岳立新
高三是整個高中階段的重要時期,甚至可以說是一個人學(xué)習(xí)生涯的重要時期.這個階段所能達(dá)到的學(xué)習(xí)效果可能會決定學(xué)生今后的發(fā)展方向和發(fā)展前途.那么,作為高中“三大主科”中之一的高中數(shù)學(xué)更是十分重要的一門學(xué)科.高三數(shù)學(xué)的學(xué)習(xí)好壞會影響到學(xué)生高考的總分的高低.高三的數(shù)學(xué)復(fù)習(xí)要求將三年所學(xué)的數(shù)學(xué)知識一一復(fù)習(xí),不僅僅是公式定理的熟記,還要在復(fù)習(xí)的時候進行一定量的練習(xí)才行.對于高考中經(jīng)常出現(xiàn)的重點和難點,更要長期練習(xí).但是,數(shù)學(xué)的學(xué)習(xí)跟別的科目的學(xué)習(xí)有很大的不同,數(shù)學(xué)的學(xué)習(xí)是不能完全死記硬背的,做題要求的是學(xué)生的靈活運用數(shù)學(xué)公式定理,在長期的練習(xí)的基礎(chǔ)上能夠?qū)α?xí)題游刃有余.因此,將思維導(dǎo)圖的方法引入數(shù)學(xué)的學(xué)習(xí)中去,是大有用處的.數(shù)學(xué)中涉及很多關(guān)于圖形和函數(shù)的東西,思維導(dǎo)圖對這種類型的習(xí)題具有很強的分析理解的作用.
一、高三數(shù)學(xué)復(fù)習(xí)課的現(xiàn)狀
1.學(xué)生在學(xué)習(xí)中存在的問題
數(shù)學(xué)是一門講究操練的學(xué)科,僅僅靠著背下來的那些公式定理是完全不夠的.特別是高三的數(shù)學(xué)復(fù)習(xí),難度和強度還有題目的復(fù)雜度更強,學(xué)生往往會因為對題目的分析不夠,漏掉了一些關(guān)鍵點而在解題的過程中進入死胡同.還有一些學(xué)生對于自己不會做的或者是做錯的題目,在老師講解以后立馬明白了,發(fā)現(xiàn)這道題其實很簡單,以為自己掌握了做這種題型的方法,但是,在下一次遇到這種類型題目的時候,還是不會做,這種“眼高手低”的現(xiàn)象一直都存在,而且在高三學(xué)生中很普遍.這些問題的出現(xiàn)都是學(xué)生對于數(shù)學(xué)的學(xué)習(xí)方法和解題的思路沒有掌握好,沒有到運用自如的地步.
2.復(fù)習(xí)的特點以及數(shù)學(xué)中的難點
復(fù)習(xí)是對以往知識的查漏補缺,是在已學(xué)到的知識的基礎(chǔ)上進行總體復(fù)習(xí).教師往往是要求學(xué)生進行專項的復(fù)習(xí),將所學(xué)內(nèi)容分成幾大專題,從整體上對所有高中數(shù)學(xué)內(nèi)容進行分類、整合、綜合,形成一個比較完整的知識體系.在反復(fù)練習(xí)中,對知識運用自如,能夠應(yīng)對同一個知識點的不同題型.例如,數(shù)學(xué)中的難點應(yīng)該要數(shù)拋物線和幾何圖形.拋物線的復(fù)習(xí)要對整個數(shù)軸的知識有個全面的了解,因為出題的時候往往不僅僅會直接出拋物線的題目,而是先要去學(xué)生在數(shù)軸上找到直線,找到點兒,然后才會進行.這樣的對知識綜合的考察正是難點重點所在.
二、思維導(dǎo)圖的優(yōu)勢
思維導(dǎo)圖在高中數(shù)學(xué)的學(xué)習(xí)中起到越來越重要的作用.特別是對于高三階段進行總復(fù)習(xí)的學(xué)生來說,是不可或缺的.思維導(dǎo)圖能夠使學(xué)生在思考問題時有一個整體的思路,能夠在解決問題時有一套適合自己的思路和方法.學(xué)生繪制思維導(dǎo)圖的過程,是學(xué)生知識建構(gòu)的過程,也是學(xué)生對所學(xué)知識進行自我評價、自我檢測的過程.學(xué)生在進行小組討論的時候會很容易看出自己的缺陷,然后努力補充自己,使自己的知識得到擴充.
三、思維導(dǎo)圖的應(yīng)用模式
1.分小組合作構(gòu)建知識脈絡(luò)
要構(gòu)建知識脈絡(luò)首先就要進行分組.教師會將全部學(xué)生分成若干組,因為學(xué)生對于知識的掌握不會是面面俱到,不會是全面的,所以要集合多人的智慧來進行.在進行小組討論的時候,要集合大家的意見和觀點,每個人都要充分發(fā)揮自己的優(yōu)勢,把自己所學(xué)分享給大家,同學(xué)之間要互相鼓勵、互相交流、取長補短,這樣在集體的討論和學(xué)習(xí)中,學(xué)生可以逐漸提高觀察和思考的能力,還可以提高學(xué)生分析和解決問題的能力,把所學(xué)的知識進行深加工,使學(xué)生鞏固自身的知識的基礎(chǔ)上對知識進行深入的領(lǐng)悟,在今后的學(xué)習(xí)中能力得到提高.例如,教師將學(xué)生分成八組,每組六人,在分組的時候盡量是學(xué)生的層次平均分在每個小組.分組之后,要求學(xué)生首先選擇一個方面進行討論(關(guān)于函數(shù)或者是關(guān)于幾何圖形的解答等).確定好主題之后就可以進行討論了.在討論的過程中,要將每位學(xué)生的觀點進行記錄,對于有歧義的觀點,要求學(xué)生進行辯論去辯駁自己觀點的正確性,這樣對于學(xué)生的自身能力的提升是很重要的.
2.老師和學(xué)生一起修改
在小組進行思維導(dǎo)圖的時候,教師要進行適當(dāng)?shù)膮⑴c,在學(xué)生討論遇到瓶頸的時候,要對學(xué)生進行適當(dāng)?shù)囊龑?dǎo),使學(xué)生的討論能夠順利地進行下去.在學(xué)生小組討論完成之后,對討論的結(jié)果做出總結(jié)匯報,教師對于學(xué)生的匯報內(nèi)容要進行仔細(xì)的分析和確認(rèn).小組學(xué)生討論結(jié)果正確的要給予表揚,對于有爭議的或者是錯誤的地方要對學(xué)生要首先進行一些有效的引導(dǎo),讓學(xué)生沿著這樣的思路進行思考,讓學(xué)生先發(fā)揮自己的能力去改正,教師在學(xué)生進行修正的過程中可以適當(dāng)進行一些幫助和支援.例如,學(xué)生進行總結(jié)匯報時,要針對每一點進行核查,對于小組中正確的觀點要給予他們肯定;對于觀點中不充分的地方,要進行補充,要對其說明學(xué)生在思路中的漏洞,讓他們在以后的學(xué)習(xí)中注意;對于完全錯誤的觀點,教師不要急于去否認(rèn),而是要針對這個觀點提出一些思考問題,讓學(xué)生自己發(fā)現(xiàn)觀點的不足之處,然后再一起去進行修改.
3.學(xué)生講解
學(xué)生講解是學(xué)生將自己所學(xué)以及小組討論后的結(jié)果進行陳述,是學(xué)生對數(shù)學(xué)知識的理解的一種展示.讓學(xué)生到全部同學(xué)面前講解思維導(dǎo)圖.這是學(xué)生進行知識再現(xiàn)和知識鞏固的過程,也是學(xué)生對知識加深印象的過程.學(xué)生在講解過程中將各個階段所學(xué)的數(shù)學(xué)知識巧妙地聯(lián)系起來,提高了學(xué)生的學(xué)習(xí)能力,同時培養(yǎng)了學(xué)生思路和解決問題的能力.
新時期的教育改革在不斷嘗試新的教學(xué)方法,思維導(dǎo)圖在高中數(shù)學(xué)的學(xué)習(xí)中在逐漸運用和推廣,很多實踐表明,思維導(dǎo)圖在學(xué)生對數(shù)學(xué)的學(xué)習(xí)中會起到很大的作用,使學(xué)生在數(shù)學(xué)的學(xué)習(xí)中逐漸養(yǎng)成了構(gòu)建思維導(dǎo)圖的習(xí)慣,過去繁雜的數(shù)學(xué)知識在思維導(dǎo)圖的作用下變得井井有條.思維導(dǎo)圖作為一種新型的教學(xué)方法,在實踐中不斷完善.