聶 宇,喬艷樂(lè),陳瑤生,何祖勇
(中山大學(xué)生命科學(xué)學(xué)院∥有害生物控制與資源利用國(guó)家重點(diǎn)實(shí)驗(yàn)室,廣東 廣州510006)
供體同源臂長(zhǎng)度對(duì)ZFN介導(dǎo)的同源重組效率的影響*
聶 宇,喬艷樂(lè),陳瑤生,何祖勇
(中山大學(xué)生命科學(xué)學(xué)院∥有害生物控制與資源利用國(guó)家重點(diǎn)實(shí)驗(yàn)室,廣東 廣州510006)
應(yīng)用鋅指核酸酶(Zinc Finger Nuclease,ZFN)和序列同源的供體(Donor)作為模板,借助DNA的同源重組修復(fù)機(jī)制能夠?qū)?dòng)物基因組實(shí)現(xiàn)精確的遺傳修飾。目前關(guān)于供體長(zhǎng)度與ZFN介導(dǎo)的同源重組修復(fù)效率相關(guān)性的報(bào)道相對(duì)較少。本研究構(gòu)建了一對(duì)靶向EGFP的ZFN并鑒定了活性,同時(shí)設(shè)計(jì)了一系列不同長(zhǎng)度的供體,應(yīng)用流式細(xì)胞分析術(shù),在穩(wěn)定整合了帶有移碼突變的EGFP基因的CHO細(xì)胞中系統(tǒng)分析了供體長(zhǎng)度對(duì)ZFN介導(dǎo)的同源重組修復(fù)效率的影響。結(jié)果發(fā)現(xiàn)當(dāng)同源臂單臂僅有50 bp時(shí),即可有效支持ZFN介導(dǎo)的同源同組,隨著同源臂長(zhǎng)度的延伸,同源重組的效率有所提高,但要實(shí)現(xiàn)高效率的同源重組(較傳統(tǒng)方法提高104倍),同源臂單臂長(zhǎng)度需要延長(zhǎng)至1 000 bp以上。這為今后如何設(shè)計(jì)合適的Donor,以提高ZFN等基因組編輯工具介導(dǎo)的同源重組效率提供了借鑒。
鋅指核酸酶; DNA雙鏈斷裂; 同源重組; 供體; 同源臂
基因組修飾在生物學(xué)、醫(yī)學(xué)和農(nóng)業(yè)等領(lǐng)域都有十分重要的應(yīng)用價(jià)值,但是傳統(tǒng)的基因打靶效率偏低使該技術(shù)的發(fā)展受到限制[1]。鋅指核酸酶(Zinc Finger Nuclease,ZFN)是一種強(qiáng)有力的基因組編輯工具,使基因打靶的效率比傳統(tǒng)方法提高了100~10 000倍。ZFN是由特異性識(shí)別DNA序列的Cys2-His2鋅指結(jié)構(gòu)域和非特異性核酸內(nèi)切酶FokⅠ切割結(jié)構(gòu)域組成,能夠在基因組特定位點(diǎn)上進(jìn)行切割,引起DNA雙鏈斷裂(double-strandbreak,DSB)。對(duì)ZFN引起的DSB,細(xì)胞可通過(guò)非同源末端連接(non-homologousend-joining,NHEJ)或者同源重組(homologousrecombination,HR)兩種不同的途徑進(jìn)行修復(fù)。非同源末端連接僅促使斷裂DNA片段末端進(jìn)行結(jié)合,是一種易錯(cuò)的修復(fù)方式,通常會(huì)在ZFN切割位點(diǎn)處產(chǎn)生DNA的插入和缺失 (Indel)。同源重組可以利用序列同源的供體(Donor)作為模板修復(fù)DNA斷裂,能夠?qū)蚪M實(shí)現(xiàn)精確的遺傳修飾[2-3]。在有供體存在時(shí),特定細(xì)胞中ZFN引起的DSB最高能以50%的概率發(fā)生同源重組[4]。
目前ZFN介導(dǎo)的同源重組技術(shù)已應(yīng)用于果蠅[5]、斑馬魚[6]、小鼠[7-8]、大鼠[9]、豬[10-11]、擬南芥[12]、人體細(xì)胞[13]等多種動(dòng)植物的基因修飾。其中,介導(dǎo)重組所用的Donor片段長(zhǎng)度從0.75~2.3kb不等,在不同的細(xì)胞系中獲得的重組效率也不盡相同[4, 13-15]。然而關(guān)于Donor同源臂長(zhǎng)度對(duì)ZFN介導(dǎo)的同源重組效率影響的研究仍較缺乏。本研究采用一系列不同長(zhǎng)度的Donor,在穩(wěn)定表達(dá)EGFP的CHO細(xì)胞中,系統(tǒng)比較了ZFN介導(dǎo)的同源重組效率,發(fā)現(xiàn)ZFN可以利用短至50bp的同源臂單臂來(lái)實(shí)現(xiàn)同源重組,但要實(shí)現(xiàn)較高效的同源重組,同源臂單臂長(zhǎng)度需延長(zhǎng)至1 000bp以上,為今后研究中如何設(shè)計(jì)Donor提供借鑒。
1.1 材料
CHO細(xì)胞購(gòu)于美國(guó)ATCC生物資源中心。pEGFP-N1購(gòu)于Clontech公司。
1.2 方法
1.2.1ZFN表達(dá)載體構(gòu)建 本文中所采用的ZFN源自Maederetal[16]中的靶向EGFP基因的一對(duì)ZFN(EG502ApairA)。
使用VectorNTI軟件根據(jù)氨基酸序列反推出ZFP的DNA序列,和FokⅠ序列拼接后,由生工生物公司進(jìn)行了人源化優(yōu)化后合成。用EcoRⅠ和NotⅠ對(duì)pEGFP-N1進(jìn)行雙酶切,將合成的DNA片段克隆進(jìn)載體,獲得一對(duì)ZFN的表達(dá)載體。
1.2.2EGFP移碼突變載體pEGFP-N1-FS(frameshift)的構(gòu)建 兩對(duì)引物(表1),以pEGFP-N1為模板,擴(kuò)增產(chǎn)生移碼突變的左臂(FSLarm)和右臂(FSRarm)兩個(gè)片段。其中擴(kuò)增FSLarm的下游引物FSLarmR和擴(kuò)增FSRarm的上游引物FSRarmF的5′端均添加了AflⅡ酶切位點(diǎn)。擴(kuò)增得到的FSLarm和FSRarm分別克隆到T載體,用EcoR I和AflⅡ從T載體上將FSLarm片段切下,與另一個(gè)T載體上的FSRarm拼接成發(fā)生了移碼的EGFP片段(EGFP-FS)。用Hind Ⅲ和XbaⅠ將EGFP-FS切下,克隆進(jìn)pEGFP-N1載體,獲得pEGFP-N1-FS表達(dá)載體,載體上的EGFP基因中含有8個(gè)堿基的插入(圖1),使EGFP產(chǎn)生移碼突變,無(wú)法正常表達(dá)綠光熒光蛋白。
圖1 pEGFP-N1-FS表達(dá)載體圖譜Fig.1 pEGFP-N1-FS vector map
1.2.3 細(xì)胞轉(zhuǎn)染 CHO細(xì)胞在含有φ=10%胎牛血清和雙抗(100 U/mL青霉素和100 mg/mL鏈霉素)的DMEM培養(yǎng)基中生長(zhǎng)至80%~90%匯合度時(shí),先用PBS洗滌兩遍,然后用胰酶消化2 min,隨后加入血清終止消化,將消化后的細(xì)胞收集至15 mL的離心管進(jìn)行離心,棄上清后再用PBS洗滌一遍進(jìn)行第二次離心。離心后棄上清,然后用適量Buffer R (Life Technology)溶液重懸細(xì)胞,使細(xì)胞密度達(dá)到每mL 1.0×107個(gè)細(xì)胞,加入2 μg質(zhì)粒,使用Neon轉(zhuǎn)染系統(tǒng)(Life Technology)對(duì)CHO細(xì)胞進(jìn)行電擊轉(zhuǎn)染。轉(zhuǎn)染條件為:電壓1 650 V,脈沖10 ms,脈沖次數(shù)3次。細(xì)胞轉(zhuǎn)染后接種至含血清無(wú)抗生素的DMEM培養(yǎng)基中培養(yǎng)中,24 h后更換培養(yǎng)基,添加雙抗,在φ=5%的CO2、37 ℃條件下繼續(xù)培養(yǎng)。2 d后進(jìn)行流式分析或者收取細(xì)胞提取DNA進(jìn)行后續(xù)實(shí)驗(yàn)。
1.2.4 穩(wěn)定表達(dá)pEGFP-N1和pEGFP-N1-FS的CHO細(xì)胞的獲得 CHO細(xì)胞分別電轉(zhuǎn)染pEGFP-N1和pEGFP-N1-FS質(zhì)粒后,在細(xì)胞培養(yǎng)基中添加800 ng/mL 的G418,進(jìn)行為期14~20 d的篩選,分別獲得穩(wěn)定表達(dá)pEGFP-N1的CHOEGFP和pEGFP-N1-FS的CHOEGFP-FS細(xì)胞群。
1.2.5 T7EI酶切檢測(cè) 使用組織/細(xì)胞提取試劑盒(OMEGA公司)提取細(xì)胞的基因組,使用D1024引物進(jìn)行PCR擴(kuò)增出包含ZFN識(shí)別位點(diǎn)的長(zhǎng)度為1 024 bp的產(chǎn)物,采用Axgene PCR清潔試劑盒(Axgene公司)純化PCR產(chǎn)物。純化后的PCR產(chǎn)物先在高溫下變性,然后經(jīng)逐步降溫退火形成異源雙鏈DNA,使用T7EⅠ對(duì)上述產(chǎn)物進(jìn)行酶切,如果ZFN有活性,會(huì)產(chǎn)生442 bp和588 bp的兩個(gè)片段,可以在w=3%瓊脂糖凝膠中分辨出來(lái)。最后通過(guò)Image J軟件計(jì)算ZFN的切割效率,估算其活性。
1.2.6 流式分析 先用w=1%的胰蛋白酶消化貼壁的CHO細(xì)胞,用不少于300 μL PBS重懸成單個(gè)細(xì)胞,用300目濾膜將細(xì)胞過(guò)濾到流式管中,用FACSAria Ⅱ流式細(xì)胞分選儀器分選EGFP陽(yáng)性細(xì)胞,接種培養(yǎng)。用FACScalibur流式細(xì)胞分析儀上分析細(xì)胞的熒光比例與強(qiáng)度。
1.2.7 不同長(zhǎng)度Donor的獲取 以pEGFP-N1為模板,使用引物對(duì)D489、D1024、D1550、D1792和D2043(數(shù)值代表擴(kuò)增片段的長(zhǎng)度)進(jìn)行PCR擴(kuò)增,膠回收后分別獲得不同長(zhǎng)度的Donor:Z489、Z1024、Z1550、Z1792和Z2043(圖2)。
2.1 ZFN對(duì)EGFP基因的敲除效率檢測(cè)
穩(wěn)定轉(zhuǎn)染:含在穩(wěn)定表達(dá)EGFP的CHOEGFP細(xì)胞中轉(zhuǎn)染ZFN表達(dá)質(zhì)粒,3 d后利用熒光倒置顯微鏡觀察熒光表達(dá)情況,與對(duì)照(圖3:A)相比,轉(zhuǎn)染ZFN表達(dá)質(zhì)粒的CHOEGFP細(xì)胞中EGFP陰性的細(xì)胞的數(shù)量明顯增多(圖3:B)。流式分析表明,轉(zhuǎn)染ZFN后,CHOEGFP細(xì)胞中EGFP陽(yáng)性的細(xì)胞的比例降低了12.95%(圖3:C)。
圖2 Donor示意圖Fig.2 Schematic diagram of disgned Donors
圖3 ZFN對(duì)CHOEGFP細(xì)胞中EGFP基因的敲除檢測(cè)Fig.3 Detection of the knock out effect of EGFP gene in CHOEGFP cells by ZFN
瞬時(shí)轉(zhuǎn)染:流式上機(jī)檢測(cè),CHO細(xì)胞共轉(zhuǎn)染ZFN表達(dá)質(zhì)粒和pEGFP-N1質(zhì)粒后,與只轉(zhuǎn)染pEGFP-N1質(zhì)粒的對(duì)照相比,EGFP陽(yáng)性細(xì)胞的比例下降了52.3%(圖4:A),細(xì)胞中EGFP的平均熒光強(qiáng)度也明顯下降(圖4:B)。表明ZFN對(duì)EGFP具有較高的敲除效率。
2.2 T7EI酶切檢測(cè)ZFN的切割活性
CHO細(xì)胞瞬時(shí)轉(zhuǎn)染ZFN表達(dá)質(zhì)粒和pEGFP-N1質(zhì)粒后48 h,以及CHOEGFP細(xì)胞轉(zhuǎn)染ZFN表達(dá)質(zhì)粒后48 h,分別提取基因組DNA進(jìn)行T7EI酶切檢測(cè)ZFN介導(dǎo)的EGFP突變頻率。結(jié)果如圖5所示, ZFN對(duì)瞬時(shí)表達(dá)EGFP和穩(wěn)定表達(dá)EGFP的CHO細(xì)胞中的EGFP基因均有明顯的打靶作用,其中對(duì)質(zhì)粒上EGFP基因的切割效率高達(dá)67.66%,對(duì)整合在基因組中的EGFP基因的的切割效率也達(dá)11.54%,這與流式檢測(cè)觀察到EGFP陽(yáng)性細(xì)胞比例降低的結(jié)果較為一致。
圖4 CHO細(xì)胞瞬時(shí)轉(zhuǎn)染GFP與ZFN后的流式檢測(cè)結(jié)果Fig.4 Flow cytomety analysis of CHO cells transiently transfected with GFP and ZFN expression vectors
圖5 T7EI酶切結(jié)果Fig.5 T7E1 assay reswlts
2.3 ZFN介導(dǎo)的同源重組
利用藥物篩選的方法加入800 ng/mL G418篩選轉(zhuǎn)染pEGFP-N1-FS為了檢測(cè)ZFN是否可以通過(guò)同源重組修復(fù)途徑將發(fā)生了移碼突變的EGFP基因恢復(fù)成功能正常的EGFP基因,本研究使用長(zhǎng)度為489 bp和1 024 bp的兩個(gè)Donor Z489和Z1024,與ZFN表達(dá)質(zhì)粒共轉(zhuǎn)染CHOEGFP-FS細(xì)胞,7 d后通過(guò)熒光顯微鏡觀察發(fā)現(xiàn)右側(cè)同源臂長(zhǎng)度僅為50 bp左右的Donor Z489在ZFN作用下,可以修復(fù)突變的EGFP基因,使部分CHOEGFP-FS細(xì)胞重新表達(dá)EGFP蛋白(圖6:A,B),右同源臂較長(zhǎng)的Donor Z1024在ZFN作用下也可以使部分CHOEGFP-FS細(xì)胞恢復(fù)EGFP表達(dá)(圖6:C,D)。流式分析結(jié)果顯示,與只轉(zhuǎn)染Donor的對(duì)照相比,共轉(zhuǎn)染Donor和ZFN后CHOEGFP-FS細(xì)胞群中出現(xiàn)EGFP陽(yáng)性細(xì)胞的比例顯著升高。這些結(jié)果表明,在Donor存在時(shí),ZFN可以在CHOEGFP-FS細(xì)胞中通過(guò)同源重組修復(fù)EGFP基因。
2.4 同源臂長(zhǎng)度對(duì)ZFN介導(dǎo)的同源重組效率的影響
在證明ZFN在CHOEGFP-FS細(xì)胞中具有介導(dǎo)同源重組的功能之后,本研究進(jìn)一步通過(guò)共轉(zhuǎn)染ZFN表達(dá)質(zhì)粒和另外3種延長(zhǎng)了同源臂的Donor:Z1550、Z1792和Z2043(圖2),以檢測(cè)同源臂長(zhǎng)度對(duì)同源重組效率的影響。轉(zhuǎn)染后7 d,通過(guò)熒光顯微鏡觀察可以發(fā)現(xiàn),與Z1024 Donor(圖6:C,D)相比,Donor同源臂延長(zhǎng)后,CHOEGFP-FS細(xì)胞群中恢復(fù)EGFP表達(dá)的細(xì)胞明顯增多了(圖7:A-F)。流式分析結(jié)果也證明CHOEGFP-FS細(xì)胞群中有較多的細(xì)胞恢復(fù)了EGFP表達(dá)(圖7:G),且細(xì)胞中的平均熒光強(qiáng)度與對(duì)照相比也有顯著性的提高(圖7:H)。在這3種Donor中,其中Z1792 Donor相比Z1550 Donor,其右側(cè)同源延長(zhǎng)了242 bp,在ZFN作用下實(shí)現(xiàn)同源重組的效率提高了約2%(圖7:G);Z2043 Donor相比Z1792 Donor,其左側(cè)同源臂延長(zhǎng)了251 bp,在ZFN作用下實(shí)現(xiàn)同源重組的效率提高了12.5%(圖7:G)。Donor Z489與Z1024在ZFN介導(dǎo)的同源重組作用下,只能使0.8%左右的CHOEGFP-FS細(xì)胞恢復(fù)EGFP表達(dá)(圖6:E),且兩者之間差異不顯著(圖7:I)。而Donor Z1550、Z1792和Z2043在ZFN介導(dǎo)的同源重組作用下,分別能夠8.67%,10.24%和23.15%的CHOEGFP-FS細(xì)胞恢復(fù)EGFP表達(dá)(圖7:G)。綜合比較5種Donor在ZFN作用下實(shí)現(xiàn)同源重組的效率,可以發(fā)現(xiàn)當(dāng)同源臂單臂僅有50 bp時(shí),即可實(shí)現(xiàn)有效支持ZFN介導(dǎo)的同源同組,隨著同源臂長(zhǎng)度的延伸,同源重組的效率有所提高,但要實(shí)現(xiàn)高效率的同源重組,同源臂單臂長(zhǎng)度需要延長(zhǎng)至1 000 bp以上(圖8,表1)。
圖6 CHOEGFP-FS細(xì)胞中ZFN介導(dǎo)的同源重組結(jié)果Fig.6 Homologows recombinaton in CHOEGFP-FS cells mediated by ZFN
圖7 3種不同長(zhǎng)度Donor在ZFN作用下實(shí)現(xiàn)同源重組的效率比較Fig.7 Comparison of the homologows recombinaton efficiencies of three donors with disferent length medrwted by ZFN
圖8 不同長(zhǎng)度的Donor在ZFN作用下實(shí)現(xiàn)同源重組的效率比較Fig.8 Comparison of the homologows recombination efficiencies of donors with different length mediated by ZFN**:P<0.01
表1 ZFN介導(dǎo)重組實(shí)驗(yàn)中所用的供體同源臂長(zhǎng)度
Table 1 Length of homologous arm of donors used in homologous recombination mediated by ZFN
N供體名稱L左側(cè)同源臂長(zhǎng)度/bpR右側(cè)同源臂長(zhǎng)度/bpZ48943950Z1024439585Z1550798752Z1792798994Z20431049994
通過(guò)同源重組的方法在染色體DSB處實(shí)現(xiàn)DNA的精確修復(fù),最關(guān)鍵的一個(gè)步驟是DNA異源雙鏈結(jié)構(gòu)的形成。這需要細(xì)胞募集一系列的重組蛋白來(lái)參與DNA的配對(duì)重組和修復(fù)過(guò)程。這些重組蛋白包括RecA家族DNA修復(fù)蛋白(RecA-family DNA-repairing proteins),單鏈DNA結(jié)合蛋白(single-stranded DNA binding proteins),重組調(diào)節(jié)蛋白(recombination mediator proteins),退火蛋白(annealing proteins)及各種核酸酶[17]。我們通常把能發(fā)生有效同源重組的最小Donor長(zhǎng)度稱為最小功能效應(yīng)片段(minimum effective processing segment,MEPS)[18],它主要與穩(wěn)定同源重組中產(chǎn)生的中間結(jié)構(gòu)相關(guān)。之前的研究認(rèn)為細(xì)菌中MEPS為50~100 bp,而真核生物中為200~400 bp[19]。
不同物種中同源重組修復(fù)對(duì)于Donor的長(zhǎng)度,濃度要求不同[20]。在酵母中,可以用短至30 bp的Donor實(shí)現(xiàn)ZFN介導(dǎo)的HDR,使自發(fā)的重組處于非常低的水平[21],但針對(duì)某種NHEJ依賴性更強(qiáng)的酵母種屬,如Yarrowia lipolytica,只有當(dāng)同源臂大于1 kb時(shí)才能實(shí)現(xiàn)同源重組修復(fù)[22]。在多細(xì)胞真核生物中,雖然出現(xiàn)過(guò)利用短至25 bp同源序列實(shí)現(xiàn)分子間重組(intermolecular recombination)的個(gè)例[23],但是普遍認(rèn)為要實(shí)現(xiàn)高效率的同源重組,Donor長(zhǎng)度需大于1 kb[24],然而當(dāng)同源臂達(dá)到2 kb以上時(shí),同源重組效率不再隨同源臂長(zhǎng)度增加而提高[25-26]。與此同時(shí),為了提高HDR效率,研究者更傾向于使用單鏈核苷酸作為供體[20, 25]。
本研究發(fā)現(xiàn)右側(cè)同源臂僅有50 bp的Z489 Donor即可通過(guò)同源重組修復(fù)突變的EGFP基因(圖6:A,B,E),表明ZFN在CHO細(xì)胞中,可以利用短至50 bp的同源臂單臂,并且在切割位點(diǎn)與需要修復(fù)的突變位點(diǎn)相距達(dá)242 bp的情況下,實(shí)現(xiàn)精確的同源重組修復(fù)。這可能與Rad51發(fā)揮功能需要高效搜索50 bp的同源臂相關(guān)[27-28]。
ZFN是高效的基因修飾工具。與傳統(tǒng)的基因打靶技術(shù)相比,利用ZFN進(jìn)行基因修復(fù)時(shí),使用2 043 bp的Donor可實(shí)現(xiàn)23.15%的同源重組,效率提高了23 000倍(23.15% vs 10-4)證明了ZFN是一種高效的基因組編輯工具。此外,本研究發(fā)現(xiàn),延長(zhǎng)Donor的,左右同源臂長(zhǎng)度可提高同源重組的效率,同Deng在傳統(tǒng)基因打靶中得到的結(jié)論一致[29]。CHOEGFP-FS細(xì)胞基因組中EGFP移碼突變的位點(diǎn)位于ZFN切割位點(diǎn)左側(cè)294 bp處,我們發(fā)現(xiàn)Donor的左側(cè)同源臂延長(zhǎng)后,同源重組的效率得到大幅度的提高。這表明,在同源重組修復(fù)過(guò)程,可能需要Donor從DSB侵入一條越過(guò)突變位點(diǎn)的較長(zhǎng)的單鏈作為模板,所以本研究中ZFN介導(dǎo)的同源重組對(duì)左側(cè)同源臂的的長(zhǎng)度具有較高的要求。當(dāng)左側(cè)同源臂向前延長(zhǎng)時(shí)會(huì)包含CMV啟動(dòng)子的部分序列,尤其是Z2043 Donor的左側(cè)同源臂包含了143~394 bp區(qū)段的CMV啟動(dòng)子的核心區(qū)域,導(dǎo)致只轉(zhuǎn)染Donor的細(xì)胞,在7后的檢測(cè)中,可能因?yàn)殡S機(jī)整合而使部分細(xì)胞表達(dá)了EGFP,然而通過(guò)扣除這些本底表達(dá)(圖7:I),我們?nèi)匀豢梢园l(fā)現(xiàn)左側(cè)同源臂延長(zhǎng)后可以提高同源重組的效率。
ZFN介導(dǎo)的同源重組效率隨著同源臂長(zhǎng)度的延長(zhǎng)而增高;當(dāng)同源臂單臂的長(zhǎng)度增加至1 000 bp時(shí),同源重組效率有較大幅度的提高。因此本研究提示在實(shí)驗(yàn)中需要利用ZFN等基因組編輯工具實(shí)現(xiàn)較高的同源重組效率,在設(shè)計(jì)Donor時(shí),應(yīng)使同源臂單臂長(zhǎng)度應(yīng)達(dá)到1 000 bp以上。
[1] BOUVIER J, CHENG J G. Recombineering-based procedure for creating Cre/loxP conditional knockouts in the mouse[J]. Curr Protoc Mol Biol, 2009, 23:13-23.
[2] WOOD A J, LO T W, ZEITLER B, et al. Targeted genome editing across species using ZFNs and TALENs[J]. Science, 2011, 6040: 307.
[3] LO T W, PICKLE C S, LIN S, et al. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions[J]. Genetics, 2013, 2: 331-348.
[4] LOMBARDO A, GENOVESE P, BEAUSEJOUR C M, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery[J]. Nat Biotechnol, 2007, 11: 1298-1306.
[5] BIBIKOVA M, GOLIC M, GOLIC K G, et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases[J]. Genetics, 2002, 3: 1169-1175.
[6] FOLEY J E, MAEDER M L, PEARLBERG J, et al. Targeted mutagenesis in zebrafish using customized zinc-finger nucleases[J]. Nature Protocols, 2009, 12: 1855-1868.
[7] MEYER M, ORTIZ O, HRABE de ANGELIS M, et al. Modeling disease mutations by gene targeting in one-cell mouse embryos[J]. Proc Natl Acad Sci U S A, 2012, 24: 9354-9359.
[8] CARBERY I D, JI D, HARRINGTON A, et al. Targeted genome modification in mice using zinc-finger nucleases[J]. Genetics, 2010, 186(2): 451-459.
[9] GEURTS A M, COST G J, FREYVERT Y, et al. Knockout rats via embryo microinjection of zinc-finger nucleases[J]. Science, 2009, 5939: 433.
[10] HAUSCHILD J, PETERSEN B, SANTIAGO Y, et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases[J]. Proc Natl Acad Sci U S A, 2011, 29: 12013-12017.
[11] YANG D S, YANG H Q, LI W, et al. Generation of PPAR gamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning[J]. Cell Research, 2011, 6: 979-982.
[12] LLOYD A, PLAISIER C L, CARROLL D, et al. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis[J]. Proceedings Of the National Academy Of Sciences Of the United States Of America, 2005, 6: 2232-2237.
[13] URNOV F D, MILLER J C, LEE Y L, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases[J]. Nature, 2005, 7042: 646-651.
[14] TOWNSEND J A, WRIGHT D A, WINFREY R J, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases[J]. Nature, 2009, 459(7245): 442-445.
[15] MOEHLE E A, ROCK J M, LEE Y L, et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases (vol 104, pg 3055, 2007)[J]. Proceedings Of the National Academy Of Sciences Of the United States Of America, 2007, 104(9): 3055-3060.
[16] MAEDER M L, THIBODEAU-BEGANNY S, OSIAK A, et al. Rapid “Open-Source” engineering of customized zinc-finger nucleases for highly efficient gene modification[J]. Molecular Cell, 2008, 2: 294-301.
[17] MORRICAL S W. DNA-pairing and annealing processes in homologous recombination and homology-directed repair[J]. Cold Spring Harb Perspect Biol, 2015, 2: a016444.
[18] SHEN P, HUANG H V. Homologous recombination in Escherichia coli: dependence on substrate length and homology[J]. Genetics, 1986, 3: 441-457.
[19] WALDMAN A S. Ensuring the fidelity of recombination in mammalian chromosomes[J]. Bioessays, 2008 (11/12): 1163-1171.
[20] SHEN B, ZHANG X, DU Y, et al. Efficient knockin mouse generation by ssDNA oligonucleotides and zinc-finger nuclease assisted homologous recombination in zygotes[J]. PLoS One, 2013, 10: e77696.
[21] REN C, YAN Q, ZHANG Z. Minimum length of direct repeat sequences required for efficient homologous recombination induced by zinc finger nuclease in yeast[J]. Mol Biol Rep, 2014, 10: 6939-6948.
[22] VERBEKE J, BEOPOULOS A, NICAUD J M. Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains[J]. Biotechnol Lett, 2013, 4: 571-576.
[23] AYARES D, CHEKURI L, SONG K Y, et al. Sequence homology requirements for intermolecular recombination in mammalian cells[J]. Proc Natl Acad Sci U S A, 1986, 14: 5199-5203.
[24] BASSETT A R, TIBBIT C, PONTING C P, et al. Mutagenesis and homologous recombination in Drosophila cell lines using CRISPR/Cas9[J]. Biol Open, 2014, 1: 42-49
[25] BEUMER K J, TRAUTMAN J K, MUKHERJEE K, et al. Donor DNA utilization during gene targeting with zinc-finger nucleases[J]. G3 (Bethesda), 2013.
[26] ZU Y, TONG X, WANG Z, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish[J]. Nat Methods, 2013, 4: 329-331.
[27] WALDMAN A S, LISKAY R M. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology[J]. Mol Cell Biol, 1988, 12: 5350-5357.
[28] IRA G, HABER J E. Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences[J]. Molecular And Cellular Biology, 2002, 18: 6384-6392.
[29] DENG C, CAPECCHI M R. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus[J]. Mol Cell Biol, 1992, 8: 3365-3371.
The effect of the length of donor homologous arm on the efficiency of ZFN-induced homologous recombination
NIEYu,QIAOYanle,CHENYaosheng,HEZuyong
(State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University,Guangzhou 510006, China)
Zinc finger nuclease (ZFN) is composed of an engineered site-specific Cys2-His2zinc finger domain and the nonspecific restriction enzymeFokI cleavage domain, which is able to cut at a specified genomic locus to generate double-strand break (DSB) of DNA. The DSBs induced by ZFN are subsequently repaired through two different DNA repair mechanisms, either non-homologous end-joining (NHEJ) or homology-directed recombination (HDR). NHEJ is prone to introduce sequence insertions or deletions (indels), and can therefore produce frameshifts in open reading frames and gene loss of function. HDR requires a donor template with the sequence similar to the genome to mend a lesion. By introducing a DNA donor with desired modifications, precise genomic modifications can be achieved at a frequency improved 102-104-fold as compared to the traditional gene targeting method. Currently, most studies have focused on screening ZFN with higher activity, and improving the delivery efficiency of ZFN and donor into host cells, less studies have investigated the relationship between the homologous arm length with the efficiency of ZFN induced homologous recombination. Here, we constructed a pair of ZFN plasmids targeting to EGFP and verified its cutting activity. Then we designed a series of donors with different lengths of homologous arms. By introducing individual donor with ZFN into CHO cells harboring a frame-shift GFP gene, we measured the homologous recombination efficiencies through the flow cytometric analysis. We found that a 50 bp short homology arm was capable to support ZFN-mediated homologous recombination. Increasing the length of the homologous arms could improve the efficiency of ZFN-mediated homologous recombination. A dramatic improvement (104-fold higher than traditional method) requires a homology arm longer than 1 000 bp.
zinc finger nuclease; double-strand break; homologous recombination; donor; homologous arm
10.13471/j.cnki.acta.snus.2016.04.017
2016-01-26
國(guó)家轉(zhuǎn)基因生物新品種培育重大專項(xiàng)資助項(xiàng)目(2016ZX08006003-006);NSFC-廣東省聯(lián)合基金資助項(xiàng)目(U1201213)
聶宇(1989年生),男;研究方向:動(dòng)物學(xué);通訊作者:何祖勇;E-mail:zuyonghe@foxmail.com
Q78
A
0529-6579(2016)04-0100-08