馮夏庭 李海波 王明洋 李夕兵 鄧建輝
摘要:隨著礦山開采深度增加和條件趨于復(fù)雜,以及越來越多的水利水電、交通、國(guó)防和基礎(chǔ)物理實(shí)驗(yàn)等工程在深部和我國(guó)強(qiáng)烈構(gòu)造活動(dòng)區(qū)興建,高強(qiáng)度巖爆、持續(xù)大變形和大體積塌方等深部工程災(zāi)害造成的人員傷亡、停工停產(chǎn)等工程事故居高不下,造成的經(jīng)濟(jì)損失觸目驚心。深部工程的重大災(zāi)害事故難以遏制的關(guān)鍵問題在于目前對(duì)這些災(zāi)害的發(fā)生機(jī)理缺乏深入研究,尚無有效指導(dǎo)這些災(zāi)害預(yù)測(cè)和防治的系統(tǒng)理論和方法。 為了解決這些問題,本項(xiàng)目立項(xiàng)報(bào)告提出了圍繞涉及地學(xué)、力學(xué)與工程科學(xué)方面的四個(gè)關(guān)鍵科學(xué)問題:(1) 深部巖體結(jié)構(gòu)特征與復(fù)雜應(yīng)力環(huán)境及其對(duì)災(zāi)害的控制作用;(2) 深部強(qiáng)卸荷作用下裂隙巖體與圍巖力學(xué)行為的演化規(guī)律;(3) 深部重大工程災(zāi)害時(shí)空孕育演化動(dòng)力學(xué)過程與成災(zāi)機(jī)理;(4) 深部重大工程災(zāi)害孕育演化過程的時(shí)空預(yù)測(cè)與動(dòng)態(tài)調(diào)控。 設(shè)置了6個(gè)課題:(1) 深部巖體結(jié)構(gòu)與地應(yīng)力特征及其對(duì)災(zāi)害的控制作用;(2) 高應(yīng)力強(qiáng)卸荷作用下多組裂隙巖體宏細(xì)觀力學(xué)行為;(3) 深部圍巖分區(qū)破裂機(jī)理及其時(shí)間效應(yīng);(4) 深部硬巖爆破開挖誘發(fā)巖爆與碎裂誘變機(jī)理;(5) 深部巖體強(qiáng)卸荷大變形演化與致災(zāi)機(jī)理;(6) 深部重大工程災(zāi)害的時(shí)空預(yù)測(cè)與動(dòng)態(tài)調(diào)控理論。 確定了如下預(yù)期目標(biāo):針對(duì)深部工程和深部金屬礦山重大災(zāi)害(高強(qiáng)度巖爆、持續(xù)大變形與大體積塌方)的誘發(fā)條件、孕育演化機(jī)制、預(yù)測(cè)預(yù)警與動(dòng)態(tài)調(diào)控方法開展基礎(chǔ)研究,揭示高應(yīng)力強(qiáng)卸荷下深部圍巖應(yīng)力調(diào)整與性質(zhì)轉(zhuǎn)化和結(jié)構(gòu)分區(qū)破裂演化的條件和機(jī)理,探明深部工程災(zāi)害孕育演化過程中的能量聚集、傳遞與釋放的規(guī)律,建立深部重大工程災(zāi)害孕育演化過程的時(shí)空預(yù)測(cè)和動(dòng)態(tài)調(diào)控理論體系,較好地解決我國(guó)深埋水利水電工程、金屬礦山深部開采、深埋交通隧道、深埋國(guó)防工程、暗物質(zhì)探測(cè)等深部基礎(chǔ)物理實(shí)驗(yàn)工程中災(zāi)害預(yù)測(cè)預(yù)報(bào)和防治的關(guān)鍵科學(xué)問題,形成深部重大工程災(zāi)害防治與礦產(chǎn)資源高效開采相結(jié)合的深部金屬礦安全開采新模式和理論體系,為實(shí)現(xiàn)我國(guó)安全、經(jīng)濟(jì)與高效的深部資源開采、能源開發(fā)、交通、基礎(chǔ)物理實(shí)驗(yàn)與國(guó)防建設(shè)等提供關(guān)鍵理論支持。
關(guān)鍵詞:深部工程; 災(zāi)害; 巖體結(jié)構(gòu); 孕育演化; 時(shí)空預(yù)測(cè);動(dòng)態(tài)調(diào)控
Abstract:With increasing depth of mining and conditions become more complex, as well as a growing number of water conservancy and hydropower, transportation, national defense, and fundamental physics experiments and other projects are constructed in the deep and intense tectonic activity zone. The key issue for difficult suppressing of the deep engineering major disasters is that the current mechanism of these disasters are lack of in-depth study, and no effective guide of system theory and methods for these disaster prediction and prevention. To solve these problems, this report presents four key scientific questions involving geoscience, mechanics and engineering sciences: (1) deep rock structure and complexity stress environment and its control to the disaster; (2) mechanical behavior evolution of fractured rock and rock mass under strong unloading condition; (3) kinetics mechanism and disaster causing mechanism of the space time; (4) time space prediction and dynamic control of the evolution of deep major project disaster. Six sub-projects are set up: (1) deep rock structure and stress characteristic and its effect on disaster control action ; (2) macro and micro mechanics of multiple fractured rock mass under high stress strong unloading condition; (3) zonal rupture mechanism and time effect of deep rock mass; (4) blasting caused rockburst and it induced fragmentation mechanisms of deep hard rock; (5) deep rock strong unloading induced large deformation evolution and disaster formation mechanism; (6) time and space prediction and dynamic control theory of deep major engineering disasters. Following targets are established: Basic researches are aim at the causing condition, evolution mechanism, prediction and forecast and dynamic control methods of major disasters in deep engineering and deep metal mines. The purpose is to reveal the conditions and mechanisms of stress adjustment and nature transformation and structure zonal rupture evolution of deep rock mass under high stress strong unloading condition; to verify the energy accumulation, transfer and release law during deep engineering disaster evolution; to establish time and space prediction and dynamic control theory system of deep major engineering disasters evolution. The achievements will provide critical theoretical support to national security, economic, and efficient deep exploitation of resources, energy development, transportation, basic physics experiments and national defense construction.
Keywords:Deep engineering; disaster; rock structure; evolution; time and space prediction; dynamic control