王蔓蔓 楊曉麗
(陜西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,西安 710062)
模塊神經(jīng)元網(wǎng)絡(luò)中耦合時(shí)滯誘導(dǎo)的簇同步轉(zhuǎn)遷*
王蔓蔓 楊曉麗?
(陜西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,西安 710062)
利用Courbage-Nekorkin-Vdovin神經(jīng)元構(gòu)建含有耦合時(shí)滯的模塊神經(jīng)元網(wǎng)絡(luò)模型,通過數(shù)值模擬研究了耦合強(qiáng)度及耦合時(shí)滯對(duì)模塊神經(jīng)元網(wǎng)絡(luò)簇同步放電特性的影響.研究結(jié)果表明,適當(dāng)大的耦合強(qiáng)度可以誘導(dǎo)模塊神經(jīng)元網(wǎng)絡(luò)達(dá)到簇同步.同時(shí),研究發(fā)現(xiàn)耦合時(shí)滯可以誘導(dǎo)模塊神經(jīng)元網(wǎng)絡(luò)出現(xiàn)簇同步轉(zhuǎn)遷,且當(dāng)時(shí)滯大小約為網(wǎng)絡(luò)中所有神經(jīng)元平均振蕩周期的整數(shù)倍數(shù)時(shí),模塊神經(jīng)元網(wǎng)絡(luò)的簇同步現(xiàn)象能夠間歇性出現(xiàn).此外,研究結(jié)果表明時(shí)滯誘導(dǎo)的簇同步轉(zhuǎn)遷對(duì)子網(wǎng)絡(luò)內(nèi)的耦合強(qiáng)度、子網(wǎng)絡(luò)間的連接概率具有魯棒性.
模塊神經(jīng)元網(wǎng)絡(luò), 耦合時(shí)滯, 簇同步轉(zhuǎn)遷
同步現(xiàn)象在自然界中普遍存在,它是物理、化學(xué)、生物等諸多領(lǐng)域的熱門研究課題.在神經(jīng)科學(xué)中,已有研究發(fā)現(xiàn)神經(jīng)元的同步活動(dòng)對(duì)大腦信息處理發(fā)揮著重要作用[1-2].這引起眾多學(xué)者關(guān)注大腦神經(jīng)元網(wǎng)絡(luò)的同步動(dòng)力學(xué),特別是在簇放電神經(jīng)元的同步類型、不同的同步模式(如峰同步和簇同步)之間的關(guān)系、網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)參數(shù)與同步的關(guān)系等方面取得很多研究成果[3-8].
由于神經(jīng)元間信息傳遞速度的有限性,耦合時(shí)滯在神經(jīng)元網(wǎng)絡(luò)中是不可避免的,越來越多的研究關(guān)注時(shí)滯對(duì)神經(jīng)元網(wǎng)絡(luò)動(dòng)力學(xué)的重要作用.例如,在無標(biāo)度神經(jīng)元網(wǎng)絡(luò)中,Wang等[9]通過數(shù)值模擬研究了耦合時(shí)滯對(duì)神經(jīng)元網(wǎng)絡(luò)同步的影響,發(fā)現(xiàn)隨著時(shí)滯的增加,神經(jīng)元網(wǎng)絡(luò)的完全同步能夠間歇性出現(xiàn);Jalili[10]研究了時(shí)滯對(duì)小世界神經(jīng)元網(wǎng)絡(luò)峰同步的影響,通過數(shù)值模擬發(fā)現(xiàn)無論是興奮性化學(xué)突觸耦合還是抑制性化學(xué)突觸耦合,合適的時(shí)滯都能增強(qiáng)網(wǎng)絡(luò)的峰同步.最近關(guān)于貓和獼猴的腦皮層區(qū)域的研究表明,腦神經(jīng)元網(wǎng)絡(luò)在結(jié)構(gòu)上具有模塊特性[11-13].因而,模塊神經(jīng)元網(wǎng)絡(luò)(即網(wǎng)絡(luò)的網(wǎng)絡(luò))的動(dòng)力學(xué)行為逐漸引起科研工作者的關(guān)注.例如,針對(duì)模塊上是小世界網(wǎng)絡(luò)的模塊神經(jīng)元網(wǎng)絡(luò),Batista等[14]研究了簇放電神經(jīng)元的同步行為;文獻(xiàn)[15]探究了混合突觸作用下時(shí)滯對(duì)模塊神經(jīng)元網(wǎng)絡(luò)簇同步的影響,研究表明耦合時(shí)滯對(duì)耦合強(qiáng)度誘導(dǎo)的簇同步具有抑制作.Jia等[16]研究了具有參數(shù)異質(zhì)性的模塊神經(jīng)元網(wǎng)絡(luò)的多重共振行為;文獻(xiàn)[17]研究了電耦合和化學(xué)耦合共同作用下時(shí)滯對(duì)模塊神經(jīng)元網(wǎng)絡(luò)同步轉(zhuǎn)遷的影響,發(fā)現(xiàn)時(shí)滯可以誘導(dǎo)模塊神經(jīng)元網(wǎng)絡(luò)的完全同步發(fā)生轉(zhuǎn)遷.
現(xiàn)有研究結(jié)果表明,時(shí)滯對(duì)神經(jīng)元網(wǎng)絡(luò)的同步特性、同步轉(zhuǎn)遷具有關(guān)鍵性影響.但是在模塊神經(jīng)元網(wǎng)絡(luò)中,耦合時(shí)滯對(duì)神經(jīng)元網(wǎng)絡(luò)動(dòng)力學(xué)影響的研究結(jié)果還不是很多,許多科學(xué)問題還有待進(jìn)一步研究.對(duì)于具有化學(xué)耦合的模塊神經(jīng)元網(wǎng)絡(luò),耦合時(shí)滯能否誘導(dǎo)模塊神經(jīng)元網(wǎng)絡(luò)的簇同步發(fā)生轉(zhuǎn)遷?模塊神經(jīng)元網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)參數(shù)對(duì)簇同步有什么影響?通過查閱文獻(xiàn),我們發(fā)現(xiàn)這些問題還沒有得到研究.因此,本文將構(gòu)建節(jié)點(diǎn)上是Courbage-Nekorkin-Vdovin(CNV)神經(jīng)元的模塊神經(jīng)元網(wǎng)絡(luò)模型,通過定義簇同步指標(biāo),利用數(shù)值模擬方法,研究耦合時(shí)滯對(duì)模塊神經(jīng)元網(wǎng)絡(luò)簇同步動(dòng)力學(xué)特性的影響.
1.1 網(wǎng)絡(luò)模型
構(gòu)造一個(gè)含有MN個(gè)神經(jīng)元的模塊網(wǎng)絡(luò),模塊網(wǎng)絡(luò)是由幾個(gè)子網(wǎng)絡(luò)組成的,且子網(wǎng)絡(luò)可以是規(guī)則、無標(biāo)度或小世界網(wǎng)絡(luò).由于模塊網(wǎng)絡(luò)的特點(diǎn)是:模塊內(nèi)部的節(jié)點(diǎn)連接比較緊密,模塊間節(jié)點(diǎn)的連接則比較稀疏.因此模塊網(wǎng)絡(luò)的構(gòu)造方法為:先生成M個(gè)子網(wǎng)絡(luò)且每個(gè)子網(wǎng)絡(luò)中含有N個(gè)節(jié)點(diǎn),然后從第I個(gè)和第J(I,J=1,2,…,M,且J≠I)個(gè)子網(wǎng)絡(luò)中隨機(jī)地選取一對(duì)節(jié)點(diǎn),并且以概率pinter在選取的節(jié)點(diǎn)對(duì)之間引入一條邊,按照上面這種方法可以構(gòu)造出模塊網(wǎng)絡(luò).在本文中所考慮的模塊網(wǎng)絡(luò)的每個(gè)子網(wǎng)絡(luò)都是NW小世界網(wǎng)絡(luò).根據(jù)Newman和Watts[18]的思想,具有NW小世界特性的網(wǎng)絡(luò)可以按照如下的方法構(gòu)造:從一個(gè)節(jié)點(diǎn)總數(shù)為N的環(huán)狀最近鄰耦合網(wǎng)絡(luò)開始,其中每個(gè)節(jié)點(diǎn)都與它左右相鄰的各k/2個(gè)節(jié)點(diǎn)相連(k是偶數(shù)),然后以概率在隨機(jī)選取的一對(duì)節(jié)點(diǎn)之間加上一條邊,這樣就生成了一個(gè)NW小世界網(wǎng)絡(luò).本文模型的參數(shù)設(shè)為:M=2,N=50,k=6,第一個(gè)子網(wǎng)絡(luò)內(nèi)的加邊概率為Pintra1=0.05,第二個(gè)子網(wǎng)絡(luò)內(nèi)的加邊概率為pintra2=0.1.
利用一個(gè)二維離散的CNV神經(jīng)元模型[19-20]描述模塊神經(jīng)元網(wǎng)絡(luò)中單個(gè)神經(jīng)元的局部動(dòng)力學(xué),且神經(jīng)元間的耦合方式為興奮性化學(xué)耦合.從而模塊神經(jīng)元網(wǎng)絡(luò)的動(dòng)力學(xué)方程為:
其中,xI(i,n)和yI(i,n)分別表示第I(I=1,2,…,M)個(gè)子網(wǎng)絡(luò)中第i(i=1,2,…,N)個(gè)神經(jīng)元在n時(shí)刻的膜電位和恢復(fù)變量,ε(ε>0)代表恢復(fù)變量的速率,參數(shù)β,d,G控制生成信號(hào)的形狀,.當(dāng)參數(shù)值為a= 0.1,β=0.3,d=0.45,ε=0.001,G=0.1時(shí)單個(gè)神經(jīng)元產(chǎn)生混沌簇放電活動(dòng).式(2)中cintra代表子網(wǎng)絡(luò)內(nèi)的耦合強(qiáng)度,cinter代表子網(wǎng)絡(luò)間的耦合強(qiáng)度,gI,J=(gI,J(i,j))表示連接矩陣,如果第I個(gè)子網(wǎng)絡(luò)中的第i個(gè)神經(jīng)元與第J個(gè)子網(wǎng)絡(luò)中的第j個(gè)神經(jīng)元相連,則有g(shù)I,J(i,j)=gJ,I(j,i)=1,否則gI,J(i,j)=gJ,I(j,i)=0.式(2)中wI=(wI(i,j))表示第I個(gè)子網(wǎng)絡(luò)中的連接矩陣,如果第I個(gè)子網(wǎng)絡(luò)中的第i個(gè)神經(jīng)元與第j個(gè)神經(jīng)元相連,則有wI(i,j)=wI(j,i)=1,否則wI(i,j)=wI(j,i)=0且wI(i,i)=0.化學(xué)耦合項(xiàng)中的S(x,θ)=H(x-θ)是階梯函數(shù),當(dāng)突觸前神經(jīng)元的膜電位x超過突觸閾值θ時(shí)對(duì)突觸后神經(jīng)元產(chǎn)生作用.式(2)中τ是突觸傳遞的時(shí)間延遲,vexc是突觸可逆電位.在以下研究中,設(shè)定cinter=0.01,θ=0.45,vexc=0.6.
1.2 簇同步指標(biāo)
本文通過計(jì)算序參數(shù)R[21]來定量刻畫模塊網(wǎng)絡(luò)中神經(jīng)元簇放電的同步程度,其定義式為:
這里φ(J,j,n)表示第J個(gè)子網(wǎng)絡(luò)中的第j個(gè)神經(jīng)元在時(shí)刻n處的簇放電相位,表達(dá)式為:
其中,nJ,j,k是第J個(gè)子網(wǎng)絡(luò)中第j個(gè)神經(jīng)元的第k個(gè)簇開始放電的時(shí)刻.R的值越大,表明模塊神經(jīng)元網(wǎng)絡(luò)簇同步程度越強(qiáng).當(dāng)模塊神經(jīng)元網(wǎng)絡(luò)中所有神經(jīng)元簇放電達(dá)到同步時(shí),簇相位幾乎一致,從而R接近于1.當(dāng)網(wǎng)絡(luò)中所有神經(jīng)元處于完全不同步狀態(tài)時(shí),簇相位幾乎不相關(guān),從而R≈0.考慮到網(wǎng)絡(luò)結(jié)構(gòu)的隨機(jī)性,以下關(guān)于R的數(shù)值計(jì)算結(jié)果是對(duì)網(wǎng)絡(luò)結(jié)構(gòu)平均50次的結(jié)果.
模塊神經(jīng)元網(wǎng)絡(luò)中神經(jīng)元簇放電的同步程度還可以用平均場(chǎng)X來定性描述,具體為.當(dāng)模塊神經(jīng)元網(wǎng)絡(luò)中所有的神經(jīng)元以相同的節(jié)律放電時(shí),平均場(chǎng)序列呈現(xiàn)出類似周期的大幅振蕩;而當(dāng)模塊神經(jīng)元網(wǎng)絡(luò)中所有的神經(jīng)元都以各自節(jié)律放電時(shí),平均場(chǎng)序列表現(xiàn)出近似隨機(jī)的小幅振蕩.
在這一部分,我們首先討論當(dāng)模塊神經(jīng)元網(wǎng)絡(luò)中不含時(shí)滯(即τ=0)時(shí),子網(wǎng)絡(luò)內(nèi)耦合強(qiáng)度對(duì)模塊神經(jīng)元網(wǎng)絡(luò)簇同步的影響.然后,在耦合項(xiàng)中引入時(shí)滯,進(jìn)一步探究時(shí)滯對(duì)模塊神經(jīng)元網(wǎng)絡(luò)簇同步的影響.
2.1 耦合強(qiáng)度誘導(dǎo)的簇同步
為了研究子網(wǎng)絡(luò)內(nèi)耦合強(qiáng)度對(duì)模塊神經(jīng)元網(wǎng)絡(luò)簇同步的影響,在下面的討論中,固定子網(wǎng)絡(luò)間的連接概率和耦合時(shí)滯分別為pinter=0.02和τ=0.
圖1 當(dāng)pinter=0.02時(shí),序參數(shù)R隨子網(wǎng)絡(luò)內(nèi)耦合強(qiáng)度cintra的變化Fig.1 Relationship of the order parameter R and the intra-coupling strength cintrawhen pinter=0.02
圖1描述了序參數(shù)R隨著子網(wǎng)絡(luò)內(nèi)耦合強(qiáng)度cintra的變化趨勢(shì).從圖中可以觀察到,隨著耦合強(qiáng)度的增大,序參數(shù)R也隨之變大,且當(dāng)cintra超過某一臨界值ccritical≈0.0035時(shí),序參數(shù)R大于0.9.這表明模塊神經(jīng)元網(wǎng)絡(luò)在較強(qiáng)的子網(wǎng)絡(luò)內(nèi)耦合強(qiáng)度的作用下能夠取得簇同步(本文模型驗(yàn)證了當(dāng)R=0.9時(shí),模塊神經(jīng)元網(wǎng)絡(luò)能夠達(dá)到較好的簇同步狀態(tài)).這種現(xiàn)象也可以通過其他方式如網(wǎng)絡(luò)的時(shí)空?qǐng)D和平均場(chǎng)來形象刻畫.圖2分別展示了當(dāng)耦合強(qiáng)度小于臨界值和大于臨界值時(shí)網(wǎng)絡(luò)的時(shí)空?qǐng)D和平均場(chǎng)序列.當(dāng)子網(wǎng)絡(luò)內(nèi)的耦合強(qiáng)度小于簇同步的臨界值時(shí)(如cintra=0.001),模塊神經(jīng)元網(wǎng)絡(luò)中神經(jīng)元的放電節(jié)律不一致,其時(shí)空?qǐng)D呈現(xiàn)混亂狀態(tài)(圖2(a)),此時(shí)平均場(chǎng)也表現(xiàn)出小幅的隨機(jī)波動(dòng)(圖2(c));這表明較弱的耦合強(qiáng)度不足以使模塊神經(jīng)元網(wǎng)絡(luò)達(dá)到簇同步.相反地,當(dāng)子網(wǎng)絡(luò)內(nèi)的耦合強(qiáng)度大于簇同步的臨界值時(shí)(如cintra=0.01),模塊神經(jīng)元網(wǎng)絡(luò)中神經(jīng)元的放電節(jié)律基本一致,其時(shí)空?qǐng)D呈現(xiàn)出較規(guī)則狀態(tài)(圖2(b)),此時(shí)平均場(chǎng)序列出現(xiàn)類似周期的大幅振蕩(圖2(d)),這表明較強(qiáng)的耦合強(qiáng)度可以使模塊神經(jīng)元網(wǎng)絡(luò)達(dá)到簇同步.
圖2 當(dāng)pinter=0.02時(shí),不同子網(wǎng)絡(luò)內(nèi)耦合強(qiáng)度取值下的時(shí)空?qǐng)D和平均場(chǎng)X隨時(shí)間的演化曲線(a)cintra=0.001;(b)cintra=0.01;(c)cintra=0.001;(d)cintra=0.01Fig.2 Space-time plots and time history of themean field X for different cintraofmodular neuronal network when pinter=0.02(a)cintra=0.001;(b)cintra=0.01;(c)cintra=0.001;(d)cintra=0.01
2.2 時(shí)滯誘導(dǎo)的簇同步轉(zhuǎn)遷
為研究時(shí)滯對(duì)模塊神經(jīng)元網(wǎng)絡(luò)簇同步的影響,不失一般性,設(shè)子網(wǎng)絡(luò)內(nèi)的耦合強(qiáng)度為cintra=0.005.圖3刻畫了不同時(shí)滯τ作用下模塊神經(jīng)元網(wǎng)絡(luò)的時(shí)空?qǐng)D.從圖中可以觀察出,隨著時(shí)滯的增大,模塊神經(jīng)元網(wǎng)絡(luò)的時(shí)空?qǐng)D間歇地呈現(xiàn)出規(guī)則與不規(guī)則的狀態(tài),這表明了時(shí)滯對(duì)模塊神經(jīng)元網(wǎng)絡(luò)的簇同步行為有著重要影響.在沒有時(shí)滯(τ=0)的情況下,模塊神經(jīng)元網(wǎng)絡(luò)中所有神經(jīng)元的放電節(jié)律基本一致,模塊神經(jīng)元網(wǎng)絡(luò)達(dá)到了簇同步狀態(tài),如圖3(a)所示;當(dāng)時(shí)滯τ=200時(shí),模塊神經(jīng)元網(wǎng)絡(luò)中神經(jīng)元的放電節(jié)律變得十分混亂,模塊神經(jīng)元網(wǎng)絡(luò)簇同步狀態(tài)遭到破壞(見圖3(b));當(dāng)時(shí)滯增大到τ=380時(shí),模塊神經(jīng)元網(wǎng)絡(luò)又出現(xiàn)簇同步狀態(tài),如圖3(c)所示;隨著時(shí)滯的進(jìn)一步增大,模塊神經(jīng)元網(wǎng)絡(luò)的簇同步狀態(tài)在τ=570時(shí)又消失,而在τ=750時(shí)再次出現(xiàn)(見圖3(d)和3(e));類似的現(xiàn)象在τ=940,τ=1120,τ=1330和τ=1490處再次重復(fù)出現(xiàn),如圖3(f)-3(i)所示.以上現(xiàn)象表明合適的時(shí)滯可以誘導(dǎo)、也可以破壞模塊神經(jīng)元網(wǎng)絡(luò)的簇同步行為,即隨著耦合時(shí)滯的增大模塊神經(jīng)元網(wǎng)絡(luò)的簇同步狀態(tài)和非同步狀態(tài)能夠間歇性出現(xiàn).
圖3 當(dāng)pinter=0.02,cintra=0.005時(shí),不同時(shí)滯τ作用下模塊神經(jīng)網(wǎng)絡(luò)的時(shí)空?qǐng)D(a)τ=0;(b)τ=200;(c)τ=380;(d)τ=570;(e)τ=750;(f)τ=940;(g)τ=1120;(h)τ=1330;(i)τ=1490Fig.3 Space-time plots ofmodular neuronal network for different delaysτwhen pinter=0.02 and cintra=0.005(a)τ=0;(b)τ=200;(c)τ=380;(d)τ=570;(e)τ=750;(f)τ=940;(g)τ=1120;(h)τ=1330;(i)τ=1490
為了進(jìn)一步研究耦合時(shí)滯對(duì)模塊神經(jīng)元網(wǎng)絡(luò)簇同步的影響,圖4(a)描述了序參數(shù)R隨時(shí)滯τ的演化曲線.從圖中可以觀察到,隨著時(shí)滯τ的增大,曲線呈現(xiàn)出多個(gè)極大值和極小值交替出現(xiàn)的現(xiàn)象.序參數(shù)R的極大值大約出現(xiàn)在τ=380,τ=750,τ=1120,τ=1490處,且序參數(shù)R的這些極大值都大于0.9.這表明此時(shí)模塊神經(jīng)元網(wǎng)絡(luò)具有較好的簇同步狀.序參數(shù)R的極小值大約出現(xiàn)在τ=200,τ=570,τ=940,τ=1330處,且序參數(shù)R的這些極小值都接近0,這表明此時(shí)模塊神經(jīng)元網(wǎng)絡(luò)處于非同步狀態(tài).這些結(jié)果與圖3中時(shí)空?qǐng)D的分析結(jié)果一致,即適當(dāng)?shù)臅r(shí)滯可以使得模塊神經(jīng)元網(wǎng)絡(luò)的簇同步活動(dòng)發(fā)生間歇性轉(zhuǎn)遷.
為了探索耦合時(shí)滯誘導(dǎo)的模塊神經(jīng)元網(wǎng)絡(luò)簇同步轉(zhuǎn)遷的動(dòng)力學(xué)機(jī)理,圖4(b)刻畫了模塊神經(jīng)元網(wǎng)絡(luò)中所有神經(jīng)元平均膜電位的時(shí)間演化曲線.標(biāo)記圖中簇與簇之間的時(shí)間間隔依次為Ti(i=1,2,…),假設(shè)在一段時(shí)間內(nèi)有L個(gè)簇出現(xiàn),記網(wǎng)絡(luò)中所有神經(jīng)元的平均振蕩周期為,經(jīng)計(jì)算得T≈380.可見,能夠使得模塊神經(jīng)元網(wǎng)絡(luò)簇同步間歇出現(xiàn)的耦合時(shí)滯大約是網(wǎng)絡(luò)平均振蕩周期T的整數(shù)倍.所以,模塊神經(jīng)元網(wǎng)絡(luò)發(fā)生簇同步轉(zhuǎn)遷是由于耦合時(shí)滯與網(wǎng)絡(luò)平均振蕩周期的相鎖而引起的.
圖4 當(dāng)pinter=0.02,cintra=0.005時(shí),(a)序參數(shù)R隨時(shí)滯τ變化的曲線;(b)模塊神經(jīng)元網(wǎng)絡(luò)中所有神經(jīng)元的平均膜電位的時(shí)間演化曲線Fig.4 (a)Order parameter R-delayτcurves;(b)Time evolution of the averagemembrane potential of all the neurons in modular network when pinter=0.02 and cintra=0.005
2.3 時(shí)滯誘導(dǎo)的簇同步轉(zhuǎn)遷對(duì)其他參數(shù)的魯棒性
首先研究子網(wǎng)絡(luò)間的連接概率對(duì)模塊神經(jīng)元網(wǎng)絡(luò)簇同步轉(zhuǎn)遷的影響.圖5給出了序參數(shù)R隨時(shí)滯τ和子網(wǎng)絡(luò)間連接概率pinter變化的投影圖.從圖中可以觀察出,對(duì)于不同的子網(wǎng)絡(luò)間連接概率,隨著時(shí)滯τ的逐漸增大,模塊神經(jīng)元網(wǎng)絡(luò)的簇同步和非同步區(qū)域交替出現(xiàn),而且誘導(dǎo)簇同步間歇出現(xiàn)的耦合時(shí)滯沒有隨著pinter的改變而發(fā)生顯著性變化.這表明時(shí)滯誘導(dǎo)的簇同步轉(zhuǎn)遷對(duì)模塊神經(jīng)元網(wǎng)絡(luò)子網(wǎng)絡(luò)間的連接概率具有魯棒性.
接下來研究子網(wǎng)絡(luò)內(nèi)的耦合強(qiáng)度對(duì)模塊神經(jīng)元網(wǎng)絡(luò)簇同步轉(zhuǎn)遷的影響.圖6描述的是序參數(shù)R隨時(shí)滯τ和子網(wǎng)絡(luò)內(nèi)耦合強(qiáng)度cintra變化的投影圖.從圖中可以觀察出,當(dāng)子網(wǎng)絡(luò)內(nèi)的耦合強(qiáng)度超過某一臨界值后,對(duì)于不同的子網(wǎng)絡(luò)內(nèi)耦合強(qiáng)度,隨著時(shí)滯τ的逐漸增大,模塊神經(jīng)元網(wǎng)絡(luò)的簇同步和非同步區(qū)域交替出現(xiàn),而且誘導(dǎo)簇同步間歇出現(xiàn)的耦合時(shí)滯沒有隨著cintra的改變而顯著性變化.這表明時(shí)滯誘導(dǎo)的簇同步轉(zhuǎn)遷對(duì)模塊神經(jīng)元網(wǎng)絡(luò)子網(wǎng)絡(luò)內(nèi)的耦合強(qiáng)度具有魯棒性.
圖5 當(dāng)cintra=0.005時(shí),序參數(shù)R隨時(shí)滯τ和子網(wǎng)絡(luò)間連接概率pinter變化的投影圖Fig.5 The contour plot of order parameter R over the plane of τand pinterwhen cintra=0.005
圖6 當(dāng)pinter=0.02時(shí),序參數(shù)R隨時(shí)滯τ和子網(wǎng)絡(luò)內(nèi)的耦合強(qiáng)度cintra變化的投影圖Fig.6 The contour plot of order parameter Rover the plane of τand cintrawhen pinter=0.02
如引言所述,耦合時(shí)滯在神經(jīng)元網(wǎng)絡(luò)中普遍存在.由于神經(jīng)元間信息傳導(dǎo)速度從20m/s到60m/s,從而引起的傳導(dǎo)時(shí)滯是從幾毫秒到幾百毫秒[22],這與本文所討論的耦合時(shí)滯范圍相一致.文中研究結(jié)果表明適當(dāng)?shù)鸟詈蠒r(shí)滯可以使得模塊神經(jīng)元網(wǎng)絡(luò)的簇同步活動(dòng)發(fā)生間歇性轉(zhuǎn)遷,特別是耦合時(shí)滯對(duì)簇同步的抑制作用,這對(duì)一些神經(jīng)疾?。ㄈ绨d癇和帕金森病癥)等的動(dòng)力學(xué)控制提供理論指導(dǎo)意義.當(dāng)改變網(wǎng)絡(luò)規(guī)模時(shí),如子網(wǎng)絡(luò)節(jié)點(diǎn)個(gè)數(shù)增多或者子網(wǎng)絡(luò)節(jié)點(diǎn)個(gè)數(shù)不等,本文所得的結(jié)果依然成立.限于篇幅,這里不再列舉.
耦合時(shí)滯在模塊神經(jīng)元網(wǎng)絡(luò)中普遍存在.本文通過構(gòu)建子網(wǎng)絡(luò)是NW小世界網(wǎng)絡(luò)的模塊神經(jīng)元網(wǎng)絡(luò),研究了耦合時(shí)滯作用下模塊神經(jīng)元網(wǎng)絡(luò)的簇同步動(dòng)力學(xué).研究結(jié)果表明,較強(qiáng)的子網(wǎng)絡(luò)內(nèi)耦合強(qiáng)度可以誘導(dǎo)模塊神經(jīng)元網(wǎng)絡(luò)達(dá)到簇同步.同時(shí),當(dāng)耦合項(xiàng)中引入時(shí)滯后,發(fā)現(xiàn)當(dāng)時(shí)滯大小約為網(wǎng)絡(luò)中所有神經(jīng)元平均振蕩周期的整數(shù)倍數(shù)時(shí),時(shí)滯可以誘導(dǎo)模塊神經(jīng)元網(wǎng)絡(luò)的簇同步發(fā)生間歇性轉(zhuǎn)遷,并且時(shí)滯誘導(dǎo)的簇同步轉(zhuǎn)遷對(duì)子網(wǎng)絡(luò)內(nèi)的耦合強(qiáng)度、子網(wǎng)絡(luò)間的連接概率具有魯棒性.
1 Singer W.Synchronization of cortical activity and its putative role in information processing and learning.Annual Review of Physiology,1993,55(55):349~374
2 Franovic I,Miljkovic V.Phase plane approach to cooperative rhythms in neuronmotifswith delayed inhibitory synapses.Europhysics Letters,2010,92(6):1637~1649
3 Belykh I,Lange E D,Hasler M.Synchronization of bursting neurons:what matters in the network topology.Physical Review Letters,2005,94(18):188101
4 Dhamala M,Jirsa V K,Ding M Z.Transitions to synchrony in coupled bursting neurons.Physical Review Letters,2004,92(2):028101
5 Zheng Y H,Lu Q S.Spatiotemporal patterns and chaotic burst synchronization in a small-world neuronal network. Physica A,2008,387(14):3719~3728
6 Han F,Lu Q S,Wiercigroch M,et al.Chaotic burst synchronization in heterogeneous small-world neuronal network with noise.International Journal of Non-Linear Mechanics,2009,44(3):298~303
7 Buric N,Todorovc K,Vasovic N.Synchronization of bursting neurons with delayed chemical synapses.Physical Review E,2008,78(3-2):417~423
8 Han F,Lu Q S,Wiercigroch M,et al.Complete and phase synchronization in a heterogeneous small-world neuronal network.Chinese Physics B,2009,18(2):482~488
9 Wang Q Y,Perc M,Duan ZS,etal.Synchronization transitions on scale-free neuronal networks due to finite information transmission delays.Physical Review E,2009,80(2):1711~1715
10 Jalili M.Phase synchronizing in Hindmarsh-Rose neural networks with delayed chemical coupling.Neurocomputing,2011,74(10):1551~1556
11 Hilgetag C C,Kaiser M.Clustered organisation of cortical connectivity.Neuroinformatics,2004,2(3):353~360
12 Huang L,Lai Y C,Gatenby R A.Alternating synchronizability of complex clustered networks with regular local structure.Physical Review E,2008,77(1-2):119~136
13 Lopez G Z,Zhou C S,Kurths J.Exploring brain function from anatomical connectivity.Frontiers in Neuroscience,2011,5:1~4
14 Batista C A S,Lameu E L,Batista A M,et al.Phase synchronization of bursting neurons in clustered small-worldnetworks.Physical Review E,2012,86(1):1411~1432
15胡麗萍,楊曉麗,孫中奎.混合突觸作用下耦合時(shí)滯對(duì)模塊神經(jīng)元網(wǎng)絡(luò)簇同步的影響.動(dòng)力學(xué)與控制學(xué)報(bào),2015,13(6):462~467(Hu L P,Yang X L,Sun Z K. Effect of coupled time-delay on bursting synchronization in modular neuronal network with hybrid synapses.Journal of Dynamics and Control,2015,13(6):462~467(in Chinese))
16 Jia Y B,Yang X L,Kurths J.Diversity and time delays induce resonance in a modular neuronal network.Chaos,2014,24(4):043140
17 Liu C,Wang J,Yu H T,et al.Impact of delays on the synchronization transitions of modular neuronal networks with hybrid synapses.Chaos,2013,23(3):539~552
18 Newman M E,Watts D J.Scaling and percolation in the small-world network model.Physical Review E,2000,60(6):7332~7342
19 Courbage M,Nekorkin V I,Vdovin L V.Chaotic oscillations in a map-based model of neural activity.Chaos,2007,17(4):155~160
20 Courbage M,Nekorkin V I.Map basedmodels in neurodynamics.International Journal of Bifurcation and Chaos,2010,20(6):1631~1651
21 Ivanchenko M V,Osipov G V,Shalfeev V D,et al.Phase Synchronization in Ensembles of Bursting Oscillators. Physical Review Letters,2004,93(13):134101
22 Kandel E R,Schwartz JH,Jessell TM.Principles of Neural Science.New York:Elsevier,1991
COUPLING DELAY-INDUCED BURST SYNCHRONIZATION TRANSITIONS IN A MODULAR NEURONAL NETWORK*
Wang Manman Yang Xiaoli?
(College of Mathematics and Information Science,Shaanxi Normal University,Xi′an 710062,China)
Through constructing a model of delay-coupled modular neuronal network by Courbage-Nekorkin-Vdovin neuron elements,this paper numerically studies the effect of coupling strength and delay on the firing properties of burst synchronization.The results show that appropriately large coupling strength can induce burst synchronization in thismodular neuronal network.At the same time,it is found that coupling delay can induce the transitions of burst synchronization for themodular neuronal network.Moreover,all these transitions of burst synchronization occur approximately when the value of the delay approximately equates to the integermultiples of average oscillation period for all the neurons in themodular neuronal network.Additionally,delay-induced burst synchronization transitions are confirmed to be robust to the intra-coupling strength and the inter-connection probability in themodular neuronal network.
modular neuronal network, coupling delay, burst synchronization transitions
10.6052/1672-6553-2016-012
2015-12-17收到第1稿,2016-01-31收到修改稿.
*國(guó)家自然科學(xué)基金資助項(xiàng)目(11572180),陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目(2014JQ1013),中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)基金(GK201302001)資助課題
?通訊作者E-mail:yangxiaoli@snnu.edu.cn
Received 17 December 2015,revised 31 January 2016.
*The project supported by the National Natural Science Foundation of China(11572180),the NSF of Shaanxi Province(2014JQ1013)and the Fundamental Funds Research for the Central Universities(GK201302001)
?Corresponding author E-mail:yangxiaoli@snnu.edu.cn