丁巧蓓, 晁元卿, 王詩忠, 陳燕玫, 仇榮亮
(中山大學環(huán)境科學與工程學院,廣州 510275)
?
根際微生物群落多樣性在重金屬土壤修復中的研究
丁巧蓓, 晁元卿*, 王詩忠, 陳燕玫, 仇榮亮*
(中山大學環(huán)境科學與工程學院,廣州 510275)
摘要:植物根際微生物在植物修復重金屬污染土壤時分泌的激素、鐵載體、ACC脫氨酶、黃酮類化合物和酚酸類等有機物具有增強植物生長、促進植物根際對重金屬吸收、轉運和積累的作用,同時促進適應相應根際環(huán)境的功能微生物群落的建立. 文章結合作者課題組的研究結果,概述根際微生物在植物修復重金屬污染土壤過程中的作用,總結了根際細菌、真菌、古菌在植物修復中的作用,進一步分析了土壤污染類型、改良劑、根際植物的種類等對根際微生物活動的影響,對今后植物修復重金屬污染土壤過程中與根際微生物作用相關的研究進行了展望.
關鍵詞:重金屬污染土壤; 植物修復; 根際微生物; 微生物群落
2014年《全國土壤污染狀況調查公報》[1]指出,我國土壤環(huán)境狀況總體不容樂觀,耕地點位超標率為19.4%.污染類型以無機型為主,占全部超標點位的82.8%,主要無機污染物包括Cd、Hg、As、Cu、Pb、Cr、Zn、Ni等重金屬.在全國24個省份(城市)調查的所有污染農作物種植地中,重金屬污染土壤占總面積80%,全國遭受不同程度重金屬污染的耕地面積已接近2 000萬hm2,約占耕地總面積1/5.嚴重的土壤重金屬污染對生態(tài)環(huán)境和人體健康構成巨大威脅,已經成為制約區(qū)域土地可持續(xù)開發(fā)利用和影響生態(tài)安全的關鍵因素.因此,對土壤重金屬污染的修復治理勢在必行.
較之傳統(tǒng)物理化學方法,植物修復因治理過程原位、治理成本低、管理與操作簡易以及環(huán)境美學兼容等不可替代的優(yōu)勢而受到重視[2]. 植物修復包括植物提取和植物穩(wěn)定過程.植物提取主要是通過植物根系吸收可溶性重金屬并將其轉移、貯存到植物莖葉,然后收割莖葉以達到去除土壤重金屬目的(圖1A).植物穩(wěn)定主要是通過植物根系的吸收、螯合、沉淀及還原作用將高毒性形態(tài)轉化為低毒形態(tài),將重金屬固定在根系和根際土中[3].同時植物根際分泌物能通過改變根際環(huán)境的pH或Eh,使有毒重金屬的形態(tài)發(fā)生改變,如在根際菌的作用下可將Cr6+還原為Cr3+,從而降低Cr的毒性(圖1B).然而在實際應用中,植物修復技術具有修復周期長、對重金屬深層污染修復困難、植株成活率低的缺點[4],修復過程中常利用化學修復與微生物修復技術以輔助植物修復,其中微生物修復技術中的根際微生物在植物修復中發(fā)揮重要作用.
根際微生物是指在植物根系直接影響的土壤范圍內生長繁殖的微生物,能通過定殖、競爭、共生和調節(jié)土壤的營養(yǎng)動態(tài)等活動影響植物的生長[5].根際微生物對于重金屬污染土壤植物修復效率的提高具有重要的輔助作用[6],主要通過合成、分泌植物促生物質增加植物生物量,同時通過功能酶、鐵載體、有機酸及生物表面活性劑等物質活化土壤重金屬(圖1C),從而增強植物提取效果[7].此外,根際微生物還能通過生物吸附和富集作用、溶解和沉淀作用、氧化還原作用改變重金屬離子在土壤中的貯存形式,以緩解重金屬對植物的毒害[8].
圖1 根際微生物在植物修復重金屬污染土壤的作用機制
本文系統(tǒng)介紹了在植物修復過程中根際微生物的種類、影響根際微生物修復重金屬污染的因素、關于根際微生物在植物修復重金屬研究的主要觀點與不足,對根際微生物在植物修復重金屬污染土壤中的研究現(xiàn)狀進行分析,并對今后植物修復重金屬污染土壤過程中根際微生物作用的相關研究進行了總結和展望.
1根際微生物在植物修復過程中的群落多樣性表征
大多數根際微生物對重金屬產生敏感性反應,即根際微生物接觸重金屬后會產生應激作用,通過分泌有機酸類物質與重金屬結合,抑制重金屬對植物的毒害[9].利用微生物群落的敏感性反應輔助植物修復重金屬污染土壤,不僅克服單一功能微生物修復過程中微生物難存活與難收集的缺點,還可改善植物修復效果,具有廣闊的應用前景[10].有研究證實,不同類型微生物在植物根際的功能不同[11],主要體現(xiàn)在根際細菌是通過化學反應改變重金屬的價態(tài)及存在形態(tài)(絡合態(tài)、脫烷基),從而降低重金屬毒性,根際真菌主要是輔助宿主植物獲取更多的礦質營養(yǎng)[12],促進寄主植物在重金屬污染土壤中的生長,增加其生物量,根際古菌雖存在于重金屬污染土壤但其主要功能并不明晰[13].
1.1根際細菌
根際細菌數量繁多,在根際分布較廣,且在根際的不同部位,細菌數量和類型分布也有差異.有研究[14]表明,相比于非根際區(qū),根際更適宜細菌的生長.VIK等[15]通過統(tǒng)計植物根際和根內的操作分類單位(Operational Taxonomic Units, 簡稱OTUs),發(fā)現(xiàn)根際細菌多樣性以及根際細菌的數量和種類都顯著高于根內細菌.BULGARELLI等[16]發(fā)現(xiàn)擬南芥根際中數量最多是變形菌門細菌,且以鏈霉菌科和叢毛單胞菌科細菌為主導;LUNDBERG等[17]研究顯示,擬南芥根際菌以放線菌門和變形菌門為主,其中變形菌門豐度最高,主要以α、β、γ 3種綱的細菌為主.
在受污染土壤中,根際細菌的數量和種類最多,且以放線菌門、厚壁菌門和變形菌門為主(表1).這3種菌門的根際細菌耐重金屬性強,在重金屬污染土壤中大量存在.重金屬脅迫條件對根際細菌的結構與功能具有重要的影響.EISONBATY等[26]研究發(fā)現(xiàn)當細菌暴露于有毒物質或環(huán)境時,外界氧化脅迫的壓力是使細胞死亡的一種常見機制.雖然該機制會減少土壤中根際細菌的數量、種類,影響根際細菌群落結構,但具有特定耐性功能的根際細菌群落仍能在重金屬脅迫環(huán)境條件下存活.MARGESIN等[27]在Pb/Zn污染土壤中發(fā)現(xiàn)有較多的可培養(yǎng)的、需氧的Pb/Zn耐性根際細菌.SOLIS-DOMINGUEZ等[28]研究發(fā)現(xiàn)叢枝菌根真菌(Arbuscular Mycorrhizal Fungi, 簡稱AMF)影響根際細菌群落在重金屬污染土壤中的修復作用,二者在植物根系進行相互選擇性作用,表明根際細菌群落會受到其它類型微生物的影響.
表1 根際細菌分類情況
在重金屬污染土壤中,根際細菌對重金屬的抗性及解毒能力是影響植物修復的關鍵性因素[8].根際細菌與重金屬接觸后可發(fā)生離子交換、配位、螯合、沉淀等作用,使重金屬離子在細胞表面結合.同時,根際細菌還能通過其自身的細胞代謝活動來調節(jié)變價重金屬元素的氧化還原反應,使重金屬的價態(tài)及存在形態(tài)(絡合態(tài)、脫烷基)發(fā)生改變,從而降低重金屬毒性[29].BAI等[30]發(fā)現(xiàn)枯草芽孢桿菌BacillusSubtilisDBM能通過生物吸附、積累方式降低Pb的生物有效性,通過使Pb沉淀的作用方式緩解Pb的毒性作用.RAJKUMAR等[31]發(fā)現(xiàn)根際細菌Pseudomonassp. PsA4和Bacillussp.Ba32能通過催化反應將高毒性的Cr6+還原成低毒性的Cr3+,從而減緩Cr對芥菜的重金屬毒性.此外,土壤中還存在一些氧化硫桿菌、氧化亞鐵桿菌等能直接或間接地通過氧化、還原、絡合、吸附或溶解作用去除重金屬,緩解植物根際的重金屬毒性效應[31].可見,根際細菌在降低重金屬對植物的毒害,增強植物對重金屬的轉化和吸收等方面起著重要作用.
根際細菌是植物修復重金屬污染土壤的重要根際微生物,它能緩解重金屬對植物根際的毒害效應.根際細菌群落的多樣性能有效地表征植物修復重金屬污染效果.因此研究根際細菌分類情況、群落結構特征及群落的功能,有利于篩選和利用在植物修復重金屬污染過程中起重要作用的根際細菌,強化植物修復重金屬污染土壤技術.
1.2根際真菌
根際真菌是指分布在根際周圍的真菌,分為腐生真菌和菌根真菌[32].在重金屬污染土壤修復實踐中應用較多的是菌根真菌,主要包括內生菌根真菌、外生菌根真菌以及內外生菌根真菌.
1.2.1內生菌根真菌內生菌根真菌在促進植物生長和降低農作物對重金屬吸收方面起到重要的輔助作用[33].LIU等[34]篩選出3種來自玉米根際能吸收和富集Cd的內生菌根真菌,它們分泌的植物激素可將土壤中的多磷酸鹽沉淀吸附于細胞壁上,并且這些沉淀物能將Cd螯合固定在真菌細胞內,有利于緩解Cd對植物生長的毒害作用.另有研究表明,具有重金屬耐性的內生菌根真菌可通過影響宿主羊茅屬植物對Cd、Zn、Cu等重金屬的吸收和轉運機制,緩解重金屬對羊茅屬植物的毒害作用,與未接種內生菌根真菌的植株相比,接種處理的植株具有較高的生物量和生長指數[35].
從枝菌根真菌(AMF)在重金屬污染修復,尤其是與植物聯(lián)合修復方面的潛力已有較多的研究.AMF在重金屬污染土壤植物修復中的作用主要是輔助寄主植物獲得更多的礦質營養(yǎng)和提高寄主植物對重金屬的抗性[36].在重金屬污染土壤中,植物因缺少必需的礦質養(yǎng)分影響生長,而AMF的存在能幫助宿主植物獲取更多的礦質營養(yǎng)[37].肖雪毅等[38]發(fā)現(xiàn)AMF能顯著增加金雞菊地上部和根系的P濃度,從而促進金雞菊的生長并提高其生物量.AMF另可通過提高宿主植物P營養(yǎng)水平,使宿主植物根部中的重金屬與磷酸根形成難溶物質[39],抑制重金屬向地上部轉運,減少植物地上部重金屬含量[40].此外,AMF能夠減輕重金屬對寄主植物的毒性,提高寄主植物的重金屬耐性[41].CHEN等[36]和DONG等[42]通過室內盆栽實驗發(fā)現(xiàn)AMF不僅能改善植物營養(yǎng)元素P的濃度,還能降低植物地上部Cd、Cu和As的濃度,減輕重金屬對寄主植物的毒性.在Cr污染土壤中AMF對車前草促生效應顯著,減少車前草地上部分Cr的濃度,表明AMF對Cr的耐性能改變植物對重金屬的積累與吸收效應[43].此外,AMF通過改變根際土壤微生物群落結構及其物理化學性質間接地影響重金屬形態(tài)變化.在Mn污染土壤中,AMF能改變根際土壤中Mn氧化和Mn還原細菌群落的組成,因而降低Mn的生物有效性,減緩植物受Mn的脅迫,促進植物生長[44].
1.2.2外生菌根真菌外生菌根是高等植物營養(yǎng)根系和外生菌根真菌(Ectomycorrhizal Fungi, 簡稱ECMF)形成的共生體,在重金屬脅迫條件下可將重金屬固定于真菌細胞壁內,調節(jié)寄主植物細胞的生理、化學過程,阻止過多的重金屬進入植物根部,以促進寄主植物的生長,增強寄主植物對重金屬的耐受性[45].FINLAY等[46]發(fā)現(xiàn)根際ECMF優(yōu)勢種為擔子菌門或子囊菌門.
ECMF緩解植物重金屬毒害作用的機理主要是能對重金屬進行吸收、轉運和分布[46].Zn、Cu、Mn是植物和外生真菌所需的微量營養(yǎng)元素,通過吸收和氧化還原反應調整它們在植物根際的分布情況,促進植物對這些元素的吸收、轉運,使植物生物量增加.過多的微量重金屬進入植物根際時會對植物產生毒害.LANGER等[47]發(fā)現(xiàn)在ECMF的植物根際,隨著Zn濃度的增加,植物根際中Zn的轉運系數下降.研究[48]表明,較之無菌根植株,接種了美味牛肝菌(Boletusedulis)菌根和混合菌根的植株體內Cd以及根部Cu濃度均顯著降低.可能的原因是土壤中的重金屬破壞了無菌根植物根部的原生質膜,損傷了原生質膜的功能,導致重金屬離子大量流入根部并向枝葉轉移,而接種菌根可以減少對有害重金屬的過量吸收,有效緩解土壤中重金屬對植物的毒害,促進植物在重金屬污染土壤中的生長,使植物生物量增加.
1.3根際古菌
古菌作為生命的第三種形式[49],主要存在和生活于極端環(huán)境中,如熱泉、鹽湖等,因而被歸為極端微生物.研究表明,重金屬污染土壤中也存在一定豐度和種類的古菌,如SANDAA等[50]研究發(fā)現(xiàn),相比于無污染土壤,重金屬污染土壤中古菌的數量減少1.3%±0.3%.一般認為古菌不會在植物根際存在[51],但隨著研究的進展,科學家們在受重金屬污染土壤的植物根際也發(fā)現(xiàn)了古菌[52].例如,唐黎等[49]通過提取重金屬污染場地中棉花不同生長時期根際土中微生物的DNA,采用T-RFLP分析微生物群落結構,發(fā)現(xiàn)了在棉花根際土中有古菌存在,且古菌的群落結構受季節(jié)變化影響.OLLIVIER等[13]在Pb和As污染土壤中的植物根際發(fā)現(xiàn)了氨氧化細菌和氨氧化古菌,且細菌和古菌的數量不相同,有機質較低的土壤中細菌數量多于古菌,有機質較豐富的土壤中古菌的數量顯著高于細菌.氨氧化過程是硝化作用的第一步,氨氧化細菌和古菌通過控制單加氧酶(amoA)的活性來控制氨氧化成亞硝酸鹽的速率.研究[53-54]發(fā)現(xiàn)根際土中泉古菌門的古細菌含有amoA基因,證實氨氧化古菌能調控植物根際的氨氧化過程.
關于根際古菌在植物修復重金屬污染土壤過程中的作用仍不清晰,根際古菌群落結構、群落功能、環(huán)境影響因子和植物的關系等關鍵問題仍是未知的.在今后的研究中應多關注根際古菌在植物修復重金屬污染過程中對根際植株生長的影響、根際古菌自身群落結構的變化以及根際古菌群落與根際其它微生物群落的關系,進一步探索根際古菌在重金屬污染土壤植物修復過程中的作用.
1.4根際微生物之間相互作用
根際微生物在重金屬污染土壤中相互作用的關系主要包括消極作用、積極作用(互利共生、偏利共生)、中立作用(既無利又無害)[55].在實際的重金屬污染修復中多利用根際微生物的積極作用探討在植物根際起修復作用的微生物群落輔助植物修復重金屬污染的過程.
當前,根際菌群的研究多于內生菌群的研究,因為根際微生物產生的根系分泌物對植物修復重金屬污染土壤有重要作用.根際分泌的有機酸、鐵載體、ACC脫氨酶、生長素等與重金屬結合減少重金屬對植物的毒害,增加植物的抗氧化防御系統(tǒng),促進植物的生長[7].關于根際微生物種類的研究中,單獨研究根際細菌的較多,研究根際細菌與真菌結合的較少,但根際真菌在植物修復重金屬污染過程中能調節(jié)重金屬在根際的分布情況,促進寄主植物對重金屬元素的吸收、轉運,減少重金屬對植物的毒害,促進植物在重金屬污染土壤中的生長,使植物生物量增加等作用[46-47].今后研究應多關注根際細菌與真菌結合的研究,綜合利用細菌與真菌互利共生的關系,增加植物根際的重金屬耐性,促進根際植物的生長,輔助根際植物修復重金屬污染土壤,加強對根際古菌與其它根際微生物群落關系的研究.
2不同污染場地中根際微生物群落多樣性差異及其對重金屬修復效果的影響
根際微生物的活性受土壤溫度、營養(yǎng)狀況、水的可利用性及其它一些能引發(fā)群落耐性的環(huán)境污染因素的影響[56].此外,根際微生物也會受到土壤污染類型(單一或復合污染)、是否添加改良劑和改良劑種類以及根際植物種類等的影響[57].如污染土壤的理化性質會影響根際微生物的分離和純化,土壤污染程度及土壤特性會影響根際微生物群落結構的分布,植物的種類會影響根際微生物在根際的定殖等[15].THION等[32]研究發(fā)現(xiàn)子囊菌亞門、擔子菌亞門和接合菌亞門3種AMF,它們在不同的植物種類、土壤pH、含N量和含水量條件下物種組成和功能都各不相同,且根際土中AMF的多樣性顯著高于非根際土.這表明在植物修復重金屬污染過程中根際微生物的結構與功能受多種因素的影響.
土壤污染的類型主要分為單一或者復合重金屬污染以及重金屬與有機物的復合污染.研究發(fā)現(xiàn)重金屬種類和濃度會影響植物修復重金屬過程中根際微生物的種類、豐富度及其群落結構[58-59].重金屬種類能影響根際微生物的多樣性,在不同種類重金屬污染土壤中優(yōu)勢植物的種類不同,根際微生物的多樣性及優(yōu)勢種也會有差異.表2顯示,單一重金屬污染條件下,植物種類不同,根際微生物的多樣性和優(yōu)勢種有顯著差異.不同種類重金屬污染條件下,同種植物的根際微生物的多樣性和優(yōu)勢種不相同.幾種相同重金屬污染條件下,不同植物和不同重金屬濃度下的根際微生物的多樣性和優(yōu)勢種也有所差異.不同濃度Pb污染條件,水稻根際微生物的多樣性不相同[60].不同濃度As污染下,荊(Wattle)和發(fā)草(Deschampsiacaespitosa)的根際微生物多樣性和優(yōu)勢種均有所差異[61].相同重金屬元素的復合污染下,各重金屬濃度不同,植物根際微生物多樣性及優(yōu)勢種類也不同.在同一重金屬污染的土壤中重金屬濃度的差異使得根際微生物的多樣性發(fā)生改變,產生的根際微生物的優(yōu)勢種也不同,可見重金屬濃度對土壤中根際微生物群落結構具有重要影響.
表2 不同重金屬對根際微生物多樣性及優(yōu)勢種的影響
受重金屬污染的土壤一般酸性高且貧瘠,常添加改良劑調節(jié)土壤pH、改善土壤基本理化性質[70].其中有機質改良劑(如生物炭)可以改善微生物營養(yǎng),提升微生物活性[71].生物炭能為植物提供更多的營養(yǎng)物質促進植物生長和吸引有利的細菌以刺激真菌的生長[72].生物炭能改變根際環(huán)境的物理化學參數,為細菌和真菌提供一個安全有利的生長環(huán)境[33];添加生物炭后能改變土壤中根際微生物呼吸作用的速率,影響土壤中的碳循環(huán),使土壤的理化性質發(fā)生改變,增加微生物的生物量,從而影響根際微生物的種類及其在根際的定殖情況[72].礦物類改良劑在植物修復重金屬污染土壤中對根際微生物具有重要影響.杜瑞英等[73]研究多金屬污染土壤中微生物群落功能對麻瘋樹-化學聯(lián)合修復的響應時發(fā)現(xiàn),施用改良劑粉煤灰后土壤微生物指標顯著高于對照土壤,說明粉煤灰對污染土壤環(huán)境的改善具有重要的影響.改良劑的投加能沉淀重金屬或提高土壤對重金屬的吸附,從而降低有效態(tài)金屬含量.因而施加改良劑有利于提高土壤微生物群落功能多樣性,有利于加強植物修復重金屬污染效果[74].
植物種類不同,根際微生物的多樣性和優(yōu)勢種有顯著差異[61-62].CLAY等[5]研究表明,重金屬土壤中根際細菌的群落結構會因為植物的種植而發(fā)生改變,同時根際細菌群落的相互作用也會影響植物的多樣性與修復效果.例如,在受重金屬污染的連續(xù)區(qū)域中,植物根際土中的細菌群落比非根際土中的豐富很多,且不同植物的根際細菌群落結構也有差異,其中優(yōu)勢植物種高羊茅根際中的耐性細菌的種類與數量最多.研究者[75]認為,該區(qū)域耐性細菌與高羊茅具有最強的共生關系,這種共生關系減少了該區(qū)域的植物多樣性,增強了高羊茅的優(yōu)勢性,使其成為該區(qū)域修復重金屬的先鋒植物,極大地增強了高羊茅修復重金屬污染效果.根際微生物群落多樣性越豐富,植物修復重金屬效果越顯著.
3當前研究存在的問題
關于根際微生物群落多樣性在植物修復重金屬污染土壤中的大多數研究只考慮單一細菌或真菌的作用(表3),其它重金屬的干擾會影響修復效果.然而實際污染場地多以復合污染為主,此外,細菌和真菌都是根際微生物重要組成部分,它們對植物吸收、重金屬積累都具有重要影響,單一地研究細菌或真菌無法反映出整個根際微生物群落對植物修復體系的影響.當前的研究中較少關注根際細菌與耐性植物之間的相互選擇性以及重金屬污染場地的植物再生.大多數研究中只關注根際細菌或真菌的群落結構變化,較少關注整個根際微生物群落的結構與功能.關于根際微生物群落結構的研究爭議主要是單一污染與復合污染在哪種條件下根際微生物群落結構更豐富.THION等[32]研究發(fā)現(xiàn)受寄主紫花苜蓿的調控下復合污染場地中具有修復作用的真菌群落結構比較單一,真菌種類和數量都比較少.SOLIS-DOMINGUEZ等[28]研究受Pb、Cr復合污染的鉛鋅尾礦時發(fā)現(xiàn)菌根叢枝真菌與受單一重金屬污染的菌根叢枝真菌相比,菌落的種類與結構更加豐富.根際微生物群落結構變化與植物修復重金屬污染的作用效果緊密相關,結構豐富度越高,修復效果越好.但在具體的修復應用中根際微生物群落結構變化與修復效果的關系如何仍有待研究.
4展望
利用植物修復土壤重金屬污染具有很大的潛力.在進行重金屬污染土壤的生物修復過程中,重視并應用植物根際微生物轉移、積累重金屬的特性,實現(xiàn)根際微生物與超富集植物協(xié)同治理具有重要的實踐價值.對于根際微生物群落多樣性在植物修復重金屬污染土壤的研究可從以下幾方面展開:
(1)理論機制.通過植物根際微生物菌種篩選、鑒定、繁殖、菌劑生產等方面技術的應用,進一步了解根際微生物群落中各菌種的生物和生態(tài)學特征及其功能機制,采取多菌聯(lián)用技術,將2種及2種以上具有相同功能的根際菌應用于植物修復重金屬污染過程中,進一步加強菌種、植物根系、介質載體三者相互的復合功能研究.同時還需分析不同植物種類根際菌群的特點,根系生長對接種生物生長繁殖和生物學特征及功能的影響,根際微生物、內生菌、菌根等與宿主的關系以及根際菌增強植物抗性與促進植物吸收重金屬的過程原理等.
(2)適用技術開發(fā).重金屬污染土壤的主要類型有土壤質地污染、理化性質上的污染、重金屬種類與污染程度等方面的污染.由于重金屬污染類型的不同,以及受污染場地地理環(huán)境的差異,如氣候變化導致降水量、氣溫等條件的不同,用于場地重金屬修復的超富集植物和耐性植物的種類多樣,至今我國已發(fā)現(xiàn)400多種重金屬超富集植物,因此,對于根際菌菌劑產品的研發(fā)要有針對性,要結合受污染場地的土壤類型特點、場地環(huán)境影響因素,以及與超富集植物或耐性植物的匹配性篩選出高效根際菌菌種或高效根際菌群,并結合植物群落的配置特點研發(fā)適用且高效的植物-微生物聯(lián)合修復技術,使其向技術化的方向發(fā)展.
表3 根際微生物在植物修復重金屬污染土壤中的應用
(3)利用生物信息學技術,對具有耐重金屬特性的根際微生物群落結構進行基因測序,分析根際微生物的多樣性及其優(yōu)勢種,進一步分析根際微生物群落結構與功能之間的關系,探討根際微生物在植物根際的定殖機理.研究重金屬污染場地中具有植物促生功能的根際促生菌群落,闡明其植物促生機制,將其有效地應用到實際生產中.
(4)技術產品安全性問題.篩選并進行繁殖的抗性根際微生物菌種,一般具有很強的抵抗重金屬毒性的能力,因此在實際修復應用過程中應當注重根際微生物菌種的安全性與可控性.重金屬污染土壤治理的目標之一是保護周邊生態(tài)環(huán)境尤其是土壤與水域環(huán)境,在生態(tài)治理過程中應注重植物物種、微生物菌種與生態(tài)環(huán)境相互之間的關系,應用時必須綜合考慮環(huán)境的生態(tài)安全問題.
參考文獻:
[1]中華人民共和國環(huán)境保護部,中華人民共和國國土資源部. 全國土壤污染狀況調查公報[EB/OL]. (2014-04-17)[2015-07-30].http://www.zhb.gov.cn/gkml/hbb/qt/201404/W020140417558995804588.pdf.
[2]嚴群,周娜娜.植物修復重金屬污染土壤的技術進展[J]. 有色金屬科學與工程,2012,3(5):61.
YAN Q,ZHOU N N. The technology progress of phytoremediation on heavy metal contaminated soils[J]. Nonferrous Metals Science and Engineering, 2012,3(5):61.
[3]肖鵬飛,李法云,付寶榮.土壤重金屬污染及其植物修復研究[J]. 遼寧大學學報,2004,31(3):280-281.
XIAO P F,LI F Y,FU B R. Soil contaminated by heavy metal and its phytoremediation[J]. Journal of Liaoning University, 2004,31(3):280-281.
[4]陳燕玫,柏珺,楊煜曦.植物根際促生菌輔助紅麻修復鉛污染土壤[J]. 農業(yè)環(huán)境科學學報,2013,32(11):2159.
CHEN Y M,BAI J,YANG Y X. Phytoremediation of Pb polluted soil by kenaf with assistance of plant growth promoting rhizobectrium[J]. Journal of Agro-Environment Science,2013,32(11):2159.
[5]CLAY K, HOLAH J. Fungal endophyte symbiosis and plant diversity in successional fields[J]. Science, 1999,285(5434): 1743.
[6]DIMKPA C O, MERTEN D, SVATOS A, et al. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores[J]. Soil Biology and Biochemistry, 2009, 41(1): 156.
[7]施積炎,陳英旭,林琦.根分泌物與微生物對污染土壤重金屬活性的影響[J]. 中國環(huán)境科學,2004,24(3):316.
SHI J Y,CHEN Y X,LIN Q. The influence of root exudates and microbe on heavy metal activity in contaminated soil[J].China Environmental Science, 2004,24(3):316.
[8]馬瑩,駱永明,滕應.根際促生菌及其在污染土壤植物修復中的應用[J]. 土壤學報,2013, 50(5): 1021.
MA Y,LUO Y M,TENG Y.Plant growth promoting rhizobacteria and their roles in phytoremediation of heavy metal contaminated soils[J].Acta Pedologica Science,2013, 50(5): 1021.
[9]CATRIONA A M, YANG X, CLARK I M, et al. Relative impact of soil, metal source and metal concentration on bacterial community structure and community tolerance[J]. Soil Biology & Biochemistry, 2010, 42(9):1409.
[10]劉勁松, 張健君, 楊淑芳.內生菌參與植物/微生物聯(lián)合修復重金屬污染土壤的研究進展[J].中國植保導刊,2014,34(2): 27.
LIU J S,ZHANG J J,YANG S F.Research progress on remediation of heavy metal contaminated soils by endophyte in plant-microorganism[J].China Plant Protection, 2014,34(2): 27.
[11]COMPANT S, CLéMENT C, SESSITSCH A.Plant growth-promoting bacteria in the rhizo- and endosphere of plants:their role, colonization, mechanisms involved and prospects for utilization[J]. Soil Biology & Biochemistry,2010, 42(5): 674.
[12]CHEN Y X, WANGY P, LIN Q, et al. Effect of copper tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens[J]. Environment International, 2005, 31(6):863.
[13]OLLIVIER J, WANAT N, AUSTRUY A. Abundance and diversity of ammonia-oxidizing prokaryotes in the root-rhizosphere complex ofMiscanthus×giganteusgrown in heavy metal-contaminated soils[J]. Microbial Ecology,2012, 64(4):1040.
[14]TKACZ A, POOLE P. Role of root microbiota in plant productivity[J]. Journal of Experimental Botany,2015,66(8):2167.
[15]VIK U, LOGARES R, BLAALID R, et al. Different bacterial communities in ectomycorrhizae and surrounding soil[J]. Scientific Report,2013, 3471(3):3473.
[16]BULGARELLI D, ROTT M, SCHLAEPPI K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota[J]. Nature, 2012,525(7583): 92.
[17]LUNDBERG D S, LEBEIS L, PAREDES S H, et al. Defining the coreArabidopsisthalianaroot microbiome[J]. Nature, 2012, 488(7409): 88.
[18]HE L Y, ZHANG Y F, MA H Y, et al. Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants[J]. Applied Soil Ecology, 2010,44 (1): 51.
[19]DELMOTTE N, KNIEF C, CHAFFRON S, et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria[J]. Proceedings of the National Academy of Science of the United States of America,2009,106(164):29.
[20]RAIJMAKERS J M,WELLER D M. Natural plant protection by 2,4-diacetylphloroglucinol-producing seudomonasspp: in take-all decline soils[J]. Molecular Plant-Microbe Interactions, 1998,11(2):146.
[21]GURDEEP K A. Heavy metal resistance of bacteria and its impact on the production of antioxidant enzymes[J]. Cademic Journals, 2012,7(20): 2291.
[22]RASTOGI G, SBODIO A, TECH J J, et al. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce[J]. International Society for Microbial Ecology Journal,2012,6(10):1816.
[23]LOPZE-VELASCO G, WELBAUM G E, BOYER R R, et al. Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons[J]. Journal of Applied Microbiology, 2011,110(5):1208.
[24]FINKEL O M, BURCH A Y, LINDOW S E, et al. Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree[J]. Applied and Environmental Microbiology,2011,77(21):7649.
[25]WHIPPS J M, HAND P, PINK D,et al. Phyllosphere microbiology with special reference to diversity and plant genotype[J]. Journal of Applied Microbiology, 2008, 105(6): 1748.
[26]ElSONBATY S M, ElHADEDY D E. Combined effect of cadmium, lead, and UV rays onBacilluscereususing comet assay and oxidative stress parameters[J]. Environmental Science and Pollution Research, 2015,22(5): 3401.
[27]MARGESIN R,GRAZYNA A P,STEFANIE K.Characterization of bacterial communities at heavy-metal-contaminated sites[J]. Chemosphere, 2011,82(11):1584.
[28]SOLIS-DOMINGUEZ F A, ALEXIS V V, JON C, et al. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings[J]. Science of the Total Environment, 2011,409(6): 1011.
[29]KASHEFI K,LOVLEY D R.Reduction of Fe(Ⅲ),Mn(Ⅳ),and toxic metals at 100℃ byPyrobaculumislandicum[J]. Applied and Environmental Microbiology,2000,66(3):1050.
[30]BAI J,YANG X, DU R. Biosorption mechanisms involved in immobilization of soil PbbyBacillussubtilisDBM in a multi-metal-contaminated soil[J].Journal of Environmental Sciences,2014,26(10):2064.
[31]RAJKUMAR V S. Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing[J]. American Journal of Pathology,2006,169(6): 2263.
[32]THION C, CéBRON A, BEGUIRI STAIN T, et al. Long-term in situ dynamics of the fungal communities in a multi-contaminated soil are mainly driven by plants[J]. Microbiology Ecology, 2012,82(1): 1574.
[33]WAQAS M, KHAN A L, KANG S M, et al. Phytohormone-producing fungal endophytes and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans[J]. Biology and Fertility of Soils, 2014,50(7): 1155.
[34]LIU L Z, GONG Z Q, ZHANG Y L, et al. Growth, cadmium uptake and accumulation of maize (ZeamaysL.) under the effects of arbuscular mycorrhizal fungi[J]. Ecotoxicology, 2014, 23(10): 1984.
[35]張興旭,南志標,李春杰.內生真菌提高禾草耐重金屬脅迫的研究進展[J]. 草業(yè)科學,2014, 31(8):1467.
ZHANG X X,NAN Z B,LI C J. Research progress of improved resistance of the grass to the heavy metal stress by endophyte[J].Pratacultural Science, 2014,31(8):1467.
[36]CHEN B,XIAO X,ZHU Y G, et al.The arbuscular mycorrhizal fungusGlomusmosseaegives contradictory effects on phosphorus and arsenic acquisition byMedicagosativaLinn[J].Science of the Total Environment,2007,379(2/3):226.
[37]CHEN B D,LI X L,TAO H Q, et al.The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc[J]. Chemosphere,2003,50(6): 839.
[38]肖雪毅.叢枝菌根真菌在植物適應銅尾礦的應用[D].北京:北京林業(yè)大學,2006:40.
XIAO X Y.Role of arbuscular mycorrhzal fungi in plant adaptation to copper mine tailings[D]. Beijing:Journal of Beijing Forestry,2006:40.
[39]BROWN S L, CHANEY R L, ANGLE J S, et al. Zinc and cadmium uptake by hyperaccumulatorThlaspicaerulescensgrown in nutrient solution[J]. Soil Science Society of America, 1995, 59: 127.
[40]LEE Y J, GEORGE E.Contribution of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply[J]. Plant and Soil, 2005, 278(1):361-370.
[41]TAMAYO E, GOMEZ G T, AZCON A C, et al. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungusRhizophagusirregularis[J]. Frontiers in Plant Science, 2014,5: 547.
[42]DONG Y,ZHU Y G,SMITH F A,et al.Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (TrifoliumrepensLinn) and ryegrass(LoliumperenneL) plants in an a senic-contaminated soil[J]. Environmental Pollution,2008,155(1):180.
[43]NOGALES A,CORTES A,VELIANOS K,et al.Plantagolanceolatagrowth and Cr uptake alter mycorrhizal inoculation in a Cr amended substmte[J].Agriculture and Food Science,2012, 21(1):78.
[44]伍松林,張莘,陳保冬.叢枝茵根對土壤一植物系統(tǒng)中重金屬遷移轉化的影響[J]. 生態(tài)毒理學報,2013,8(6):847.
WU S L,ZHANG Q,CHEN B D.Effects of arbuscular mycorrhizal fungi on heavy metal translocation and transformation in the soil-plant continuum[J].Asian Journal of Ecotoxicology, 2013,8(6):847.
[45]黃藝,彭博,李婷.外生菌根真菌對重金屬銅鎘污染土壤中油松生長和元素積累分布的影響[J]. 植物生態(tài)學報,2007,31(5):923.
HUANG Y,PENG B,LI T.Growth and element accumulation ofPinustabulaeformisseedlings influenced by inoculation of ectomycorrhizal fungi in Cu and Cd contaminated soil[J].Journal of Plant Ecology, 2007,31(5):923.
[46]FINALAY R.Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extra radical mycelium[J]. Journal of Experimental Botany,2008,59(5):1126.
[47]LANGER I, SANTNER J, KRPATA D,et al.Ectomycorrhizal impact on Zn accumulation ofPopulustremulaL. grown inmetalliferous soil with increasing levels of Zn concentration[J]. Plant and Soil,2012,355(1/2):297.
[48]TICHELEN K V, COLPAERT J V,VANGRONSVELD J. Ectomycorrhizal protection ofPinussylvestrisagainst copper toxicity[J]. New Phytologist, 2001,150:213.
[49]唐黎, 張永軍, 吳曉磊.轉Bt基因棉花根際細菌與古菌群落結構分析[J]. 土壤學報, 2007, 44(4): 717.
TANG L,ZHANG Y J,WU X L.Bacterial and archaeal community structure in rhizosphere soil planting Bt transgenetic cotton[J].Acta Pedologica Sinica, 2007, 44(4): 717.
[50]SANDAA R A,ENGER O, TORSVIK V. Abundance and diversity ofArchaeain heavy-metal-contaminated soils[J]. Applied Environment Microbiology, 1999,65(8):3296.
[51]SKOPHAMMER R G, HERBOLD C W, RIVERA M C, et al. Evidence that the root of the tree of life is not within theArchaea[J]. Molecular Biology Evolution, 2006,23(9):1648.
[52]SULLVAN T S, MCBRIDE M B, THIES J E. Rhizosphere microbial community and Zn uptake by willow (SalixpurpureaL.) depend on soil sulfur concentrations in metalliferous peat soils[J]. Applied Soil Ecology, 2013,67(5): 53.
[53]TREUSCH A H, LEININGER S, KLETZIN A, et al. Novel genes for nitrite reductase and amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling[J]. Environmental Microbiology, 2005, 7(12): 1986.
[54]CHRISTA S, GERMAN J, MELANIE J. Genomic studies of uncultivated archaea[J]. Nature Review of Microbiology, 2005, 3(6): 479.
[55]SINGH B K, PETER M, WHITELEY A S, et al. Unravelling rhizosphere-microbial interactions: opportunities and limitations[J].Trends in Microbiology,2004,12(8):386.
[56]MERTENS J, WAKELIN S A, BROOKS K. Extent of copper tolerance and consequences for functional stability of the ammonia-oxidizing community in long-term copper-contaminated soils[J]. Environmental Toxicology and Chemistry,2010,29(1):27.
[57]MGAVD H, KLAUS S. Root surface as a frontier for plant microbiome research[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(8): 2299.
[58]DEANGELIS K, BRODIE E L, DESANTIS T Z, et al. Selective progressive response of soil microbial community to wild oat roots[J].The International Society for Microbial Ecology Journal, 2009,3(2):168.
[59]XU Z Y, TANG M, CHEN H, et al. Microbial community structure in the rhizosphere ofSophoraviciifoliagrown at a lead and zinc mine of northwest China[J]. Science of the Total Environment, 2012,435: 453.
[60]RONG H,CHEN X C, HU S P, et al. Lead availability and soil microbial community composition in rice rhizosphere affected by thiosulfate addition[J]. Applied Soil Ecology, 2010,45(3):234.
[61]CAVALCA L, CORSINI A, CANZI E, et al. Rhizobacterial communities associated with spontaneous plant species in long-term arsenic contaminated soils[J]. World Journal of Microbiology and Biotechnology,2015, 31(5):735.
[62]LU M, XU K, CHEN J,et al. Effect of pyrene and cadmium on microbial activity and community structure in soil[J]. Chemosphere, 2013, 91: 495.
[63]JEONG S, MOON H S, SHIN D, et al. Survival of introduced phosphate-solubilizing bacteria (PSB) and theirimpact on microbial community structure during the phytoextraction of Cd-contaminated soil[J]. Journal of Hazardous Materials,2013,263: 447.
[64]XU P, LENG Y, ZENG G. et al. Cadmium induced oxalic acid secretion and its role in metal uptake and detoxification mechanisms inPhanerochaetechrysosporium[J]. Applied Microbiology and Biotechnology, 2015,99(1): 435.
[65]SHI Y, LOU K, LI C. Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet[J]. Biology and Fertility of Soils, 2011, 45(6): 646.
[66]HUR M, KIM Y, SONG H R, et al. Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings[J].Applied and Environmental Microbiology,2011,77(21):7617.
[67]ZHANG W H, HUANG Z, HE L Y, et al. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerantChenopodiumambrosioidesgrown on lead-zinc mine tailings[J]. Chemosphere, 2012,87(10): 1175.
[68]LI X F, HUANG L B, PHILIP L B, et al. Bacterial diversity in response to direct revegetation in the Pb-Zn-Cutailings under subtropical and semi-arid conditions[J]. Ecological Engineering, 2014,44(3):238.
[69]TIPAYNO S, KIM C G,SA T.T-RFLP analysis of structural changes in soil bacterial communities in response tometal and metalloid contamination and initial phytoremediation[J]. Applied Soil Ecology,2012,61: 143.
[70]MCGOWEN S L, BASTA N T, BROWN G O. Use o f diammonium phosphate to reduce heavy metal solubi-lity and transport in smelter-contaminated soil[J]. Journal of Environmental Quality, 2001,30(2):493.
[71]JOHANNES R, PHILIP C B, ERLAND B. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil[J]. Soil Biology & Biochemistry,2010,42:926.
[72]STEINBEISS S, GLEIXNER G, ANTONIETTI M. Effect of biochar amendment on soil carbon balance and soil microbial activity[J]. Soil Biology & Biochemistry, 2009,41(6): 1301.
[73]杜瑞英,柏珺,王詩忠,等.多金屬污染土壤中微生物群落功能對麻瘋樹-化學聯(lián)合修復的響應[J]. 環(huán)境科學學報, 2011, 31(3): 575.
DU R Y,BAI J,WANG S Z, et al.Response of soil microbial community function to chenical aided remediation of multimetal contaminated soils usingJatrophacurcas[J].Acta Scientiae Circumstantiae, 2011, 31(3): 575.
[74]杜瑞英.土壤改良劑和紅麻聯(lián)合修復對多金屬污染土壤中微生物群落功能的影響[J]. 生態(tài)與農村環(huán)境學報, 2012,29(1):75.
DU R Y. Effects of application of soil amendment and cultivation of red ramie in remedying multi-metal contaminated soils on functions of soil microbial community[J].Journal of Ecology and Rural Environment, 2012,29(1):75.
[75]ZHANG X X, GAO J S, CAO Y H, et al. Long-term rice and green manure rotation alters the endophytic bacterial communities of the rice root[J]. Microbial Ecology, 2013,66(4): 926.
[76]DU Y L, HE M M, XU M, et al. Interactive effects between earthworms and maize plants on the accumulation and toxicity of soil cadmium[J]. Soil Biology and Biochemistry, 2014, 72: 193.
[77]BCERRAC C, KIDD P S, PRIETOFEM N, et al. Endophytic and rhizoplane bacteria associated withCytisusstriatusgrowing on hexachlorocyclohexane-contaminated soil: isolation and characterisation[J]. Plant and Soil, 2010,340(1/2): 432.
Research on Function of Rhizosphere Microbial Diversity in Phytoremediation of Heavy Metal Polluted Soils
DING Qiaobei, CHAO Yuanqing*, WANG Shizhong, CHEN Yanmei, QIU Rongliang*
(School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China)
Abstract:Rhizosphere microbes play important roles in phytoremediation of heavy metal polluted soils. They can strengthen the growth of plants and promote absorption, transportation and accumulation of heavy metals in the rhizosphere by excreting plant growth hormone, siderophore, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, flavonoids compounds, phenolic acids and other organic substances. These secretions could further produce functional microbial community which can adapt to the stressed rhizosphere environment. The roles of rhizosphere microbes in phytoremediation of heavy metal contaminated soils was reviewed. Based on the systematical summary on the functions of rhizospheric bacteria, fungi and archaea in phytoremediation, the influences by pollution type, ameliorant and rhizosphere plant species to rhizosphere microbial activities were reported. The perspectives of the future research on related issues were also discussed.
Key words:heavy metal contaminated soil; phytoremediation; rhizosphere microbes; microbial community
中圖分類號:Q89;X53
文獻標志碼:A
文章編號:1000-5463(2016)02-0001-12
*通訊作者:晁元卿,講師,Email:chaoyuanq@mail.sysu.edu.cn;仇榮亮,教授,Email:eesqrl@mail.sysu.edu.cn.
基金項目:國家自然科學基金項目(41403060,2012AA06A202)
收稿日期:2015-08-30《華南師范大學學報(自然科學版)》網址:http://journal.scnu.edu.cn/n