葛利芳,馬偉民,魏明偉,周 瑤,馬 雷,2,李 軍
(1. 沈陽化工大學(xué) 材料科學(xué)與工程學(xué)院,沈陽市先進(jìn)陶瓷制備技術(shù)及應(yīng)用重點實驗室,沈陽 110142;
2. 東北大學(xué) 材料與冶金學(xué)院,沈陽 110004)
?
不同pH值對Eu2Zr2O7/ZrO2(3Y)粉體活化能的影響*
葛利芳1,馬偉民1,魏明偉1,周瑤1,馬雷1,2,李軍1
(1. 沈陽化工大學(xué) 材料科學(xué)與工程學(xué)院,沈陽市先進(jìn)陶瓷制備技術(shù)及應(yīng)用重點實驗室,沈陽 110142;
2. 東北大學(xué) 材料與冶金學(xué)院,沈陽 110004)
摘要:用反向共沉淀法合成Eu2Zr2O7/ZrO2(3Y)復(fù)相粒子;用XRD、DTA-TG、SEM表征物相變化及粒子形貌;分析了不同pH值下制備粉體的合成動力學(xué)。結(jié)果表明,兩相體積比V(Eu2Zr2O7)∶V(ZrO2(3Y))=15∶85,初始溶液濃度0.1 mol/L,體系溫度0 ℃,滴定速率2 mL/min,pH值=11,經(jīng)1 100 ℃煅燒2.5 h時,獲得的Eu2Zr2O7/ZrO2(3Y)粒子形貌近似球形、粒徑約35 nm。由Doyle-Ozawa和Kissinger法分別計算的pH值=11和12的樣品物相變化各階段的表觀活化能平均值分別為59.66,100,310.53 kJ/mol和73.99,126.91,356.74 kJ/mol;晶粒生長活化能分別為18.96和23.90 kJ/mol,前者比后者小了4.94 kJ/mol,可見具有較高的燒結(jié)活性。
關(guān)鍵詞:反向共沉淀法;Eu2Zr2O7/ZrO2(3Y)粉體;pH值;合成動力學(xué);表觀活化能
0引言
具有燒綠石結(jié)構(gòu)或缺陷型螢石結(jié)構(gòu)的稀土鋯酸鹽材料(M2Zr2O7),由于其高熔點、低熱導(dǎo)率、熱膨脹系數(shù)大、耐高溫性能強(qiáng)、較好的高溫相穩(wěn)定性和抗燒結(jié)能力等優(yōu)點而成為替代YSZ(釔穩(wěn)定氧化鋯)的涂層材料[1]。Nd、Eu和Gd的鋯酸鹽是未來可用的熱障涂層候選材料,對M2Zr2O7(M=La、Nd、Sm、Gd、Dy、Er、Yb和Eu等)材料已有大量研究報道[2-6]。文獻(xiàn)[7]用固相反應(yīng)法在空氣氛圍下1 650 ℃無壓燒結(jié)10 h制備了稀土鋯酸鹽M2Zr2O7(M=La、Nd、Sm和Gd)基復(fù)相陶瓷(M2Zr2O7、MAlO3、MgAl2O4三相)塊體材料,其力學(xué)性能相比純相有很大提高。目前,復(fù)相粉體的制備一般采取直接混合。文獻(xiàn)[8]報道主要圍繞Eu2Zr2O7/ZrO2(3Y)超細(xì)粉體的形貌、粒徑及團(tuán)聚的改善,并通過調(diào)整工藝參數(shù)實現(xiàn)其目標(biāo)。
關(guān)于粉體合成過程中的表觀活化能及晶粒生長活化能計算,進(jìn)而優(yōu)選工藝參數(shù)的研究至今未見文獻(xiàn)報道。本文采用反向共沉淀法制備了Eu2Zr2O7/ZrO2(3Y)納米粒子,用XRD、SEM等測試手段對物相組成及變化、產(chǎn)物結(jié)構(gòu)和粒子形貌進(jìn)行了表征,并對影響復(fù)相粒子合成的因素進(jìn)行了討論,用Doyle-Ozawa法和Kissinger法對不同pH值下合成粉體的表觀活化能以及晶粒生長活化能進(jìn)行了計算,為優(yōu)化制備工藝提供理論依據(jù)。
1實驗
以Eu2O3(99.99%)、ZrOCl2·8H2O (99.9%)為原料,HNO3、無水乙醇、氨水為分析純,沉淀劑為氨水,原料按精確化學(xué)配比稱取,把Eu2O3、ZrOCl2·8H2O溶解于HNO3中配制成陽離子濃度0.05~0.2 mol/L的母鹽溶液,將母鹽溶液用蠕動泵反向滴入一定量的用磁力攪拌器不斷攪拌的含ZrO2(3Y)粒子的氨水中,體系溫度0 ℃,滴定速率2 mL/min,調(diào)節(jié)pH值為10~12,最終得到白色絮狀沉淀物。滴定結(jié)束后繼續(xù)攪4 h,然后時效12 h后,用去離子水清洗前驅(qū)沉淀物4次以除去雜質(zhì)離子,再用無水乙醇清洗2次,過濾后放到真空干燥箱中60 ℃下干燥48 h,再放入馬弗爐中600~1 100 ℃下煅燒保溫2.5 h,合成出Eu2Zr2O7/ZrO2(3Y)粉體。
采用日本理學(xué)(Rigaku)D/MAX-RB型X射線衍射儀(XRD)對樣品的物相進(jìn)行分析;用HITACHI S-3400N型掃描電子顯微鏡(SEM)對粉體形貌進(jìn)行觀察;用德國NETZSCH STA 449C型差熱/熱重分析儀(DTA/TG),在升溫速率分別為5,10,15和20 K/min,氣氛為空氣的條件下對加熱過程中樣品的結(jié)晶化過程進(jìn)行分析。
2結(jié)果與討論
2.1樣品的物相分析
圖1所示分別為Eu2Zr2O7、ZrO2(3Y)及Eu2Zr2O7/ZrO2(3Y)的XRD譜圖??梢奅u2Zr2O7/ZrO2(3Y)的特征峰包含了Eu2Zr2O7和ZrO2(3Y)主晶相的特征峰并無雜相峰。樣品所含的Eu2Zr2O7相和ZrO2(3Y)相的晶面指數(shù)分別與標(biāo)準(zhǔn)PDF卡片24-0418和PDF卡片48-0224對應(yīng)一致,可見在前述實驗條件下得到了Eu2Zr2O7/ZrO2(3Y)復(fù)合相粒子。
圖1Eu2Zr2O7、ZrO2(3Y)和Eu2Zr2O7/ZrO2(3Y)的XRD譜圖
Fig 1 XRD patterns of Eu2Zr2O7,ZrO2(3Y) single phase and Eu2Zr2O7/ZrO2(3Y) particles
圖2為兩相不同體積比樣品的XRD譜圖。
圖2兩相不同體積比樣品的XRD譜圖
Fig 2 XRD patterns of the Eu2Zr2O7/ZrO2(3Y) prepared from two phases in different volume ratio
由圖2可知,隨著Eu2Zr2O7體積含量的增大,兩相衍射峰強(qiáng)度變化明顯,兩相體積比為15∶85時,兩相衍射峰強(qiáng)度均較強(qiáng),并使結(jié)晶程度達(dá)到完整。
圖3為兩相體積比V(Eu2Zr2O7)∶V(ZrO2(3Y))=15∶85時,母鹽不同pH值制備樣品的XRD譜圖。不同pH值樣品對應(yīng)的特征峰均尖銳,結(jié)晶度完整,當(dāng)pH值=11時衍射峰最強(qiáng),表明此條件下晶粒合成最充分[9]。
圖3不同pH值樣品的XRD譜圖
Fig 3 XRD patterns of Eu2Zr2O7/ZrO2(3Y) particles prepared from different pH
2.2初始溶液濃度對樣品形貌的影響
圖4(a)-(d)所示為不同初始濃度溶液的前驅(qū)體經(jīng)1 100 ℃煅燒2.5 h樣品的SEM形貌。0.05 mol/L時(見圖4(a)),由于反應(yīng)物濃度低使體系過飽和度小,形核率小于晶核生長率,生成晶體粒度較大且不均勻;0.1 mol/L時(見圖4(b)),粉體分散性良好,粒度均勻且近球形,說明此時溶液過飽和度處于適當(dāng)狀態(tài),形核率和晶核的生長率趨于平衡,使晶核在各個方向上的生長趨于一致。
圖4 不同初始濃度溶液制備樣品的SEM形貌
Fig 4 SEM images of Eu2Zr2O7/ZrO2(3Y) obtained from the calcined precursors made with different initial solution concentrations
0.15 mol/L時(見圖4(c)),粉體粒度較小但分散性差。0.2 mol/L時(見圖4(d)),粉體粒徑更小但團(tuán)聚現(xiàn)象嚴(yán)重,說明形核率大于晶核生長率,局部成核粒子太多生成太快而形成團(tuán)聚。當(dāng)初始溶液濃度為0.1 mol/L時粉體形貌最佳。
2.3pH值對樣品形貌的影響
圖5(a)-(c)所示為不同pH值制備樣品的SEM照片。從圖5可以看出,pH值=10時,粉體粒徑大小不均勻呈不規(guī)則狀(見圖5(a));pH值=11時粉體分散性良好、粒徑均勻且近球形,粒徑約為35 nm(見圖5(b)),這是由于pH值在某一區(qū)間范圍時,成核率與生長率近似相等,易于形成顆粒均勻的沉淀粒子;在pH值=12時,粉體粒徑小但團(tuán)聚嚴(yán)重,呈塊狀(見圖5(c)),原因是pH值較大時,成核率進(jìn)一步變大,反應(yīng)一開始形成大量絮狀沉淀物,伴隨反應(yīng)的進(jìn)行,膠粒之間易相互聚集,使沉淀粒子團(tuán)聚。綜合圖3和5,最佳參數(shù)為pH值=11。
圖5 不同pH值制備樣品的SEM形貌
2.4不同pH值樣品的表觀活化能
如圖6(a)-(d)所示分別為pH值=11和12不同升溫速率下制備前驅(qū)體的DTA和TG曲線。由DTA圖可知前驅(qū)體熱分解過程有3個吸熱峰(見圖6(a)、(b))。由TG曲線可知,相同溫度下不同升溫速率樣品的失重率大致相同。當(dāng)pH值=11時升溫速率為10 K/min(見圖6(c)),前驅(qū)體總質(zhì)量損失率為23.62%,其熱分解過程分為3個階段,對應(yīng)3個吸熱峰,第1個吸熱峰所在范圍為室溫~528.18 K,對應(yīng)熱重曲線失重率2.67%,前驅(qū)體失去了吸附水和結(jié)晶水;第2個吸熱峰在530.23~1 163.89 K之間,失重率約10.12%,氫氧化物發(fā)生了分解;第3個吸熱峰小且不明顯,在1 164.64~1 347.13 K之間,失重率約2.69%,主要脫去少量吸附水并合成純相Eu2Zr2O7/ZrO2(3Y)。
圖6 不同升溫速率下前驅(qū)體的DTA和TG曲線
由于pH值不同的樣品DTA-TG曲線存在變化,可以通過Doyle-Ozawa法[10]和Kissinger法[11]對合成粒子各個反應(yīng)階段的表觀活化能的計算從理論上優(yōu)選出粉體制備參數(shù)
(1)
(2)
式(1)為Doyle-Ozawa法公式,式中E為反應(yīng)活化能;βi為升溫速率;R為氣體常數(shù)。式(2)為Kissinger法公式,式中Tm為吸熱峰峰值溫度。
當(dāng)轉(zhuǎn)化率α(由TG曲線中質(zhì)量變化數(shù)據(jù)得到)一定時,按lgβi-1/Ti作圖,則斜率為-0.4567E/R,通過斜率可求得活化能E。圖7和8分別為不同轉(zhuǎn)化率α下pH值=11和12的樣品各反應(yīng)階段的lgβ-1/T圖,由圖中各直線斜率求得不同α下各反應(yīng)階段的表觀活化能并取平均值(見表1),其表觀活化能分別為60.53,98.32,305.71 kJ/mol和76.38,132.36,359.67 kJ/mol,pH值=11明顯小于pH值=12。
圖7 Doyle-Ozawa法計算pH值=11對應(yīng)的lgβ-1/T圖
Fig 7 lgβ-1/Tplots of each stage of precursors prepared by pH=11 at different conversation stages using Doyle-Ozawa method
圖8 Doyle-Ozawa法計算pH值=12對應(yīng)的lgβ-1/T圖
Fig 8 lgβ-1/Tplots of each stage of precursors prepared by pH=12 at different conversation stages using Doyle-Ozawa method
表1兩種pH值制備的前驅(qū)體各反應(yīng)階段不同轉(zhuǎn)化率α對應(yīng)的活化能E及相關(guān)系數(shù)r
Table 1 Activation energiesEand linear correlation coefficient (r) of each stage at different conversion (α) of precursor precipitates prepared by pH=11 and 12
α/%pH值=11pH值=12E1/kJ·mol-1r1E2/kJ·mol-1r2E3/kJ·mol-1r3E1/kJ·mol-1r1E2/kJ·mol-1r2E3/kJ·mol-1r31062.570.998098.260.9993304.920.999770.910.9937126.950.9976351.560.99882054.890.997499.940.9992307.050.999566.090.9931129.550.9986349.920.99823056.700.995198.830.9988308.130.999971.000.9982129.310.9983366.870.99894060.480.998890.310.9998307.300.999473.530.9990139.650.9998363.360.99935062.620.999099.800.9992305.300.998580.180.9997132.170.9991378.530.99946061.700.999898.630.9998305.180.999582.600.9991136.680.9990346.750.99867060.200.999099.780.9994303.980.999477.590.9980129.490.9986372.660.99858060.110.999097.500.9984305.110.998580.430.9982125.880.9998339.020.99989062.580.9989100.670.9993302.980.999083.420.9998142.580.9984361.670.998710063.430.999699.500.9998307.150.995878.020.9994131.360.9995366.320.9986Average60.5398.32305.7176.38132.36359.67
由式(2)可知,作ln(β/Tm2)-1/Tm圖,斜率-E/R,由此求出各反應(yīng)階段的活化能。由不同升溫速率條件下pH值=11和12樣品各主要吸熱峰的峰頂溫度(見表2)繪制ln(β/Tm2)-1/Tm圖(見圖9),得到活化能及相關(guān)系數(shù)(見表2),其各反應(yīng)階段表觀活化能分別為58.79,101.69,315.35 kJ/mol和71.59,121.46,353.80 kJ/mol,pH值=11小于pH值=12,與Doyle-Ozawa法結(jié)果一致。
從微觀上表觀活化能的大小意味著原料分子轉(zhuǎn)化為產(chǎn)物分子所要跨過的能壘的高低;從宏觀上表觀活化能越大,反應(yīng)完全需要從外界獲取的能量越高,反應(yīng)越難進(jìn)行。
表2兩種pH值制備的前驅(qū)體在不同升溫速率下的峰值溫度Tm、活化能E及相關(guān)系數(shù)r
Table 2 Peak maximum temperature (Tm),activation energy (E) and linear correlation coefficient (r) of precursor precipitates prepared by pH=11 and 12 at different heating rates
β/K·min-1pH值=11pH值=12Tm1/℃Tm2/℃Tm3/℃Tm1/℃Tm2/℃Tm3/℃5127.18316.021003.65120.95297.97999.1510140.96335.921034.38133.64315.521026.6715149.87345.871048.29137.18320.931038.7620157.69354.271062.68145.99328.441051.55E1=58.79kJ/molE2=101.69kJ/molE3=315.35kJ/molE1=71.59kJ/molE2=121.46kJ/molE3=353.80kJ/molr1=0.9988r2=0.9990r3=0.9983r1=0.9849r2=0.9920r3=0.9941
圖9 不同pH值制備前驅(qū)體的各吸熱峰在不同升溫速率下的ln(β/Tm2)-1/Tm圖
Fig 9 ln(β/Tm2)-1/Tmplots of every endothermic peaks of precursors prepared at different heating rates by pH=11 and 12
上述合成動力學(xué)數(shù)據(jù)表明,樣品合成在第3階段平均表觀活化能最大(見表3),說明該階段反應(yīng)最難進(jìn)行。延長保溫時間可以提供更多外界能量從而能使此階段充分反應(yīng)。文獻(xiàn)報道納米反應(yīng)物反應(yīng)的表觀活化能Ea等于塊狀反應(yīng)物反應(yīng)的活化能Eab與納米反應(yīng)物的摩爾表面能Ems之差[12]。綜合圖5,當(dāng)pH值=12時,粉體團(tuán)聚嚴(yán)重形成大量塊狀,從而增大了Eab,使得其表觀活化能比pH值=11時分別增大了14.33,26.91,46.21 kJ/mol??梢姡琾H值=11更有利于Eu2Zr2O7/ZrO2(3Y)粒子的合成。
2.5不同pH值樣品的晶粒生長活化能
式(3)為晶體生長活化能計算公式[13]
(3)
式中,D為晶粒尺寸,T為溫度,E為晶粒生長活化能,R為氣體常數(shù)。
依據(jù)XRD圖譜特征峰數(shù)據(jù)用Scherrer公式分別計算pH值=11和12條件下不同煅燒溫度的晶粒大小(見表4),做出lnD-1/T圖(見圖10)。
pH值=11的線性斜率明顯小于pH值=12(見圖10所示);獲得樣品的晶粒生長活化能分別為EpH值=11=18.96 kJ/mol;EpH值=12=23.90 kJ/mol。文獻(xiàn)報道粉體晶粒生長活化能的降低是由高表面能所引起的[12],pH值=12時制備的粉體顆粒粒徑雖較小但比pH值=11團(tuán)聚嚴(yán)重使其表面能反而減小。pH值=11時晶粒生長所需的活化能小于pH值=12。
表3Doyle-Ozawa法和Kissinger法計算不同沉淀方法合成樣品的各反應(yīng)階段表觀活化能
Table 3 Eachreaction stage’s activation energy of samples obtained by different pH using Doyle-Ozawa method and Kissinger method respectively
方法pH值=11pH值=12E1/kJ·mol-1E2/kJ·mol-1E3/kJ·mol-1E1/kJ·mol-1E2/kJ·mol-1E3/kJ·mol-1Doyle-Ozawa60.5398.32305.7176.38132.36359.67Kissinger58.79101.69315.3571.59121.46353.80Average59.66100310.5373.99126.91356.74
表4不同溫度下煅燒制備粉體的晶粒尺寸
Table 4 The grain sizes of Eu2Zr2O7/ZrO2(3Y) particles prepared by the precursors calcined at different temperatures for 2.5 h
Temperature/℃Grainsize/nmpH值=11pH值=1280022.3717.9290024.6820.55100030.4126.44110035.1231.74
圖10不同pH值制備的Eu2Zr2O7/ZrO2(3Y) 粒子lnD-1/T關(guān)系圖
Fig 10 lnD-1/Tplots for Eu2Zr2O7/ZrO2(3Y) powders prepared from pH=11 and 12
3結(jié)論
(1)用反向共沉淀法合成出結(jié)晶度完整的Eu2Zr2O7/ZrO2(3Y)復(fù)相粒子,其兩相體積比V(Eu2Zr2O7)∶V(ZrO2(3Y))=15∶85;初始溶液濃度0.1 mol/L;體系溫度0 ℃;滴定速率2 mL/min;pH值=11;煅燒溫度1 100 ℃,保溫2.5 h。
(2)利用Doyle-Ozawa法和Kissinger法分別計算pH值=11和12的前驅(qū)體在熱處理過程中各反應(yīng)階段的表觀活化能分別為59.66,100,310.53 kJ/mol和73.99,126.91,356.74 kJ/mol;晶粒生長活化能分別為18.96和23.90 kJ/mol,前者比后者小了4.94 kJ/mol,表明當(dāng)pH值=11時獲得具有較高燒結(jié)活性的粉體。
參考文獻(xiàn):
[1]Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications[J].Science, 2002, 296(5566): 280-284.
[2]Koteswara Rao K, Banu T, Vithal M, et al. Preparation and characterization of bulk and nano particles of La2Zr2O7and Nd2Zr2O7by sol-gel method[J].Materials Letters, 2002, 54(1): 205-210.
[3]Suresh G, Seenivasan G, Krishnaiah M V, et al. Investigation of the thermal conductivity of selected compounds of lanthanum, samarium and europium[J]. Journal of Alloys and Compounds, 1998,269(1-2): 9-12.
[4]Wu Jie, Wei Xuezheng, Padture N P, et al. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications[J]. Journal of the American Ceramic Society, 2002, 85(12): 3031-3035.
[5]Vassen Robert, Cao Xueqiang, Tietz Frank, et al. Zirconates as new materials for thermal barrier coatings[J]. Journal of the American Ceramic Society, 2000, 83(8): 2023-2028.
[6]Tong Yuping, Zhu Junwu, Lu Lude. Preparation and characterization of Ln2Zr2O7(Ln= La and Nd) nanocrystals and their photocatalytic properties[J]. Journal of Alloys and Compounds, 2008, 465(1-2): 280-284.
[7]Zhu Renxian. Microstructure and mechanical properties of rare-earth zirconate-based multiphase ceramics[D]. Harbin: Harbin Institute of Technology, 2013.
朱仁賢. 稀土鋯酸鹽基復(fù)相陶瓷材料的組織結(jié)構(gòu)與力學(xué)性能[D].哈爾濱:哈爾濱工業(yè)大學(xué), 2013.
[8]He Xin, Lee Hwa-Jun, Ryu Sung-Soo, et al. Effects of the processing parameters in the synthesis of BaTiO3nanoparticle by using the co-precipitation method[J]. Journal of the Korean Physical Society, 2014, 65(3): 404-407.
[9]Horner Olivier, Neveu Sophie, de Montredom Sophie, et al. Hydrothermal synthesis of large maghemite nanoparticles: influence of the pH on the particle size[J]. J Nanopart Res, 2009, 11(5): 1247-1250.
[10]Ozawa T. Integral analyze method of isoconversion models[J]. Bull Chem Soc Jpn, 1965, 38(1): 881.
[12]Du Jianping. Investigation of the effect of the size of reactants on the heterogeneous reactions[D]. Taiyuan: Taiyuan University of Technology, 2005.
杜建平. 反應(yīng)物粒度對多相化學(xué)反應(yīng)影響的研究[D].太原:太原理工大學(xué), 2005.
[13]Tong Y P, Zhao S B, Feng W F, et al. A study of Eu-doped La2Zr2O7nanocrystals by salt-assistant combustion systhesis[J]. Journal of Alloys and Compounds, 2013, 550: 268-272.
The influence of different pH on the activation energies of Eu2Zr2O7/ZrO2(3Y) powders
GE Lifang1,MA Weimin1,WEI Mingwei1,ZHOU Yao1,MA Lei1,2,LI Jun1
(1.Key Laboratory for Rare-earth Chemical and Applying, School of Material Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142,China;2.Institute of Metallurgy and Materials, Northeastern University, Shenyang 110004,China)
Abstract:The Eu2Zr2O7/ZrO2(3Y) particles were prepared by NSC co-precipitation method; the crystallization and morphology of Eu2Zr2O7/ZrO2(3Y) particles were analyzed by XRD,DTA-TG, SEM; The synthesis kinetics was studied during the preparation under pH=11 and 12. The results show that the Eu2Zr2O7/ZrO2(3Y) particles are approximately spherical with higher crystallinity and better dispersibility under the conditions of V(Eu2Zr2O7)∶V(ZrO2(3Y))=15∶85, the initial concentration of mother liquor was 0.1 mol/L, the co-precipitation temperature is 0 ℃, the titration rate was 2 mL/min and the pH value is controlled at 11,when calcined at 1 100 ℃ for 2.5 h. In addition, the powders have an uniform granularity with a dimension of about 35 nm. The Doyle-Ozawa and Kissinger methods were used to calculate the apparent activation energy of each stage and the results of the three reaction stages of precursors prepared by pH=11 and 12 are 59.66,100,310.53 kJ/mol and 73.99,126.91,356.74 kJ/mol respectively.The grain growth activation energies for powders prepared by pH=11 and 12 are 18.96 and 23.90 kJ/mol severally, the former decreases 4.94 kJ/mol than the latter and performs the better sintering activities.
Key words:NSC co-precipitation method; Eu2Zr2O7/ZrO2(3Y) powders; pH value; synthesis kinetics; apparent activation energy
DOI:10.3969/j.issn.1001-9731.2016.02.030
文獻(xiàn)標(biāo)識碼:A
中圖分類號:TB383;TQ422
作者簡介:葛利芳(1988-),女,河南鶴壁人,在讀碩士,從事先進(jìn)陶瓷材料研究。
基金項目:國家自然科學(xué)基金資助項目(51274143);沈陽市先進(jìn)陶瓷重點實驗室資助項目(F12-259-1-00)
文章編號:1001-9731(2016)02-02148-06
收到初稿日期:2015-04-20 收到修改稿日期:2015-10-26 通訊作者:馬偉民,E-mail: maweimin56@163.com