宿 娟
(成都師范學(xué)院 數(shù)學(xué)系,四川 成都 610044)
?
Hopfield神經(jīng)網(wǎng)絡(luò)模型全局穩(wěn)定的弱條件
宿娟
(成都師范學(xué)院 數(shù)學(xué)系,四川 成都610044)
摘要:研究了Hopfield神經(jīng)網(wǎng)絡(luò)模型全局漸近穩(wěn)定的弱條件.模型中的激活函數(shù)沒有有界和可微的限制,并且右上Dini導(dǎo)數(shù)可在多點(diǎn)取得最大值.首先構(gòu)造Lyapunov函數(shù),并利用可分析方法,證明了系數(shù)矩陣半負(fù)定是全局漸近穩(wěn)定的弱條件.然后,通過例子和數(shù)值模擬說明了結(jié)論的有效性,改進(jìn)了已有文獻(xiàn)的結(jié)論.
關(guān)鍵詞:神經(jīng)網(wǎng)絡(luò);全局漸近穩(wěn)定;半負(fù)定;平衡點(diǎn)
近年來神經(jīng)網(wǎng)絡(luò)在優(yōu)化控制、模式識(shí)別等領(lǐng)域發(fā)揮了重要作用而備受關(guān)注[1-2].在眾多的神經(jīng)網(wǎng)絡(luò)模型中,文[3]提出的Hopfield神經(jīng)網(wǎng)絡(luò)模型是目前研究和應(yīng)用最為廣泛的神經(jīng)網(wǎng)絡(luò)模型之一,用非線性微分方程描述如下:
(1)
其中u:=(u1,…,un)T,uj表示第j個(gè)神經(jīng)元的狀態(tài)變量,T代表向量或矩陣的轉(zhuǎn)置;D:=diag(d1,…,dn),對(duì)j=1,…,n,有dj>0,它表示網(wǎng)絡(luò)在不連通且無外部附加電壓差的情況下,第j個(gè)神經(jīng)元恢復(fù)孤立靜息狀態(tài)的速率;A:=(aij)n×n是實(shí)對(duì)稱方陣,aij表示第j個(gè)神經(jīng)元對(duì)第i個(gè)神經(jīng)元的影響強(qiáng)度;gj,j=1,…,n,是R上的連續(xù)函數(shù),表示神經(jīng)元的輸出函數(shù),也稱為激活函數(shù),而g(u):=(g1(u1),…,gn(un))T;I:=(I1,…,In)T,Ij∈R,j=1,…,n,表示外部輸入.
受文[7-9]的啟發(fā),本文將進(jìn)一步削弱激活函數(shù)的要求至0 2結(jié)論和證明 假設(shè)u*是系統(tǒng)(1)的平衡點(diǎn),令v=u-u*,則系統(tǒng)(1)改寫成 (2) 文章假設(shè)激活函數(shù)gj,j=1,…,n,滿足下列條件: H10 引理1若條件H1,H2成立,對(duì)j=1,…,n,有 定義 (3) 從條件H1,H2得到 (4) 由(3),(4)式有 (5) 再根據(jù)Fj的定義和(5)式有 引理1得證. ? 定理1設(shè)系統(tǒng)(1)存在平衡點(diǎn)且條件H1,H2成立,若-DG-1+A半負(fù)定,其中G:=diag(G1,…,Gn),則系統(tǒng)(1)的平衡點(diǎn)唯一且全局漸近穩(wěn)定. 證明下面將證明分成三步完成. 步驟1構(gòu)造Lyapunov函數(shù),證明其導(dǎo)數(shù)非正,從而得到平衡點(diǎn)的穩(wěn)定性. 構(gòu)造Lyapunov函數(shù) 由引理1(i),(ii)易知L(t)正定,即L(t)≥0且L(t)=0當(dāng)且僅當(dāng)v(t)=0. 計(jì)算L(t)沿系統(tǒng)(2)的解曲線的導(dǎo)數(shù)有 (6) 由引理1(ii),(iii)有 (7) 將(7)式代入(6)式,并由-DG-1+A半負(fù)定可得 (8) (9) 則L≥0. 步驟2,3將利用反證法證明極限L=0,由此說明v(t)=0的全局吸引性. 步驟2假設(shè)極限L≠0時(shí)估計(jì)v(t)的某個(gè)分量在t充分大時(shí)取值的范圍. 假設(shè)L≠0,即 L>0. (10) 下面尋找v(t)的某個(gè)分量在t充分大時(shí)的取值范圍.由(8)-(10)式可得,存在t1滿足 L(t)≥L,t≥t1. (11) 利用引理1(ii),(iii)將L(t)放大有 (12) ‖v(t)‖≥δ,t≥t1. (13) (13)式說明對(duì)每個(gè)固定的t≥t1,存在與t相關(guān)的某個(gè)j0∈{1,…,n}.滿足: (14) (14)式說明了對(duì)每個(gè)固定的t>t1,存在某個(gè)分量|Vj0(t)|,其下界為正.下面進(jìn)一步尋找其上界.事實(shí)上存在常數(shù)M>0滿足 |vj(t)|≤M,t≥t1,j=1,…,n. (15) 若(15)式不成立,則存在序列{ξi}滿足:(i)ξ1≥t1且{ξi}嚴(yán)格單增趨于+∞;(ii)存在v(t)的某一分量,設(shè)為vj*(t),滿足vj*(ξi)→+∞或vj*(ξi)→-∞,i→∞.不妨設(shè)vj*(ξi)→+∞,則存在l∈N+滿足vj*(ξi)>0,i≥l.由L(t)的定義和引理1有 與(9)式矛盾,因此(15)式成立.同理可證若vj*(ξi)→-∞時(shí)(15)式成立. 根據(jù)(14),(15)式我們得出,對(duì)任意固定的t≥t1,存在某個(gè)j0滿足 (16) 步驟3利用步驟2的結(jié)果來估計(jì)L(t)的取值,得出與L(t)正定的矛盾. (17) 于是對(duì)固定的t≥t1,對(duì)(17)式中j≠j0的項(xiàng)利用引理1(iii)有 (18) (19) (16)式還進(jìn)一步說明了 (20) 從而對(duì)固定的t≥t1,根據(jù)(16),(18)和(19)式,我們得到 (21) (22) 對(duì)(22)式兩端在t1到t上積分有: L(t)≤L(t1)-Ω(t-t1),t≥t1. (23) 根據(jù)(23)式容易得到 L(t)<0,t→+∞, 即u*唯一且全局漸近穩(wěn)定.定理得證. ? 3數(shù)值模擬 本節(jié)將通過一個(gè)例子來驗(yàn)證所得結(jié)論. 例1考慮如下Hopfield神經(jīng)網(wǎng)絡(luò)模型, 其中激活函數(shù) 圖1 初值為(-5,3)時(shí)的軌道收斂到(-2,-2) 圖2 4條軌道皆收斂到(-2,-2) 注1例1中激活函數(shù)gi,i=1,2,其右上Dini導(dǎo)數(shù)D+gi(s)在s∈(-1,1)時(shí)均取得最大值1,用文[9]的結(jié)論不能判斷該平衡點(diǎn)的全局穩(wěn)定. 參考文獻(xiàn): [1]ANTSAKLISP.Neuralnetworksincontrolsystem[J]. IEEE Control System Mag, 1990,10(3):3-5. [2]CHEN Y H, FANG S C. Neurocomputing with time delay anlysis for solving convex quadratic programming problems[J]. IEEE Trans Neural Networks, 2000,11(1):230-240. [3]HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-stage neurons[J]. Proc Nat Acad Sci, 1984,81(10):3088-3092. [4]PAJARES G, GUIJARRO M, RIBEIRO A. A hopfield neural network for combining classifiers applied to textured images[J]. Neural Networks, 2010,23:144-153. [5]GHATEE M, NIKSIRAT M. A hopfield neural network applied to the fuzzy maximum cut problem under credibillty measure[J]. Information Sciences, 2013,229:77-93. [6]CHENG Changyuan, LIN Kuanhui, SHIH Chihwen. Multistability and convergence in delayed neural networks[J]. Physica D, 2007,225:61-74. [7]FORTI M. On global asymptotic stability of a class of nonlinear systems arising in neural network theory[J]. Journal of Differential Equations, 1994,113:246-264. [8]LIU Xiwu, CHEN Tianping. A new result on the global convergence of Hopfield neural networks[J]. IEEE Trans Circuits Syst I, 2002,49(10):1514-1516. [9]ZHANG Weinian. A weak condition of globally asymptotic stability for neural networks[J]. Applied Mathematics Letters, 2006,19:1210-1215. [10]ZOU Lan, TANG Huajing, TAN K C, et al. Analysis of continuous attrractors for 2-D linear threshold neural networks[J]. IEEE Trans Neural Networks, 2009,20(1):175-180. A Weak Condition for the Hopfield Neural Networks SU Juan (Department of Mathematics, Chengdu Normal University, Chengdu 610044, China) Abstract:This paper studies the weak condition for the Hopfield neural networks whose activation functions may not be bounded or differentiable, and furthermore the upper right Dini derivatives of activation functions may obtain the maximum at more than one point. Firstly, by Lyapunov function and analysis methods, a weak condition of globally asymptotic stability is proposed. Then, example and numerical simulations are given to illustrate the theory developed in this paper. Our theory improves the existing results in the literature. Key words:neural networks; globally asymptotic stability; nonpositive definite; equilibrium 中圖分類號(hào):O175.26 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-2443(2016)02-0115-05 作者簡(jiǎn)介:宿娟(1980-),女,四川省崇州市人,講師,碩士,研究方向?yàn)槲⒎址匠膛c動(dòng)力系統(tǒng). 基金項(xiàng)目:四川省教育廳項(xiàng)目(14ZB0329);成都師范學(xué)院校級(jí)科研項(xiàng)目(CS15ZB04). 收稿日期:2015-05-10 DOI:10.14182/J.cnki.1001-2443.2016.02.003 引用格式:宿娟.Hopfield神經(jīng)網(wǎng)絡(luò)模型全局穩(wěn)定的弱條件[J].安徽師范大學(xué)學(xué)報(bào):自然科學(xué)版,2016,39(2):115-119.