亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On the Quadratic Twists of Gross Curves

        2016-05-06 01:51:00LIKezhengRENYuan
        關(guān)鍵詞:群英四川大學(xué)師范大學(xué)

        LI Kezheng, REN Yuan

        (Department of Mathematics, Capital Normal University, Beijing 100037)

        ?

        On the Quadratic Twists of Gross Curves

        LI Kezheng,REN Yuan

        (DepartmentofMathematics,CapitalNormalUniversity,Beijing100037)

        Abstract:In this paper, we use 2-descent method to compute the 2-Selmer group for some twists of the elliptic curves constructed by Gross. As a result, we can verify the BSD conjecture for some of them by combining results about L-values.

        Key words:complex multiplication; descent; BSD; graph

        2010 MSC:11G05; 11G15

        1Introduction

        The arithmetic of elliptic curves over a number field has been an area of great interests in number theory.LetEbe an elliptic curve defined over a number fieldF. The Mordell-Weil theorem tells us thatE(F) is a finitely generated abelian group, but it is usually difficult to determine the rank (called Mordell-Weil rank). One can estimate the rank by computing various Selmer groups, for example the 2-Selmer groups.

        In [1-2], for the congruent elliptic curveE(n):y2=x3-n2xwith rational integern, Feng gave some conditions for when the 2-Selmer group is the smallest, i.e. the 2-Selmer group is just the 2-torsion points. In recent years, much effort have been devoted to the study of the congruent number elliptic curveE:y2z=x3-xz2[3-4]. In particular, Y. Tian[5-6] has made a breakthrough .

        In this paper, we will study a similar question for the elliptic curves considered by Gross in [7]. LetKbe an imaginary quadratic extension of the rational fieldQ,andHbeitsHilbertclassfield.AnellipticcurveEdefinedoverHwithcomplexmultiplication(CMforshort)byO=OKiscalledaQ-curve if for anyσ∈ Gal(H/Q),EσisH-isogenous toE.

        suchthat

        and any two of them differs from an action of Gal(H/K).

        Let

        then it corresponds to anH-isogeny class [C] ofQ-curveswithCMbyOK. This is theQ-curvesconsideredin[7].Itiseasytoseetheconductorofχpisπandforanyrationald,theconductoroftheassociatedcharacterof[C(d)]islargerthanπ.

        In[7],Grossestablishedthebasicpropertiesofthesecurves.Inparticular,heobservedthatonecanintroduceanaturalactionofGal(H/K)ontheSelmergroupsandthenreducesomecalculationfromHtoK (wewillbrieflyexplainthisinthenextsection).HealsocomputedSel2(E/H)Gal(H/K)forE∈[C],andshowedE(H)=E[2].

        Inthispaper,wewillcomputeSel2(E(d)/H)Gal(H/K)foralltheintegersdsuchthatd≡1(mod4),whereE(d)isthetwistofEbyd (in[8]).

        Leth=hKbe the class number ofK, then

        Definition1.1Letd≡1(mod4)andfi,gj,Qkasabove.

        Definea(oriented)graphGasfollowing:

        Vertexof

        Recallthatagraphiscalledanoddgraphifeachnon-trivialpartitionofitisanoddpartition.Themainresultis

        Theorem1.2Foreveryd≡1(mod4),wehave

        wheretis the number of even partitions ofG.

        In particular,S(d)is minimal if and only ifGis an odd graph.

        We will prove this theorem in the third section after reviewing the descent method in the next section. Then we will give some numerical examples and discuss some consequences related to the BSD conjecture.

        Note that elliptic curves over finite field is useful in designing cryptograph, see for example [9] and [10]. It is hoped that the results here will also be useful in such problems.

        2Descent method forQ-curves

        Firstweintroducethefollowingnotations:

        K=animaginaryquadraticextensionoverQ;

        O=theintegerringofK;

        ELL(O)={ellipticcurveoverCwithCMbyO } up to C-isomorphism;

        H= the Hilbert class field ofK;

        ELLH(O)={elliptic curve overHwith CM byO}uptoH-isomorphism;

        Recall the following basic facts from CM theory, in [7]:

        (iii) for any rational primel,wehave

        We now review theH-isomorphic andH-isogenous classifications of elliptic curves with CM byO.

        (i) There is a bijection

        (ii)Thereisabijection

        Lemma2.3ForanyE∈ELLH(O)andψ:GH→O×a continuous homomorphism, letEψdenote twist ofEbyψ(note thatO×=Aut(E)),then

        LetwbeaplacewhereχEψ, ψ·χEandψareallunramified.Thenfromψσ(w)=φ-1°φσ(w),wehave

        Sothatasmorphism,wehave

        whichimpliesthatψσ(w)·χE(w)=χEψ(w)byactingontheinvariantdifferential.

        ThenχE2=ψ·χE1.

        ProofAsintheproofofLemma2.3,forallbutfinitelymanyw,because

        whichmeans

        thenwehaveχE2=ψ·χE1.

        Recall the definition ofQ-curves:

        We will now describe the descent method used in [7].

        Lemma 2.6LetE∈ELLH(O) be aQ-curve.Thenforanyσ∈Gal(H/Q),

        Hom(Eσ,E)/2Hom(Eσ,E)?O/2O.

        ProofAssumeE[2]isgeneratedbyPoverO/2O,soEσ[2]isgeneratedbyPσ.Forany

        let[aφ]∈O/2Osuchthat

        thisgivesahomomorphism

        which is obviously injective. On the other hand, the density theorem implies that this homomorphism is surjective.

        Recall that from

        we get the following diagram (Fig.1):

        0→E(H)/2E(d)(p)δ→H1(GH,E[2])→H1(GH,E[2])→0↓↓↓0→∏E(Hv)/2E(d)(p)(Hv)δv→∏H1(GHv,E[2])→∏H1(GHv,E[2])→0

        Fig. 1

        Definition 2.7Define the Selmer group

        Sel2(E/H)=

        {x∈H1(GH,E[2]):Resv(x)∈im(δv),forallplacesv},

        and the Tate-Shafarevich group

        For anyQ-curvesE,wecangiveE(H)/2E(H),Sel2(E/H)andШ(E/H)[2]astructureofGal(H/Q)-modulebyusingLemma2.6asfollowing,

        (i)Foranyσ∈Gal(H/K)and

        define

        whereφ∈Hom(Eσ,E)ischosensothatφmapsto1undertheisomorphisminLemma2.6;

        (ii)Foranyσ∈Gal(H/K)andx∈Sel2(E/H),define

        whereφ∈Hom(Eσ,E)ischosensothatφmapsto1undertheisomorphisminLemma2.6;

        (iii)Foranyσ∈Gal(H/K)andx∈ Ш(E/H)[2],define

        whereφ∈Hom(Eσ,E)ischosensothatφmapsto1undertheisomorphisminLemma2.6.

        Itiseasytoverifytheaboveactionsareindependentofthechooseofφ.

        Proposition2.8Theexactsequence

        is an exact sequence of Gal(H/Q) modules.

        ProofIt is enough to showδis a homomorphism of Gal(H/Q)-modules.

        For anyP∈E(H)/2E(H), assume [2]Q=P, thenδ(P)(g)=Qg-Q, for anyg∈GH. Chooseφ∈Hom(Eσ,E) such thatφ≡1(2), then we have by definitionσ(P)=φ(Pσ), so

        the proposition then follows.

        RemarkIt is easy to see that all the results in this section hold forE(H)/ωE(H), Selω(E/H) and Ш(E/H)[2] for anyω∈O.ItisinterestingtoknowtheGal(H/K)-modulestructureofE(H)/ωE(H),Selω(E/H)andШ(E/H)[2]foranyω∈O.

        3Main thoerem

        Proposition 3.1 Notation as above and let [C] be the isogeny class corresponding theχpin section 1, we have:

        (i) For anyE∈[C] andda rational integer prime top, letF=Q(j(E)), then the root number ofL(E(d)/F,s) is the sign ofd;

        (ii) For anyE∈[C] andda rational integer prime top, we haveE[2]=E(H)tor;

        (iii) Under the action of Gal(H/K), we have

        with some integern(d), so that

        Inparticular,wehave

        Lemma 3.2 For anyE1,E2∈[C], we have

        Sel2(E1/H)?Sel2(E2/H)

        as Gal(H/K)-modules.

        ProofAsEi[2]?Ei(H), we have

        sendingψ∈ Hom(GH,E1[2]) toφ°ψ. We know from Proposition 3.1 thatEi[2] are trivial Gal(H/K)-modules. So for anyψ∈ Hom(GH,E1[2]),g∈GHandσ∈ Gal(H/K), we have

        i.e.ψis a homomorphism of Gal(H/K)-modules. And this gives the desired homomorphism between Sel2(E1/H) and Sel2(E2/H).

        In the following, we writeS(d)for

        By Lemma 3.2, we only need to computeS(d)for any fixedE∈[C]. But we have the following.

        Lemma 3.3There is a uniqueE(p) overFwith

        Proof[7]We will do the computation for thisE(p).Recall that from

        we get the following diagram (Fig.2):

        0→E(d)(p)(H)2E(d)(p)δ→H1(GH,E(d)(p)[2])2→H1(GH,E(d)(p))[2]→0↓↓0→∏E(d)(p)(Hv)2E(d)(p)(Hv)δv→∏H1(GHv,E(d)(p)[2])→∏H1(GHv,E(d)(p))[2]→0

        Fig. 2

        Lemma 3.4 There is a basis ofE(d)(p)[2], such that

        for all placesvofHoverω, and

        wehave

        which is even. If 2|y, then 2│/xbecause 2│/fω, then

        is odd which is a contradiction, so 2│/yandavis odd. Now it follows thatE(p)(d)has good ordinary reduction because its character differs fromχpby a quadratic character unramified over 2.

        From [11], Lemma 3.5, there is a unique two torsion pointP1such thatP1≡O(shè)(modω).Because

        Tostatetheresults,weintroducethefollowingnotations.

        Let

        Lemma3.5Fromthenotationasabove,wemayassume

        withai≡1(mod 4) andv2(bi)=1;

        is odd, so it is easy to see that 2│/aibut 2|bi, and hence we can multiply it by ±1 so thatai≡1(mod 4).

        becausehis odd by the genus theory, so

        i.e.bi+2(ai-1)≡2(mod 4), then we havebi≡2(mod 4).

        The proof for the second assertion is similar.

        Lemma 3.6 Letd≡1(mod 4) be an integer and notations as above,then we have

        (i)E(d)(p) has good reduction at all the places not dividingpd;

        (ii) There is a basis ofE(d)(p)[2], such that

        wherea,…,vk′=0 or 1;

        (iii) For anyv│/ 2, we have #im(δv)=4.

        Proof(i) This is becauseE(p) only has bad reduction at the places overpanddis congruent to 1 mod 4;

        (ii) Note that by the genus theory, the order of Gal(H/K) is odd, so bothH1(Gal(H/K),E[2]) andH1(Gal(H/K),E[2]) are zero. Then by the Serre-Hoschild exact sequence, we have

        and soS(d)?H1(GK,E[2]).

        withai,…,vk=0,1 and similarly forβ.

        (iii) Supposev│/ 2. By the theory of formal groups, there isM?E(d)(p)(Hv) such thatM?OvandE(d)(p)(Hv)/Misfinite.Considerthefollowingdiagram(Fig.3):

        0→M→E(d)(p)(Hv)→E(d)(p)(Hv)/M→02↓2↓2↓0→M→E(d)(p)(Hv)→E(d)(p)(Hv)/M→0

        Fig. 3

        Apply Snake Lemma, we get

        Butasv│/ 2,thenwehave|Ov[2]|=|Ov/2Ov|=1 and the result follows;

        (iv) Just by the definition of the Selmer group.

        From Lemma 3.6 we know that to computeS(d), it is necessary to know the image ofE(d)(p)[2] underδ. For this, we have the following.

        Lemma 3.7For anyd∈Z,thereisabasisofE(d)(p)[2]suchthat

        Andwehave

        foranyv|pd.

        ProofForthefirstassertion,itisenoughtoverifythisforthecased=1.FixthebasisasinLemma3.4.

        TakeaWeierstrassequationoverHof

        withΔ(E(p))=-p3.SinceE(p)haspotentiallygoodreductioneverywhere,wecanfindsomefiniteextensionofHsuchthatE(p)hasgoodreductionatπ.Thenachangeofcoordinatesoftheform

        gives a Weierstrass equationE(p):f(X,Y)=0withgoodreductionatπ.NoticethatPi=(ei,0)’sarethe2-torsionpoints,wehave

        andthenvπ(ei-ej)≥ 1.ButΔ(E(p))=-p3implies

        hence we havevπ(ei-ej)=1.

        By [8], Proposition 14, we have

        Since Lemma 3.6 implies thatxi,yi≡(-1)aπbwitha,b=0 or 1, by combining the above results and Lemma 3.4, we have

        For the second assertion, we note that the four elements

        Now we can prove our main theorem which gives a complete description of the elements inS(d)ford≡1(mod 4).

        Theorem 3.8 (α,β)∈S(d)is equivalent to (α,β)∈Hdand there is

        ProofThis follows from the definition of Selmer group, combining with Lemma 3.6 and Lemma 3.7.

        In practice, one can always computeS(d)by Theorem 3.8 as the examples above. In the following, we give a graphical description of it, which seems more convenient to use.

        Definition 3.9Letd≡1(mod 4) andfi,gj,Qkas in Lemma 3.5.

        Define a (oriented) graphGas following.

        vertex of

        ProofofTheorem1.2DefinegraphG′withvertex

        isanisomorphism,i.e.thereisanarrowfromxtoyifandonlyifthereisanarrowfromφ(x)toφ(y),whichisobvious.

        4Numericalexamples

        (iii)IfQ1andQ2areprimessuchthat

        Proof(i) IfQis congruent to 3 modulo 4. By Hensel lemma, it is enough to solve

        This is equivalent toa2-pb2≡0(Q) and

        IfQiscongruentto1modulo4,then

        so the equation doesn’t have any solutions.

        (ii) This is well known ifQis congruent to 1 modulo 4. But (1) above implies this is also true forQcongruent to 3 modulo 4.

        (iii) By Hensel lemma, it is enough to solve

        ifandonlyifQi≡1(mod4)foranyi=1,…,n.

        Moreover,wehaverankO/ 2OS(d)≥ 1+k, wherekis the number of thoseQiwhich is congruent to 3 module 4.

        ProofIf all theQiare congruent to 1 module 4, we want to show that (α,β)∈S(d)implies (α,β)∈im(E(d)(p)[2]).

        Suppose there is some (α,β)∈S(d)not in

        then eitherα≠1,-πorβ≠1,π.

        by Lemma 4.1. Now the claim follows from Lemma 3.6, (iv). This completes the first assertion.

        By the above, we see that we always have

        forQi≡3(mod 4). Since these elements are linearly independent inSd, we complete the proof.

        Corollary 4.3Letdbe as in Proposition 4.2 withd>0 and

        p>4d2lg|d|,

        then the BSD conjecture is true forE(d)(p) and

        In particular, we can construct arbitrarily large Shafarevich-Tate group by choosingplarge enough anddcontains enoughQwhich is congruent to 3 modulo 4.

        ProofUnder the assumptions ond, we have

        by the main theorem of [12]. So by the Coates-Wiles theorem (see [13]), we know that

        and the assertions follows immediately from Theorem 1.2.

        Proof(i)Write

        thena≡1(mod 4) andv2(b)=1 as in Lemma 3.5.By Theorem 8.3 of [14], we have

        But asf≡1(mod)ω2and

        Because2|b,wehave

        a2+ab≡1+ab≡qh(mod 8).

        Thenifq≡3(mod8),wehaveb≡2(mod8);ifq≡7(mod8),wehaveb≡6(mod8),sothat

        always holds. This finishes the proof of (i).

        Assume|-b|=2ecwithcodd,then

        Because

        Proposition4.5Ifq≡3(mod4)splitsinK,then

        rankO/ 2OS(q*)=3.

        References

        [1] 馮克勤. 非同余數(shù)和秩零橢圓曲線[M]. 合肥:中國科學(xué)技術(shù)大學(xué)出版社,2008.

        [2] FENG K Q. Non-congruent number. odd graphs and the BSD conjecture[J]. Acta Arith,1996,75(1):71-83.

        [3] 韓冬春. 關(guān)于橢圓曲線Ed2:y2=x3-d2x的BSD猜想[J]. 四川大學(xué)學(xué)報(自然科學(xué)版),2013,50(3):470-476.

        [4] 佘東明. 關(guān)于橢圓曲線Ed2:y2=x3-d2x的Artin Root Number的計算[J]. 四川大學(xué)學(xué)報(自然科學(xué)版),2013,50(4):668-674.

        [5] TIAN Y . Congruent numbers and Heegner points[J]. Cambridge J Math,2014,2(2):117-161.

        [6] TIAN Y . Congruent numbers with many prime factoirs[J]. PNAS,2012,109(52):21256-21258.

        [7] GROSS B. Atithmetic of Elliptic Curves with Complex Multiplication[M]. Berlin:Springer-Verlag,1980.

        [8] SILVERMAN J H. The Arithmetic of Elliptic Curves (Graduate Texts in Mathematics)[M]. 2nd ed. New York:Springer-Verlag,2009.

        [9] 廖群英,李俊. 有限域上Reed-Solomon碼的一個注記[J]. 四川師范大學(xué)學(xué)報(自然科學(xué)版),2010,33(4):540-544.

        [10] 廖群英,蒲可莉,葉亮節(jié). 關(guān)于q元非對稱糾錯碼[J]. 四川師范大學(xué)學(xué)報(自然科學(xué)版),2013,36(4):643-648.

        [11] BRUMER A, KRAMER K. The rank of elliptic curves[J]. J Duke Math,1977,44(4):715-743.

        [12] YANG T. Nonvanishing of certein Hecke L-series and rank of certein elliptic curves[J]. Composition Math,1999,117(3):337-359.

        [13] COATES J, WILES A. On the conjecture of Birch and Swinnerton-Dyer[J]. Invent Math,1977,39:223-251.

        [14] NEUKRICH J. Algebraic Number Theory[M]. New York:Springer-Verlag,1999.

        [15] SERRE J. A Course in Arithmetic[M]. New York:Springer-Verlag,1973.

        doi:10.3969/j.issn.1001-8395.2016.01.007

        Received date:2015-08-27

        Foundation Items:This work is supported by the National Key Basic Research 973 Program of China (2013CB834202)

        猜你喜歡
        群英四川大學(xué)師范大學(xué)
        四川大學(xué)西航港實驗小學(xué)
        2009,新武器群英薈
        Almost Sure Convergence of Weighted Sums for Extended Negatively Dependent Random Variables Under Sub-Linear Expectations
        Study on the harmony between human and nature in Walden
        長江叢刊(2018年8期)2018-11-14 23:56:26
        Balance of Trade Between China and India
        商情(2017年9期)2017-04-29 02:12:31
        Courses on National Pakistan culture in Honder College
        百年精誠 譽從信來——走進四川大學(xué)華西眼視光之一
        Film Music and its Effects in Film Appreciation
        四川大學(xué)華西醫(yī)院
        四川大學(xué)信息顯示研究所
        液晶與顯示(2014年2期)2014-02-28 21:12:58
        中文字幕亚洲高清视频| 久久国产精彩视频| 亚洲国产精品无码久久九九大片健| 在线亚洲精品免费视频| 强d乱码中文字幕熟女免费| 激情综合色综合啪啪五月丁香| 欧美日韩综合网在线观看| 中文字幕一区,二区,三区| 国产三级精品三级在线专区| 五月天国产成人av免费观看| 成人免费ā片在线观看| japanese色国产在线看视频| 曰韩精品无码一区二区三区| 久久色悠悠亚洲综合网| 日本激情网站中文字幕| 99国产精品无码| 国产一区二区三区啪| 手机免费在线观看日韩av| 亚洲国产av无码精品无广告| 国产无遮挡无码视频免费软件 | 亚洲中文字幕第一页免费 | 欧美巨大巨粗黑人性aaaaaa | 中文字日产幕码三区国产| 亚洲国产精品无码一线岛国| 国产精品综合色区在线观看| 国产第19页精品| 国产一区二区三区高清视频| 中文字幕人妻在线少妇| а√资源新版在线天堂| 综合无码综合网站| 亚洲中文字幕有码av| 美妇炮灰被狂躁爽到高潮h| 亚洲日韩国产一区二区三区在线 | 久久精品国产自产对白一区| 久久精品国产亚洲av麻豆瑜伽| 天天综合网天天综合色| 无码一区二区三区在线在看| 亚洲韩日av中文字幕| 国产精品精品自在线拍| 日韩中文字幕中文有码| 麻豆视频在线观看免费在线观看|