wú)顯著影響,但顯著影響了平均日采食量。研究表明,含20%低硫甙菜籽粕的飼糧不影響動(dòng)物的生產(chǎn)性能[2,9],與本試驗(yàn)結(jié)果一致。但本試驗(yàn)中,隨著飼糧雙低菜籽粕水平的增加,產(chǎn)蛋雞的平均日采食量降低,14%和21%雙低菜籽粕水平組平均日采食量顯著低于對(duì)照組。Richter等[10]發(fā)現(xiàn)含20%菜籽粕的飼糧顯著降低了產(chǎn)蛋雞的日采食量。酚類是菜籽粕產(chǎn)生黑色、苦味和澀味的主要原因,可能也是雙低菜籽粕中影響平均日采食量的主要原因。雙低菜籽粕中酚類主要包括芥子堿和單寧。芥子堿是一種具有苦味的芥子酸膽堿酯,是雙低菜籽粕苦味的主要來(lái)源之一。Ismail等[11]發(fā)現(xiàn)菜籽粉水懸濁液苦味的50%~91%是由芥子堿和游離膽堿產(chǎn)生的。研究發(fā)現(xiàn),含2%芥子堿硫氰酸鹽的蛋白質(zhì)飼糧飼喂小鼠時(shí),采食量顯著下降[12-13]。單寧在雙低菜籽粕中含量為1.5%~3%,具有辛辣與苦澀味,影響適口性,亦是影響產(chǎn)蛋雞采食量的原因之一。目前關(guān)于FMO3基因型對(duì)產(chǎn)蛋雞生產(chǎn)性能影響的報(bào)道較少。FMO3基因型的快速檢測(cè)及突變基因型的剔除技術(shù)已廣泛應(yīng)用于國(guó)內(nèi)外蛋雞品種的選育中。Settar等[13]報(bào)道FMO3基因型與蛋雞性成熟年齡、蛋殼顏色、蛋重等表型值顯著相關(guān)。在洛島紅產(chǎn)蛋雞中,蛋重受FMO3基因型顯著影響,其中AA基因型蛋重最低[14]。由于基因型的分布不平衡,AA基因型在商品代產(chǎn)蛋雞群體中自然存在率很低,導(dǎo)致試驗(yàn)AA基因型個(gè)體數(shù)少,基因型對(duì)產(chǎn)蛋性能指標(biāo)的影響需要進(jìn)一步的研究和證實(shí)[14]。
3.2飼糧雙低菜籽粕水平和FMO3基因型對(duì)產(chǎn)蛋雞蛋品質(zhì)的影響
飼糧雙低菜籽粕水平和FMO3基因型對(duì)產(chǎn)蛋雞蛋形指數(shù)、蛋殼強(qiáng)度、蛋白高度和哈氏單位均無(wú)顯著影響,與Kretzschmar等[15]的研究結(jié)果一致。本課題組前期試驗(yàn)結(jié)果也顯示,F(xiàn)MO3基因型對(duì)雞蛋常規(guī)品質(zhì)、含水量、粗蛋白質(zhì)和粗脂肪含量、蛋黃比例無(wú)顯著影響[7]。但雙低菜籽粕水平顯著影響蛋黃顏色,隨著雙低菜籽粕水平的增加,蛋黃顏色值減小。Riyazi等[16]發(fā)現(xiàn),15%菜籽粕水平組蛋黃顏色值小于5%、10%菜籽粕水平組和對(duì)照組。家禽本身不能合成色素,只有帶有含氧功能基(羥基、?;?、酮基)的類胡蘿卜素包括葉黃素、番茄紅素和玉米黃素等才有著色效果。飼糧中脂肪的種類、品質(zhì)、數(shù)量及其氧化狀況影響著色。氧化類胡蘿卜素是脂溶性物質(zhì),飼糧中脂肪水平過(guò)低會(huì)影響其吸收,導(dǎo)致飼料變質(zhì);而且能阻止或減少膽汁分泌,顯著降低氧化類胡蘿卜素的吸收、輸送與沉積。而高添加水平的雙低菜籽粕含較多芥子堿和單寧等抗?fàn)I養(yǎng)因子。有研究表明,體內(nèi)芥子堿會(huì)顯著抑制脂肪水解酶和脂肪氧合酶的活性。高添加水平的雙低菜籽粕飼糧可能通過(guò)其中的芥子堿抑制脂肪酶的活性進(jìn)而影響飼糧中脂肪的種類、品質(zhì)、數(shù)量及其氧化狀況等,降低蛋黃顏色值。其他抗?fàn)I養(yǎng)因子亦可能通過(guò)直接或間接的方式導(dǎo)致蛋黃顏色值減小。隨著雙低菜籽粕水平的增加,其飼糧配方中的玉米百分含量降低,也會(huì)導(dǎo)致蛋黃顏色值減小。
3.3飼糧雙低菜籽粕水平和FMO3基因型對(duì)產(chǎn)蛋雞蛋黃TMA含量的影響
飼喂雙低菜籽餅粕極易誘發(fā)魚(yú)腥味雞蛋產(chǎn)生,一般采食含菜籽餅粕飼糧后5 d,便可檢到魚(yú)腥味雞蛋。從飼糧中去除菜籽餅粕后,蛋雞不再產(chǎn)魚(yú)腥味雞蛋[2]。雙低菜籽餅粕中的芥子堿是魚(yú)腥味物質(zhì)TMA的前體物質(zhì)。蛋雞的TMA代謝過(guò)程受到遺傳、營(yíng)養(yǎng)因素的共同影響。其中,個(gè)體遺傳背景即FMO3基因型和飼糧中前體物質(zhì)是影響蛋中TMA含量的2個(gè)關(guān)鍵點(diǎn)。本試驗(yàn)中,雙低菜籽粕水平、FMO3基因型及其交互作用顯著影響了產(chǎn)蛋雞的蛋黃TMA含量;隨著雙低菜籽粕水平的增加,蛋黃TMA含量顯著升高;且飼糧雙低菜籽粕水平增加顯著提高了TT基因型組產(chǎn)蛋雞蛋黃TMA含量。研究認(rèn)為,易感基因型(TT基因型)產(chǎn)蛋雞蛋中TMA含量與雙低菜籽餅粕添加水平之間存在顯著的線性關(guān)系,隨著雙低菜籽餅粕添加水平的增加TMA含量升高,而AA和AT基因型產(chǎn)蛋雞蛋中TMA含量并無(wú)上升趨勢(shì)[17]。本試驗(yàn)中也觀察到了AA基因型產(chǎn)蛋雞蛋黃中TMA含量與飼糧雙低菜籽粕水平的線性關(guān)系。但雙低菜籽粕水平為21%時(shí),AA基因型產(chǎn)蛋雞蛋黃中TMA含量仍低于嗅覺(jué)閾值。此外,飼糧添加21%雙低菜籽粕時(shí),AT與AA基因型產(chǎn)蛋雞蛋黃中TMA含量差異顯著,這與Kretzschmar等[15]的報(bào)道一致。原因可能是飼喂大量菜籽粕時(shí),魚(yú)腥味雞蛋表現(xiàn)為加性效應(yīng)或半顯性遺傳。
消費(fèi)者對(duì)全蛋TMA的嗅覺(jué)閾值為1 μg/g[18]。Ward等[8]根據(jù)蛋黃占全蛋比重,推斷蛋黃TMA的閾值為4 μg/g。隨TMA含量升高,雞蛋魚(yú)腥味加重,風(fēng)味分?jǐn)?shù)下降,消費(fèi)者接受程度下降[2,15,19-20]。添加3%的普通菜籽餅粕就能導(dǎo)致雞蛋產(chǎn)生魚(yú)腥味[9],而雙低菜籽餅粕不產(chǎn)魚(yú)腥味蛋的最大添加量為4%~7%[17]。本試驗(yàn)中,根據(jù)TT基因型產(chǎn)蛋雞蛋黃TMA含量與飼糧雙低菜籽粕水平的回歸方程,TMA含量達(dá)到嗅覺(jué)閾值時(shí)的菜籽粕水平為4.62%,處于Ward等[17]報(bào)道的4%~7%的范圍內(nèi)。
4結(jié)論
① 飼糧雙低菜籽粕水平和FMO3基因型對(duì)產(chǎn)蛋雞的平均蛋重、料蛋比影響不顯著,對(duì)蛋形指數(shù)、蛋殼強(qiáng)度、蛋白高度和哈氏單位亦無(wú)顯著影響,雙低菜籽粕水平大于7%時(shí),平均日采食量減小;雙低菜籽粕水平大于14%時(shí),蛋黃顏色值減小。
② 飼糧雙低菜籽粕水平大于4.62%時(shí),TT基因型產(chǎn)蛋雞蛋黃TMA含量即達(dá)到嗅覺(jué)閾值。
③ 綜上所述,本試驗(yàn)條件下蛋雞飼糧中雙低菜籽粕水平低于4.62%即可有效降低魚(yú)腥味雞蛋的檢出率,且對(duì)產(chǎn)蛋雞的生產(chǎn)性能和蛋品質(zhì)無(wú)不良影響。
參考文獻(xiàn):
[1]何江.菜粕芥子堿的提取、分離純化、鑒定及酶解研究[D].碩士學(xué)位論文.武漢:華中農(nóng)業(yè)大學(xué),2010.
[2]HOBSON-FROHOCK A,LAND D G,GRIFFITHS N M,et al.Egg taints:association with trimethylamine[J].Nature,1973,243(5405):304-305.
[3]GOH Y K,MUELLER M M,CLANDININ D R,et al.The effects of choline and sinapine bisulfate in a laying ration on the incidence of fishy odor in eggs from brown-shelled egg layers[J].Canadian Veterinary Journal La Revue Veterinaire Canadienne,1979,59(3):545-549.
[4]BUTLER E J,PEARSON A W,GREENWOOD N M.Trimethylamine taint in eggs:the occurrence of the causative metabolic defect in commercial hybrids and pure breeds in relation to shell colour[J].Journal of the Science of Food and Agriculture,1984,35(3):272-278.
[5]BAIN M A,FORNASINI G,EVANS A M.Trimethylamine:Metabolic,pharmacokinetic and safety aspects[J].Current Drug Metabolism,2005,6(3):227-240.
[6]HONKATUKIA M,REESE K,PREISINGER R.Fishy taint in chicken eggs is associated with a substitution within a conserved motif of theFMO3 gene[J].Genomics,2005,86(2):225-232.
[7]王晶,武書(shū)庚,張海軍,等.海蘭褐殼蛋雞含黃素單氧化酶3基因型頻率分布及其對(duì)蛋品質(zhì)的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2014,26(3):630-636.
[8]WARD A K,CLASSEN H L,BUCHANAN F C.Fishy-egg tainting is recessively inherited when brown-shelled layers are fed Canola meal[J].Poultry Science,2009,88(4):714-721.
[9]AHERNE F X,LEWIS A J,HARDIN R T.An evaluation of faba beans (Viciafaba) as a protein supplement for swine[J].Canadian Journal of Animal Science,1977,57(2):321-328.
[10]RICHTER G,LEMSER A,BARGHOLZ J.Canola and canola meal as components in diets of laying hens[J].Archives of Animal Nutrition,1996,49(3):229-241.
[11]ISMAIL F,VAISEY-GENSER M,FYFE B.Bitterness and astringency of sinapine and its components[J].Journal of Food Science,1981,46(4):1241-1244.
[12]JOSEFSSON E,UPPSTR?M B.Influence of sinapine andp-hydroxybenzylglucosinolate on the nutritional value of canola and white mustard meals[J].Journal of the Science of Food and Agriculture,1976,27(5):438-442.
[13]SETTAR P,FULTON J E,ARANGO J,et al.Association ofFMO3 gene with egg production and quality traits in brown layers[C]//Poultry science association annual.Dallas Center,IA:Hy-Line International,2008,87:70.
[14]KRETZSCHMAR K,DANICKE S,SCHMUTZ M,et al.Interactions of flavin containing monooxygenase 3 (FMO3) genotype and feeding of choline and Canola cake on the trimethylamine (TMA) content in egg yolks of laying hens[J].Archives of Animal Nutrition,2009,63(3):173-187.
[15]KRETZSCHMAR K,REESE K,HONKATUKIA M,et al.Effect of flavin containing monooxygenase (FMO3) genotype on trimethylamine (TMA) content in the chicken egg yolk[J].Archiv für Geflügelkunde,2007,71(5):200-206.
[16]RIYAZI S R,EBRAHIMNEZHAD Y,NAZERADL K,et al.The effects of replacing soybean meal with different levels of Canola meal on egg quality characteristics of commercial laying hens[J].Asian Journal of Animal and Veterinary Advances,2009,4(6):337-341.
[17]WARD A K.Genetic and dietary interactions of fishy-egg taint in brown-shelled laying hens[D].Master’s Thesis.Saskatchewan:University of Saskatchewan Saskatoon,2008.
[18]GRIFFITHS N M,LAND D G,HOBSON-FROHOCK A.Trimethylamine and egg taint[J].British Poultry Science,1979,20(6):555-558.
[20]WANG J,WU S G,ZHANG H J,et al.Trimethylamine deposition in the egg yolk from laying hens with differentFMO3 genotypes[J].Poultry Science,2013,92(3):746-752.
(責(zé)任編輯李慧英)
Effects of Dietary Canola Meal Level on Proformance, Egg Quality,Trimethylamine Content in Egg Yolk of Flavin-Containing Monooxygenases 3 Genotype Laying Hens
LONG ChengCHEN LeiWANG JingWU Shugeng*ZHANG HaijunYUE HongyuanQI Guanghai*
(Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute,Chinese Academy of Agricultural Sciences, Beijing 100081, China)
Abstract:This experiment was conducted to investigate the effects of dietary Canola meal level on performance, egg quality, and trimethylamine (TMA) content in egg yolk of flavin-containing monooxygenases 3 (FMO3) genotype laying hens. A total of 336 FMO3 genotype brown shell laying hens, consisting of 48 hens of AA genotype, 144 hens of AT genotype and 144 hens of TT genotype, were used in this study. Hens with AT and TT genotypes were randomly assigned to 4 groups with 6 replicates per group and 6 birds per replicate, and those with AA genotypes were randomly assigned to 4 groups with 6 replicates per group and 2 birds per replicate. The laying hens in four groups were fed a basal diet supplemented with 0 (control), 7%, 14% and 21% Canola meal, respectively. The experimental period lasted for 6 weeks. The results showed as follows: 1) dietary Canola meal level, FMO3 genotype and the interaction of dietary Canola meal level and FMO3 genotype significantly affected average daily intake of laying hens (P<0.05), but had no significant effects on average egg weight and the ratio of feed to egg (P>0.05). The average daily feed intake in 14% and 21% Canola meal level groups was significantly lower than that in control group (P<0.05). The average daily feed intake and egg production in AA genotype group were significantly lower than those in the other genotype groups (P<0.05). 2) Dietary Canola meal level, FMO3 genotype and the interaction of dietary Canola meal level and FMO3 genotype had no significant effects on egg-shape index, eggshell strength, albumen height and Haugh unit of laying hens (P>0.05). But dietary Canola meal level had significant effect on the value of egg yolk color (P<0.05), and the value of egg yolk color in 21% Canola meal level group was significantly lower than that in the other groups (P<0.05). 3) Dietary Canola meal level, FMO3 genotype and the interaction of dietary Canola meal level and FMO3 genotype had significant effect on TMA content in egg yolk of laying hens (P<0.05). The TMA content in egg yolk was improved with increasing dietary Canola meal level, and TMA content in egg yolk in 21% Canola meal level group was significantly higher than that in the other groups (P<0.05). The TMA content in egg yolk in TT genotype group was significantly higher than that in AA and AT genotype groups (P<0.05). According to the regression equation of the TMA content in egg yolk of laying hens (Y) and dietary Canola meal level (X): Y=25.457 0X+2.852 0(R2=0.976 5, TT genotype), Y=7.685 7X+1.943 0(R2=0.952 5, AA genotype), dietary Canola meal level should be lower than 4.62% (TT genotype hens) or 26.76% (AA genotype hens) to make the TMA content in egg yolk lower than the estimated human olfactory threshold. The results suggest that when laying hens with TT genotype were fed the diet supplemented with Canola meal do not product fishy eggs, hens with AA and AT genotype will not product the fishy eggs, too. Thus, dietary Canola meal level lower than 4.62% can not make laying hens with TT genotype product fishy eggs, and has no negative effects on performance and egg quality.[Chinese Journal of Animal Nutrition, 2016, 28(6):1687-1895]
Key words:Canola meal; laying hens; performance; trimethylamine
doi:10.3969/j.issn.1006-267x.2016.06.008
收稿日期:2015-12-01
基金項(xiàng)目:家禽產(chǎn)業(yè)技術(shù)體系北京市創(chuàng)新團(tuán)隊(duì)項(xiàng)目(CARS-PSTP);國(guó)家青年自然科學(xué)基金(31301991);國(guó)家蛋雞產(chǎn)業(yè)技術(shù)體系(CARS-41-K13)
作者簡(jiǎn)介:龍城(1990—),男,江西萍鄉(xiāng)人,碩士研究生,從事家禽營(yíng)養(yǎng)調(diào)控研究。E-mail: dxfdn666@163.com *通信作者:武書(shū)庚,副研究員,碩士生導(dǎo)師,E-mail: wushugeng@caas.cn;齊廣海,研究員,博士生導(dǎo)師,E-mail: qiguanghai@caas.cn
中圖分類號(hào):S831;S816.4
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1006-267X(2016)06-1687-09
*Corresponding authors: WU Shugeng, associate professor, E-mail: wushugeng@caas.cn; QI Guanghai, professor, E-mail: qiguanghai@caas.cn
動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)2016年6期