亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于多光譜數(shù)據(jù)的荒漠礦區(qū)土壤有機(jī)質(zhì)估算模型

        2016-05-17 09:36:39塔西甫拉提特依拜丁建麗依力亞斯江努爾麥麥提
        關(guān)鍵詞:荒漠反射率反演

        夏 楠,塔西甫拉提.特依拜,丁建麗,依力亞斯江.努爾麥麥提,張 東,劉 芳

        (1.新疆大學(xué)資源與環(huán)境科學(xué)學(xué)院,烏魯木齊 830046;2.新疆大學(xué)綠洲生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,烏魯木齊830046)

        基于多光譜數(shù)據(jù)的荒漠礦區(qū)土壤有機(jī)質(zhì)估算模型

        夏 楠,塔西甫拉提.特依拜※,丁建麗,依力亞斯江.努爾麥麥提,張 東,劉 芳

        (1.新疆大學(xué)資源與環(huán)境科學(xué)學(xué)院,烏魯木齊 830046;2.新疆大學(xué)綠洲生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,烏魯木齊830046)

        目前運(yùn)用高光譜數(shù)據(jù)估算土壤有機(jī)質(zhì)的模型精度已經(jīng)可以達(dá)到精準(zhǔn)農(nóng)業(yè)的要求,但其數(shù)據(jù)的整理和運(yùn)算過程較為復(fù)雜且觀測尺度較小。為節(jié)省資源,提高效率并為多光譜遙感估算土壤有機(jī)質(zhì)積累經(jīng)驗(yàn),該文將Landsat8_OLI多光譜遙感影像各波段的反射率數(shù)據(jù)與地面土壤有機(jī)質(zhì)SOM(soil organic matter)實(shí)測數(shù)據(jù)相結(jié)合,利用SPSS軟件及多元線性回歸分析方法建立基于反射率R、反射率倒數(shù)1/R、反射率倒數(shù)對數(shù)LN(1/R)、反射率一階導(dǎo)數(shù)FDR(first derivative reflectance)的土壤有機(jī)質(zhì)定量估算模型,精度檢驗(yàn)后擇取最優(yōu)模型通過多光譜遙感波段運(yùn)算的方式推廣至整個研究區(qū)。結(jié)果表明:FDR模型的精度更高,RMSE為0.215,F(xiàn)檢驗(yàn)結(jié)果為4.072,預(yù)測值與實(shí)際值之間的決定系數(shù)R2為0.963。基于該模型估算研究區(qū)空間范圍的土壤有機(jī)質(zhì)含量,得出土壤有機(jī)質(zhì)含量在0~5 g/kg之間的面積占總研究區(qū)的84.065%,>10 g/kg的面積僅僅為0.001 5%。在4種土地類型中工礦用地SOM平均含量為最高的7.35 g/kg,受開采的煤炭中有機(jī)質(zhì)影響較大。裸地面積2 674.44 km2,占研究區(qū)面積的63%,SOM平均含量6.12 g/kg;鹽漬地和荒漠林地SOM含量偏低??傊?,運(yùn)用多光譜遙感數(shù)據(jù)估算干旱區(qū)土壤有機(jī)質(zhì)的方法可行,也為遙感估算其他地表參數(shù)提供參考。

        土壤;遙感;光譜分析;荒漠;SOM;建模;多光譜;估算

        夏 楠,塔西甫拉提.特依拜,丁建麗,依力亞斯江.努爾麥麥提,張 東,劉 芳.基于多光譜數(shù)據(jù)的荒漠礦區(qū)土壤有機(jī)質(zhì)估算模型[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(6):263-267.doi:10.11975/j.issn.1002-6819.2016.06.036 http://www.tcsae.org

        Xia Nan,Tashpolat.Tiyip,Ding Jianli,Ilyas Nurmemet,Zhang Dong,Liu Fang.Estimation model of soil organic matter in desert mining area based on multispectral image data[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(6):263-267.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.06.036 http://www. tcsae.org

        0 引言

        土壤有機(jī)質(zhì)SOM(soil organic matter)是土壤的重要組成部分,它提供著植物生長所必須的碳元素,其含量的多少是衡量土壤肥力的一項(xiàng)重要指標(biāo)[1]。而土壤肥力通過影響植物的生長從而影響物種的多樣性和生態(tài)系統(tǒng)的穩(wěn)定。因此在農(nóng)業(yè)、林業(yè)以及維持生態(tài)平衡上獲取土壤有機(jī)質(zhì)含量的意義極其重要。運(yùn)用傳統(tǒng)方法測得土壤有機(jī)質(zhì)雖然具有很高的精度,但是在選點(diǎn)、采樣、試驗(yàn)過程中都將耗費(fèi)大量財(cái)力人力,這就需要一種便捷、準(zhǔn)確的而且能宏觀運(yùn)用于研究工作的技術(shù)。運(yùn)用遙感手段測定土壤有機(jī)質(zhì)一直倍受學(xué)術(shù)界研究者們關(guān)注,它的優(yōu)勢在于依托較少的時間和物力資源而獲取大范圍的、較為精確的地物反射光譜信息,通過各種應(yīng)用模型進(jìn)行人們所需地理信息的表達(dá)[2]。

        如今遙感技術(shù)已經(jīng)成為一種重要的手段被應(yīng)用于測定土壤有機(jī)質(zhì)含量,國內(nèi)外學(xué)者運(yùn)用不同遙感數(shù)據(jù)進(jìn)行SOM反演都取得了一定效果[3-8]。Al-Abbas等[9]得出了土壤的有機(jī)質(zhì)含量與其光譜反射率之間存在顯著的負(fù)相關(guān)關(guān)系。侯艷軍等[10]提出在土壤有機(jī)質(zhì)的高光譜建模上多元線性回歸模型精度高于一元線性回歸模型。田永超等[11]通過應(yīng)用熱紅外光聲光譜技術(shù)估測土壤有機(jī)質(zhì)含量得到經(jīng)過一階導(dǎo)數(shù)濾波平滑后的光譜建模精度較高。這些學(xué)者普遍基于高光譜數(shù)據(jù)進(jìn)行研究,也有一些學(xué)者運(yùn)用多光譜數(shù)據(jù)建模。劉煥軍等[12]通過對實(shí)測數(shù)據(jù)與多光譜影像數(shù)據(jù)建立相關(guān)性提取出相關(guān)波段進(jìn)行建模,其建模后的絕對系數(shù)R2為0.665,均方根誤差RMSE為0.553,并且得出土壤含水量的變化會影響估算結(jié)果;張法升等[13]發(fā)現(xiàn)TM(thematic mapper)影像中TM3、TM5波段的DN(digital number)值與SOM含量之間滿足二次多項(xiàng)式回歸關(guān)系。其中一些學(xué)者[7,10-11,14]運(yùn)用偏最小二乘法建模,雖然可以達(dá)到較好的模型精度要求,但計(jì)算量大,非數(shù)學(xué)類和軟件類專業(yè)的學(xué)者運(yùn)用比較吃力,而運(yùn)用多光譜影像的光譜信息數(shù)據(jù)不僅可以建立精度較高的多元線性回歸模型,而且能將模型通過影像可視化地表達(dá),從而進(jìn)行宏觀的SOM含量時空分布規(guī)律的分析。因此,多光譜數(shù)據(jù)建模估算地表的SOM含量是更加普適、便捷、高效的手段。

        綜上所述,本文中作者運(yùn)用Landsat8_OLI多光譜遙感影像數(shù)據(jù)和實(shí)地土壤有機(jī)質(zhì)含量測定數(shù)據(jù)建立多元線性回歸模型,并進(jìn)行精度驗(yàn)證和模型的預(yù)測,從而得到能夠較為精確反演研究區(qū)土壤有機(jī)質(zhì)含量的數(shù)學(xué)模型?;诮⒌哪P瓦M(jìn)行研究區(qū)土壤有機(jī)質(zhì)的空間分布特征分析,為五彩灣礦區(qū)及其周邊生態(tài)環(huán)境修復(fù)提供數(shù)據(jù)支撐以及為整個準(zhǔn)噶爾東部經(jīng)濟(jì)開發(fā)區(qū)的生態(tài)環(huán)境規(guī)劃建設(shè)提供參考。

        1 研究區(qū)概況

        五彩灣礦區(qū)位于新疆準(zhǔn)噶爾盆地東部,吉木薩爾縣境內(nèi),喀拉麥里山的山前地帶,煤田面積901.05 km2。地貌為戈壁灘平原,地形平坦開闊,其工業(yè)基地范圍內(nèi)平均海拔在500~700 m之間,總體地勢北高南地,如圖1所示。該地區(qū)屬于大陸暖溫帶干旱氣候,年平均蒸發(fā)量2 090.4 mm,年平均降水量159.1 mm,年平均相對濕度為57%,年平均日照時間為2 861.1 h。主要以荒漠堿土、石膏棕模土和荒漠風(fēng)沙土為主的土壤類型,表層SOM比不足2%[15]。植被類型主要是琵琶柴、蛇麻黃、白刺、駱駝刺等耐旱植被。

        圖1 研究區(qū)地理位置圖及采樣點(diǎn)分布圖Fig.1 Geographical position map of study area and distribution of sampling points

        2 數(shù)據(jù)來源與處理

        2.1 影像數(shù)據(jù)

        研究所用的 Landsat8_OLI數(shù)據(jù)免費(fèi)下載于 http:// glovis.usgs.gov/,選取2014年5月份的影像,其分辨率為30 m,云量0,地圖投影WGS84坐標(biāo)投影,衛(wèi)星軌道號141-29。在ENVI5.1軟件下進(jìn)行圖像的裁剪,輻射定標(biāo)以及大氣校正。在獲取影像的光譜信息時會受到大氣中的水汽、分子和氣溶膠影響產(chǎn)生波段噪聲和信息模糊,使用FLAASH大氣校正,校正由于漫反射引起的連帶效應(yīng),很好地消除這些噪聲使信息清晰,降低鄰近像元之間的輻射干擾,也可調(diào)整由于人為抑止而導(dǎo)致的波譜平滑[16]。

        2.2 土壤數(shù)據(jù)

        2014年5月,在五彩灣礦區(qū)周邊選取45個采樣點(diǎn)收集土壤樣本并用GPS記錄其坐標(biāo),按照0~10、10~20、20~30 cm共3個土層采樣并用事先稱重過的鋁盒在各層取一定的土樣。將收集的土壤樣本帶回實(shí)驗(yàn)室自然風(fēng)干,磨碎過20目篩后,采用重鉻酸鉀容量法[17]對其進(jìn)行SOM含量測定;將鋁盒帶土一并稱重后,放入烘干箱烘干24 h,再次稱取重量,通過計(jì)算烘干前后的重量差得到土壤含水率數(shù)據(jù)。整理數(shù)據(jù)并計(jì)算出每個樣點(diǎn)3個土層的土壤有機(jī)質(zhì)平均值,與經(jīng)預(yù)處理后的遙感影像一同導(dǎo)入ArcGIS軟件,運(yùn)用軟件的Extraction工具得到每個采樣點(diǎn)所對應(yīng)各個波段的DN值。

        3 結(jié)果與分析

        3.1 試驗(yàn)數(shù)據(jù)整理

        經(jīng)由大氣校正后的遙感影像的像元DN值為反射率值,范圍0~1。將各建模樣點(diǎn)(30個)的SOM含量實(shí)測值、土壤含水率與影像各個波段一一對應(yīng),再按SOM含量的大小升序排列得到表1。表中除26~30號點(diǎn)外,其余各點(diǎn)SOM含量均不足5 g/kg,1號點(diǎn)更是不足1 g/kg。土壤含水率平均值3%,最大值在20號點(diǎn)的14.04%,最小值在28號點(diǎn)為0.44%。在極度干旱的荒漠地區(qū),土壤含水率極低,由含水率導(dǎo)致的光譜信息差異比較小,相比濕潤地區(qū),用遙感多光譜信息反演地表SOM可信度更高[12]。

        表1 30個樣點(diǎn)的SOM含量和土壤含水率對應(yīng)遙感影像各波段的反射率Table 1 SOM and soil moisture content of 30 samples corresponding with reflectance of each band on image

        3.2 建立模型及驗(yàn)證

        選取以上30個土壤有機(jī)質(zhì)實(shí)測值為建模樣本,其余15個作為驗(yàn)證樣本。SOM實(shí)測值Y為因變量,各波段像元反射率值(X1、X2、X3、X4、X5、X7)為自變量X建立多元線性回歸模型。為了得到最為精確的回歸模型,分別對R,1/R,LN(1/R),F(xiàn)DR進(jìn)行建模。通過判定系數(shù)R2、F檢驗(yàn)、顯著性檢驗(yàn)Sig.、均方根誤差RMSE進(jìn)行模型的精度檢驗(yàn)。其中R2和F值越大,RMSE越小說明該模型具有較高的精度[9];Sig.小于0.05則說明該模型具有較高的顯著性。

        由上述方法得到不同反射率指標(biāo)的土壤有機(jī)質(zhì)反演模型,從表2中可以看出由FDR(first derivative reflectance)建模的效果最好,其中R2為0.964。F檢驗(yàn)值為所有模型中最大并且通過了顯著性P<0.05的檢驗(yàn),RMSE也為最低的0.215。其他3種模型的R2、F檢驗(yàn)、RMSE都偏小或者偏大。其中R中的R2是0.4,F(xiàn)是2.223是4組模型中最小的,而RMSE值3.616和Sig.的檢驗(yàn)結(jié)果0.083為最大,也就是說通過R建模的效果最差。1/R和LN(1/R)模型的RMSE都一樣偏大,也并未通過顯著性檢驗(yàn)。所以前3組模型的建模效果偏差,F(xiàn)DR建模的精度最佳。

        表2 土壤有機(jī)質(zhì)遙感模型及精度驗(yàn)證Table 2 Remote sensing models of SOM and precision validation

        由其余15個土壤樣本對FDR反演的模型進(jìn)行驗(yàn)證,通過計(jì)算得到SOM預(yù)測值并與實(shí)測值進(jìn)行比較(如圖2)。圖中由實(shí)測值與預(yù)測值擬合形成趨勢線y=2.983x-1.273,R2為0.963 3,一能說明通過FDR建模反演土壤有機(jī)質(zhì)可行,二能說明其預(yù)測效果理想,能較好地表達(dá)研究區(qū)不同空間的土壤有機(jī)質(zhì)含量。

        圖2 預(yù)測值與實(shí)際值的關(guān)系Fig.2 Relationships between actual and estimated values

        3.3 土壤有機(jī)質(zhì)空間分析

        運(yùn)用3.2得到的FDR有機(jī)質(zhì)反演模型,通過ENVI軟件來實(shí)現(xiàn)整個研究區(qū)的土壤有機(jī)質(zhì)含量預(yù)測,得到圖3。圖中土壤有機(jī)質(zhì)含量的最大值為13.065 g/kg,最小值為0.355 g/kg。其中有機(jī)質(zhì)含量在0~5 g/kg之間的面積占總研究區(qū)的84.065%,在5~10 g/kg之間的面積占研究區(qū)的15.933%,>10 g/kg的面積僅僅為0.001 5%。相比其附近奇臺縣農(nóng)田的土壤有機(jī)質(zhì)含量[18],五彩灣地區(qū)的土壤有機(jī)質(zhì)含量極少,大多數(shù)地區(qū)土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)不足1%。

        圖3 SOM含量的空間分布Fig.3 SOM content spatial distribution

        對遙感影像進(jìn)行圖像分類,分為4種地類:工礦用地、裸地、荒漠林帶、鹽漬地。再對不同地類進(jìn)行土壤有機(jī)質(zhì)的空間分析得到表3。表中顯示,工礦用地面積為339.618 km2,占研究區(qū)面積的8%,SOM平均含量為最高的7.35 g/kg。礦區(qū)有機(jī)質(zhì)含量高主要是由于煤炭作為有機(jī)物被開采而露出地表;在煤炭運(yùn)輸、粉碎、存儲過程中會散落到地表;煤炭的不充分燃燒使得未被燃燒盡的煤粉進(jìn)入大氣后沉降到地表。裸地面積2 674.44 km2,占研究區(qū)面積的63%,其SOM含量均值較高,一方面受上述煤炭開采影響,另一方面戈壁灘氣候相對惡劣,植被覆蓋度極低,增加了土壤有機(jī)質(zhì)的流失。而不同的是鹽漬地和荒漠林地植被覆蓋度較高,SOM含量本應(yīng)該很高,但是相反,由于這片區(qū)域鹽漬化和荒漠化的加劇發(fā)展,這2個區(qū)域的土壤沙化嚴(yán)重,地表有機(jī)質(zhì)流失也很嚴(yán)重?;哪参锒季哂泻軓?qiáng)的耐旱性,即使在SOM含量和降水極低的情況下也能生長。

        表3 不同地類的SOM含量Table 3 SOM content of different land types

        4 結(jié)論

        本文通過FDR建立模型的R2為0.963。運(yùn)用該模型預(yù)測研究區(qū)空間范圍的SOM,得出土壤有機(jī)質(zhì)SOM含量>10 g/kg的面積僅僅為0.001 5%,土壤有機(jī)質(zhì)含量整體匱乏。對SOM含量數(shù)據(jù)進(jìn)行空間分析得出工礦用地SOM平均含量為最高的7.35 g/kg,受開采的煤炭中有機(jī)質(zhì)影響較大。裸地SOM平均含量為6.12 g/kg,鹽漬地和荒漠林地SOM含量均不高??傊\(yùn)用多光譜遙感數(shù)據(jù)和實(shí)測數(shù)據(jù)相結(jié)合建模的方法在干旱區(qū)適用。

        該地區(qū)土壤有機(jī)質(zhì)含量平均值偏低,個別地區(qū)極低,加之該地區(qū)降水量稀少,土地荒漠化程度加劇,進(jìn)行生態(tài)修復(fù)很有必要。選取合適的植被在荒漠戈壁灘和沙地中種植將成為生態(tài)修復(fù)成敗的關(guān)鍵。此外通過合理的放牧和卡拉麥里保護(hù)區(qū)的嚴(yán)格監(jiān)管有助于減緩該地區(qū)土地荒漠化的速度,從而避免人為造成土壤有機(jī)質(zhì)的流失。

        [1]Sparling G P,Wheeler D,Vesely E T,et al.What is soil organic matter worth?[J].Journal of Environmental Quality,2006,35(2): 548-557.

        [2]蒙繼華,吳炳方,杜鑫,等.遙感在精準(zhǔn)農(nóng)業(yè)中的應(yīng)用進(jìn)展及展望[J].國土資源遙感,2011,23(3):1-7.Meng Jihua,Wu Bingfang,Du Xin,et al.A review and outlook of applying remote sensing to precision agriculture[J].Remote Sensing for Land and Resources,2011,23(3):1-7.(in Chinese with English abstract)

        [3]Naveen J P A,Abd-Elrahman A H,Lewis D B,et al.Modeling soilparametersusinghyperspectralimagereflectancein subtropical coastal wetlands[J].International Journal of Applied Earth Observation and Geoinformation,2014,33(11):47-56.

        [4]王祥峰,蒙繼華.基于HJ-1衛(wèi)星的農(nóng)田土壤有機(jī)質(zhì)含量監(jiān)測[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):101-108.Wang Xiangfeng,Meng Jihua.Mapping soil organic matter content in field using HJ-1 satellite image[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2014,30(8):101-108.(in Chinese with English abstract)

        [5]Liu Shiliang,An Nannan,Yang Juejie,et al.Prediction of soil organic matter variability associated with different land use types in mountainous landscape in southwestern Yunnan province, China[J].Catena,2015,133(10):137-144.

        [6]Liu Feng,Rossiter D G,Song Xiaodong,et al.A similarity-based method for three-dimensional prediction of soil organic matter concentration[J].Geoderma,2015,263(1):254-263.

        [7]李超,劉兆剛,岳樹峰,等.基于激光雷達(dá)數(shù)據(jù)的森林表層土壤有機(jī)質(zhì)空間格局反演[J].應(yīng)用生態(tài)學(xué)報(bào),2012,23(9):2451-2458. Li Chao,Liu Zhaogang,Yue Shufeng,et al.Retrieval of forest topsoil organic matter’s spatial pattern based on LiDAR data[J]. Chinese Journal of Applied Ecology,2012,23(9):2451-2458. (in Chinese with English abstract)

        [8]袁征,李希燦,于濤.高光譜土壤有機(jī)質(zhì)估測模型對比研究[J].測繪科學(xué),2014,39(5):160-164.Yuan Zheng,Li Xican,Yu Tao.Contrast research on soil organic matter estimation model using hyper-spectral data[J].Science of Surveying and Mapping,2014,39(5):160-164.(in Chinese with English abstract)

        [9]Al-Abbas A H,Swain P H,Baumgarder M F,et al.Relating organic matter and clay content to the multi-spectral radiance of soils[J].Soil Science,1972,114(6):477-485.

        [10]侯艷軍,塔西甫拉提.特依拜,買買提.沙吾提,等.荒漠土壤有機(jī)質(zhì)含量高光譜估算模型[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(16):113-120.Hou Yanj un,Tiyip T,Sawut M.Estimation model of desert soil organic matter content using hyperspectral data[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2014,30(16):113-120.(in Chinese with English abstract)

        [11]田永超,張娟娟,姚霞,等.基于近紅外光聲光譜的土壤有機(jī)質(zhì)含量定量建模方法 [J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(1):145-152.Tian Yongchao,Zhang Juanjuan,Yao Xia,et al.Quantitative modeling method of soil organic matter content based on nearinfrared photoacoustic spectroscopy[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2012,28(1):145-152.(in Chinese with English abstract)

        [12]劉煥軍,趙春江,王紀(jì)華,等.黑土典型區(qū)土壤有機(jī)質(zhì)遙感反演[J].農(nóng)業(yè)工程學(xué)報(bào),2011,27(8):211-215.Liu Huanjun,Zhang Bai,Zhao Jun,et al.Spectral models for prediction of organic matter in black soil[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2007,44(1):27-32.(in Chinese with English abstract)

        [13]張法升,曲威,尹光華,等.基于多光譜遙感影像的表層土壤有機(jī)質(zhì)空間格局反演[J].應(yīng)用生態(tài)學(xué)報(bào),2010,21(4):883-888.Zhang Fasheng,Qu Wei,Yin Guanghua,et al.Spatial pattern of surface soil organic matter based on remotely sensed multispectral imagery[J].Chinese Journal of Applied Ecology,2010, 21(4):883-888.(in Chinese with English abstract)

        [14]于雷,洪永勝,耿雷,等.基于偏最小二乘回歸的土壤有機(jī)質(zhì)含量高光譜估算[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(14):103-109.Yu Lei,Hong Yongsheng,Geng Lei,et al.Hyperspectral estimation of soil organic matter content based on partial least squares regression[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31 (14):103-109.(in Chinese with English abstract)

        [15]崔文采.新疆土壤[M].北京:科學(xué)出版社,1996:182-186.

        [16]姚峰,古麗.加帕爾,包安明,等.基于遙感技術(shù)的干旱荒漠區(qū)露天煤礦植被群落受損評估[J].中國環(huán)境科學(xué),2013,33(4):707-713. Yao Feng,Jiapaer G,Bao Anming,et al.Damage assessment of the vegetable types based on remote sensing in the open coalmine of arid desert area[J].China Environmental Science, 2013,33(4):707-713.(in Chinese with English abstract)

        [17]鮑士旦.土壤農(nóng)化分析[M].北京:科學(xué)出版社,1996:182-186.

        [18]欒福明,張小雷,熊黑鋼,等.基于影像的荒漠綠洲交錯帶土壤有機(jī)質(zhì)含量反演模型[J].中國沙漠,2014,34(4):1080-1086.Luan Fuming,Zhang Xiaolei,Xiong Heigang,et al.Inversion models of soil organic matter in oasis-desert ecotone based on TM Image reflectance[J].Journal of Desert Research,2014,34 (4):1080-1086.(in Chinese with English abstract)

        Estimation model of soil organic matter in desert mining area based on multispectral image data

        Xia Nan,Tashpolat.Tiyip※,Ding Jianli,Ilyas Nurmemet,Zhang Dong,Liu Fang
        (1.College of Resources and Environmental Sciences,Xinjiang University,Urumqi 830046,China; 2.Key Laboratory of Oasis Ecology(Xinjiang University)Ministry of Education,Urumqi 830046,China)

        Soil is related closely to human living and vegetation grow.The quality of soil organic matter(SOM)influences plant development.Scientists take a variety of researcheson soil.Many findings focus on the estimation of SOM using remote sensing data,which are usually hyperspectral and multispectral.The former has a detailed result of band information,while the latter provides a macroscopical and convenient way to get in whole area.In addition,processing hyperspectral data needs a strong mathematical background and software technology,while processing multispectraldata needs less.To apply the multispectral method to make decisions on buildings and planning is of great significance.In order to save resources,increase efficiency and accuracy,in May 2014,we collected soil samples in the various layers of 0~10, 10~20 and 20~30 cm,and there were totally 45 points marked by GPS(global positioning system)on Google Earth.The weighed aluminum box was used to hold some soil in each layer.The collections were taken back and dried for 24 h.Then the dried soil was weighed and the soil moisture was calculated.Meanwhile,the image needed pretreatment.The atmospheric correction should be taken to remove bands′noises to get clear data.Then the pixels of the image for each sample point were used to establish models.And at the same time,other soil was crushed and sieved in 2 mm,and the SOM was measured by the potassium dichromate volumetric method.The final work was to combine the reflectance data of multispectral image and the measured SOM data.We used the reflectance(R),the reflectance reciprocal(1/R),the reflectance reciprocal′s logarithm(ln(1/R)),the reflectance′s first derivative(FDR)and the measured SOM to build multiple linear regression models,and then,it was found that the FDR model had a better precision with the R2of 0.963 between the predicted and the measured.This meant that the more effective approach could be applied to express the regional SOM if needed.By the FDR model,we predicted the SOM content in study area.It showed that the area with SOM content of 0~5 g/kg was 84.065%of the whole area and that with SOM content of greater than 10 g/kg was 0.001 5%.The greatest SOM value was 13.065 g/kg,and the inferior was closed to 0.355 g/kg,which was very low.The SOM content in the Wu caiwan area was lower than that in Qitai County,for the former′s SOM was less than 1%in the most area.It also indicated that the highest average SOM content in the mining area was 7.35 g/kg,which was influenced by the organic matter in coal.The bare land's area was 2 674.44 km2,accounting for 63%of all area,and the mean SOM content was 6.12 g/kg.The saline land and desert woodland had lower SOM content because of the development of water-soil loss,salinization and desertification.The low SOM content and less precipitation made the area a desert increasingly.Further more,we found that in the arid area,the soil moisture content was extremely low,so it was not only influenced weakly by moisture to using remote sensing means to estimate SOM,but also formed an advantageous method which provided a higher simulation precision.All in all,it is imperative to restore the ecologic environment in the study area.Measures should be taken immediately.Choosing appropriate vegetation to plant in desert will be the key to the restoring works,while enhancing supervision of the Kalamaili Nature Reserve and controlling grazing will contribute to slow down those negative phenomena above.

        soils;remote sensing;spectrum analysis;desert;SOM;modeling;multispectral;estimation

        10.11975/j.issn.1002-6819.2016.06.036

        TP79;S127

        A

        1002-6819(2016)-06-0263-05

        2015-10-20 修改日期:2016-01-23

        國家科技支撐計(jì)劃項(xiàng)目資助(2014BAC15B01);國家自然科學(xué)基金項(xiàng)目資助(41130531,41561089)

        夏 楠,男,新疆昌吉人,博士生,主要從事干旱區(qū)生態(tài)定量遙感方面的研究。烏魯木齊 新疆大學(xué)資源與環(huán)境科學(xué)學(xué)院、新疆大學(xué)綠洲生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,830046。Email:xianan113693615@163.com

        ※通信作者:塔西甫拉提.特依拜,男,維吾爾族,新疆伊寧人,教授,博士生導(dǎo)師,主要從事干旱區(qū)資源環(huán)境與遙感應(yīng)用研究。烏魯木齊 新疆大學(xué)資源與環(huán)境科學(xué)學(xué)院、新疆大學(xué)綠洲生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,830046。Email:tash@xju.edu.cn

        猜你喜歡
        荒漠反射率反演
        影響Mini LED板油墨層反射率的因素
        近岸水體異源遙感反射率產(chǎn)品的融合方法研究
        反演對稱變換在解決平面幾何問題中的應(yīng)用
        向荒漠宣戰(zhàn)
        具有顏色恒常性的光譜反射率重建
        20載扎根荒漠?!暗谝弧?/a>
        中國石化(2021年8期)2021-11-05 07:00:14
        荒漠生態(tài)系統(tǒng)的演變
        綠色中國(2019年14期)2019-11-26 07:11:34
        基于低頻軟約束的疊前AVA稀疏層反演
        基于自適應(yīng)遺傳算法的CSAMT一維反演
        化學(xué)腐蝕硅表面結(jié)構(gòu)反射率影響因素的研究*
        電子器件(2017年2期)2017-04-25 08:58:37
        十八禁在线观看视频播放免费 | 日本最新一区二区三区视频| 亚洲欧美v国产蜜芽tv| 中文字幕亚洲乱码熟女在线| 蜜桃视频永久免费在线观看| 蜜芽亚洲av无码精品色午夜| 国产莉萝无码av在线播放| 中文字幕av在线一二三区| 久久99国产亚洲高清| 丰满少妇又爽又紧又丰满动态视频 | 国产av一区二区毛片| 玩弄白嫩少妇xxxxx性| 亚洲中文无码永久免| 国产极品视觉盛宴在线观看| 最新天堂一区二区三区| 一二三区无线乱码中文在线| 国产精品毛片va一区二区三区 | 精品无码国产一区二区三区麻豆| 国产乱码一区二区三区爽爽爽| 51久久国产露脸精品国产| 99久久国产综合精品女乱人伦| 加勒比东京热综合久久| 亚洲综合自拍偷拍一区| 成人免费无码视频在线网站| 国产av国片精品| 台湾佬中文偷拍亚洲综合| 亚洲毛片一区二区在线| 日本19禁啪啪吃奶大尺度| 朝鲜女子内射杂交bbw| 试看男女炮交视频一区二区三区| 18禁国产美女白浆在线| 亚洲av熟女中文字幕| 少妇高潮惨叫久久久久久电影| 久久久无码人妻精品一区 | jjzz日本护士| av免费在线播放一区二区| 日韩精品无码一区二区三区四区| 天美传媒一区二区| 综合色天天久久| 丰满巨臀人妻中文字幕| 亚洲av无码乱码国产麻豆|