文超越 段葉輝 李穎慧 郭秋平 孔祥峰 李鳳娜*
(1.湖南農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,長(zhǎng)沙410128;2.中國(guó)科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)研究所,
中國(guó)科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)過程重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙410125;3.中國(guó)科學(xué)院大學(xué)研究生院,
北京100049)
?
能量感應(yīng)網(wǎng)絡(luò)AMPK/SIRT1/PGC-lα對(duì)骨骼肌纖維類型轉(zhuǎn)化調(diào)節(jié)
文超越1,2段葉輝2,3李穎慧2,3郭秋平2,3孔祥峰2李鳳娜2*
(1.湖南農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,長(zhǎng)沙410128;2.中國(guó)科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)研究所,
中國(guó)科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)過程重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙410125;3.中國(guó)科學(xué)院大學(xué)研究生院,
北京100049)
摘要:腺苷酸活化蛋白激酶(AMPK)、沉默信息調(diào)節(jié)因子1(SIRT1)和過氧化物酶體增殖激活受體γ輔助激活因子α(PGC-1α)構(gòu)成一個(gè)調(diào)節(jié)細(xì)胞能量輸出的信號(hào)網(wǎng)絡(luò),即能量感應(yīng)網(wǎng)絡(luò),共同調(diào)節(jié)機(jī)體能量代謝、線粒體功能以及肌纖維類型的轉(zhuǎn)化。本文擬綜合國(guó)內(nèi)外最新研究報(bào)道,總結(jié)AMPK/SIRT1/PGC-lα能量感應(yīng)網(wǎng)絡(luò)在肌纖維類型轉(zhuǎn)化過程中所發(fā)揮的重要作用,為畜牧生產(chǎn)以及人的營(yíng)養(yǎng)研究提供參考。
關(guān)鍵詞:肌纖維類型轉(zhuǎn)化;AMPK/SIRT1/PGC-lα;線粒體功能;能量代謝
骨骼肌占哺乳類動(dòng)物機(jī)體組成的40%~50%,并調(diào)節(jié)全身的能量代謝穩(wěn)態(tài)[1]。骨骼肌主要由成熟的肌細(xì)胞即肌纖維組成,肌纖維具有很強(qiáng)的可塑性,通過改變其類型組成以適應(yīng)機(jī)體各種不同的生理狀態(tài),這個(gè)過程被稱為“肌纖維類型的轉(zhuǎn)化”(fiber type transformation)。肌纖維的增殖在動(dòng)物胚胎期就已完成,其數(shù)目出生時(shí)已基本固定,而肌纖維類型的轉(zhuǎn)化則伴隨動(dòng)物整個(gè)生長(zhǎng)發(fā)育期。對(duì)骨骼肌肌纖維類型進(jìn)行考察,可為研究其發(fā)育、可塑性以及營(yíng)養(yǎng)干預(yù)的方法途徑提供理論參考。
1肌纖維
1.1肌纖維結(jié)構(gòu)與分類
根據(jù)骨骼肌纖維所含肌球蛋白重鏈(myosin heavy chain,MyHC)表達(dá)形式的不同,將肌纖維分為4種類型[2]:MyHC Ⅰ型(慢速氧化型,其標(biāo)志基因?yàn)镸yh7)、MyHC Ⅱa型(快速氧化型,其標(biāo)志基因?yàn)镸yh2)、MyHC Ⅱb型(快速酵解型,其標(biāo)志基因?yàn)镸yh4)和MyHC Ⅱx型(中間型,其標(biāo)志基因?yàn)镸yh1)。
Ⅰ型肌纖維被認(rèn)為是氧化型代謝,又稱慢氧化纖維,直徑較小,主要依靠有氧代謝途徑供能,依賴脂肪酸氧化生成ATP;Ⅱ型肌纖維,又稱快酵解纖維,主要依靠糖酵解途徑供能,依賴葡萄糖作為能量底物。Ⅱx和Ⅱb型纖維被認(rèn)為是糖酵解型代謝,Ⅱa型纖維則是氧化-糖酵解混合型代謝。Ⅱa型肌纖維的收縮特性和代謝特征介于Ⅰ與Ⅱx型之間,Ⅱb與Ⅱx型比較接近。甘油三酯在不同類型肌纖維中的含量順序?yàn)椋孩?Ⅱa>Ⅱx=Ⅱb[3],線粒體在不同類型肌纖維中的含量排序則因物種而有差異[4]。線粒體占骨骼肌細(xì)胞比例的變動(dòng)范圍為1%~45%[5],不同類型的肌纖維其線粒體的體積與功能都存在很大的差異。氧化型肌纖維絕大部分的能量來源由線粒體提供,而糖酵解型肌纖維同樣依賴線粒體維持其基礎(chǔ)代謝以及高強(qiáng)度運(yùn)動(dòng)之后的修復(fù)代謝[6]。
1.2肌纖維的生長(zhǎng)與發(fā)育
骨骼肌衛(wèi)星細(xì)胞非?;钴S,具有調(diào)節(jié)肌纖維類型組成進(jìn)而重塑骨骼肌的功能。肌衛(wèi)星細(xì)胞是存在于肌肉組織中的干細(xì)胞,通常處于靜息狀態(tài),如遇肌肉創(chuàng)傷或其他特殊生理狀態(tài)則被激活并進(jìn)入增殖、分化和融合的細(xì)胞周期[7]。肌衛(wèi)星細(xì)胞所處不同階段,其標(biāo)志性基因的表達(dá)水平存在差異。從出生至成年期,肌衛(wèi)星細(xì)胞的數(shù)量無明顯改變,肌纖維的直徑顯著增加,但Ⅱ型肌纖維的直徑隨著日齡的增加反而顯著減小,同時(shí)Ⅱ型肌纖維的肌衛(wèi)星細(xì)胞數(shù)量也隨之減少[8]。Ⅰ型肌纖維的特異性蛋白Myh7在增殖階段的成肌細(xì)胞中也有表達(dá),Myh7一旦啟動(dòng)表達(dá),成肌細(xì)胞則進(jìn)入分化狀態(tài),但存在向慢型或快型肌管分化的多種可能[9],這與傳統(tǒng)觀點(diǎn)認(rèn)為Myh7只在分化階段的肌細(xì)胞中表達(dá)不一致。核苷類似物轉(zhuǎn)錄酶抑制劑(齊多夫定)介導(dǎo)的線粒體肌病顯示,Ⅱ型肌纖維顯著增加,成肌分化抗原(MyoD)的表達(dá)水平上調(diào),而肌細(xì)胞生成素和雌激素相關(guān)受體γ(estrogen-related receptor γ,ERRγ)的表達(dá)水平下調(diào);線粒體超微結(jié)構(gòu)異常,DNA耗損,細(xì)胞色素C氧化酶的活性下降,且肌纖維類型的轉(zhuǎn)化失去重建能力[10],這說明線粒體的功能與肌纖維類型緊密聯(lián)系。
2能量感應(yīng)網(wǎng)絡(luò)與肌纖維類型轉(zhuǎn)化
肌纖維的類型組成與線粒體關(guān)系密切,而能量代謝又是線粒體的主要功能,換言之,細(xì)胞能量代謝調(diào)節(jié)著肌纖維的類型。腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)、過氧化物酶體增殖激活受體γ輔助激活因子α(peroxisome proliferator-activated receptor γ co-activator 1α,PGC-1α)和沉默信息調(diào)節(jié)因子1(silent information regulator 1,SIRT1)均被稱為“能量感應(yīng)器”(energy sensor),其功能與調(diào)節(jié)作用緊密相連(圖1),形成能量感應(yīng)網(wǎng)絡(luò),調(diào)控細(xì)胞的能量輸出[11-12],進(jìn)而調(diào)節(jié)肌纖維的類型組成。
CaMK:鈣調(diào)素依賴性蛋白激酶 calcium/calmodulin dependent protein kinase;CaMKK:鈣調(diào)素依賴蛋白激酶激酶 calcium/calmodulin-dependent protein kinase kinase;AMPK:腺苷酸活化蛋白激酶 AMP-activated protein kinase;SIRT1:沉默信息調(diào)節(jié)因子1 silent information regulator 1;PGC-1α:過氧化物酶體增殖激活受體γ輔助激活因子α peroxisome proliferator-activated receptor γ co-activator 1α。
圖1能量代謝網(wǎng)絡(luò)AMPK/SIRT1/PGC-1α參與Ⅰ型肌纖維的線粒體生物合成與氧化代謝
Fig.1Energy metabolism network of AMPK/SIRT1/PGC-1α involved in the mitochondria biogenesis and
oxidative metabolism in type Ⅰ muscle fiber[12]
2.1AMPK
AMPK在細(xì)胞內(nèi)以異源三聚體形式存在,由具有催化作用的α亞基以及具有調(diào)節(jié)作用的β和γ亞基構(gòu)成。AMPK的表達(dá)在不同的肌纖維類型中存在差異:γ3僅在骨骼肌中表達(dá),且在Ⅱb型肌纖維中表達(dá)水平最高,其次是在Ⅱa型肌纖維中,而在Ⅰ型肌纖維中則很難檢測(cè)到[13]。過去10年,運(yùn)用轉(zhuǎn)基因和基因敲除小鼠以及化學(xué)激活劑或抑制劑技術(shù)對(duì)肌纖維類型的轉(zhuǎn)化進(jìn)行深入研究,鑒定出了一系列調(diào)節(jié)骨骼肌纖維類型的重要因子,其中最關(guān)鍵的就是能量感應(yīng)器AMPK,它能調(diào)節(jié)線粒體的生物合成、Ⅰ型肌纖維的形成以及長(zhǎng)期訓(xùn)練中的耐力適應(yīng)性[14-15]。
細(xì)胞內(nèi)鈣離子(Ca2+)濃度,AMP/ATP增加都能激活A(yù)MPK,并通過調(diào)節(jié)線粒體生物合成、煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)水平、ATP的生成以及自噬來維持機(jī)體的能量穩(wěn)態(tài),同時(shí)關(guān)閉由雷帕霉素靶蛋白(mTOR)介導(dǎo)的細(xì)胞生長(zhǎng)與蛋白質(zhì)合成相關(guān)的消耗大量ATP的通道,將代謝轉(zhuǎn)向產(chǎn)生ATP的分解途徑。AMPK通過協(xié)同Ca2+第二信使傳遞的信號(hào)調(diào)控PGC-1α以及PGC-1β的表達(dá),調(diào)節(jié)與肌細(xì)胞相關(guān)的代謝與分化,進(jìn)而促進(jìn)線粒體的生物合成、有氧代謝以及慢型肌纖維的形成,但同時(shí)肌肉的生長(zhǎng)受到限制[16-17]。最新研究顯示,豬的骨骼肌在蘭諾定受體1(ryanodine receptor,RyR1)的R615C位點(diǎn)突變(RyR1R615C)平均增加肌纖維直徑(~35%),而同時(shí)在AMPKγ3的第R2000Q位點(diǎn)突變(AMPKγ3R200Q)能增加線粒體蛋白含量(~50%)以及氧化能力[18],表明肌纖維直徑大小與氧化能力可同步得到改善。
2.2SIRT1
沉默信息調(diào)節(jié)因子(SIRTs)家族包括7個(gè)成員SIRT1~7,它們根據(jù)NAD+/還原型煙酰胺腺嘌呤二核苷酸(NADH)的變化參與調(diào)控細(xì)胞的能量狀態(tài)[19]。到目前為止,對(duì)SIRT1的調(diào)控機(jī)制研究得較為清楚。AMPK通過增加細(xì)胞內(nèi)NAD+水平,來增強(qiáng)另一能量感受器——SIRT1的活性,導(dǎo)致SIRT1下游靶點(diǎn)的去乙?;约盎钚哉{(diào)節(jié),其中最重要的下游靶點(diǎn)就是PGC-1α,肌肉組織中SIRT1通過自調(diào)節(jié)回路促進(jìn)PGC-1α的轉(zhuǎn)錄[20]。AMPK誘導(dǎo)、SIRT1介導(dǎo)的靶點(diǎn)去乙?;?,解釋了AMPK和SIRT1對(duì)能量代謝的許多共聚性的生物效應(yīng)[21]。SIRT1調(diào)節(jié)PGC-1α的活性在骨骼肌組織的能量代謝中發(fā)揮著重要作用,SIRT1/PGC-1α能量軸也說明了機(jī)體細(xì)胞可通過轉(zhuǎn)錄機(jī)制調(diào)節(jié)能量代謝,但能量應(yīng)激狀態(tài)下SIRT1與PGC-1α的相互作用機(jī)理尚不清楚。
骨骼肌超表達(dá)SIRT1基因的小鼠,其肌纖維類型由快型向慢型轉(zhuǎn)化,氧化代謝與線粒體生物合成的標(biāo)志性基因——PGC-1α表達(dá)水平上調(diào),而特異性敲除SIRT1基因小鼠,肌纖維類型組成則無顯著改變[22],說明體內(nèi)還存在其他途徑調(diào)節(jié)正常的肌纖維類型組成以維持機(jī)體的代謝平衡;但正常狀態(tài)下,SIRT1發(fā)揮著特殊的作用。最新研究報(bào)道,PGC-1α能選擇性調(diào)節(jié)SIRT3或SIRT5,且SIRT5對(duì)氧化磷酸化具有正向作用,而AMPK與PGC-1α調(diào)節(jié)SIRT5的作用相反[23]。我們推測(cè),SIRTs家族不同程度地參與了機(jī)體的能量代謝以及線粒體的生物合成。
2.3PGC-1α
骨骼肌細(xì)胞的線粒體生物合成需要一系列的轉(zhuǎn)錄因子,包括PGC-1α及其下游蛋白線粒體轉(zhuǎn)錄因子A、核呼吸因子1和2[24]。PGC-1α存在于線粒體內(nèi),需要翻譯后修飾才具有活性,包括乙酰化和磷酸化[25]。線粒體生物合成的增加能促進(jìn)鈣調(diào)素依賴性蛋白激酶(calcium/calmodulin dependent protein kinase,CaMK)、p38-絲裂原活化蛋白激酶(MAPK)和AMPK的激活,AMPK的激活能促使PGC-1α在蘇氨酸第177位(Thr177)和絲氨酸第538位(Ser538)發(fā)生磷酸化,啟動(dòng)并活化PGC-1α[26]。除了這些磷酸化位點(diǎn),PGC-1α還有許多不同的乙?;稽c(diǎn),體內(nèi)與體外研究均表明,SIRT1可以介導(dǎo)PGC-1α發(fā)生去乙?;瘡亩患せ頪27-28]。因此,去乙?;窼IRT1和激酶AMPK都能增加PGC-1α的活性。PGC-1α是線粒體氧化代謝和細(xì)胞能量穩(wěn)態(tài)的主要調(diào)節(jié)因子,通過其下游的效應(yīng)蛋白發(fā)揮作用,包括過氧化物酶體增殖激活受體α(peroxisome proliferator-activated receptor α,PPARα)和雌激素相關(guān)受體α(ERRα)。
PGC-1α在維持肌纖維類型的正常組成以及完整性方面發(fā)揮著關(guān)鍵作用。PGC-1α在慢肌Ⅰ型肌纖維中的表達(dá)水平很高,而且能促進(jìn)慢肌的形成[29]。骨骼肌PGC-1α特異性敲除小鼠,肌纖維類型從Ⅰ和Ⅱa型向Ⅱx和Ⅱb型轉(zhuǎn)化,耐受力下降,且運(yùn)動(dòng)之后的炎性因子水平顯著升高[30]。另有研究報(bào)道,小鼠肌肉組織特異性超表達(dá)PGC-1α,線粒體氧化代謝的調(diào)節(jié)作用增強(qiáng)[32],且心肌、骨骼肌的線粒體含量以及毛細(xì)血管密度增加[31]。相反,小鼠肌肉組織特異性敲除PGC-1α,其骨骼肌線粒體含量降低,且與線粒體相關(guān)的基因表達(dá)水平下降[30]。該研究未檢測(cè)肌纖維類型的組成,但我們推測(cè)其組成將隨著肌細(xì)胞線粒體含量的改變而發(fā)生變化。PGC-1α還能調(diào)節(jié)肌細(xì)胞的脂滴形成[32],這更反映出PGC-1α在肌細(xì)胞能量代謝過程中的關(guān)鍵作用。嚙齒類動(dòng)物和人的骨骼肌組織中,PGC-1α在Ⅱa型肌纖維中的表達(dá)水平高于Ⅰ型肌纖維,這似乎又表明PGC-1α在肌纖維類型的決定過程中并不是最重要的,可能需要與其他因子共同發(fā)揮調(diào)節(jié)作用,比如:鈣調(diào)磷酸酶、活化T細(xì)胞核因子、CaMK、p38-MAPK和(或)PPARδ等[4]。
3肌纖維類型與豬肉品質(zhì)和人類健康的改善
3.1對(duì)豬肉品質(zhì)的改善
豬肉品質(zhì)主要由豬的肌肉生物學(xué)特性決定,Ⅰ型肌纖維是決定豬肉品質(zhì)的一個(gè)重要因素,提高肌肉中Ⅰ型肌纖維的含量有助于肉色、系水力和嫩度的提升,還可以降低pH下降的速率和幅度。研究發(fā)現(xiàn),梅山豬MyHC Ⅰ型肌纖維的比例與滴水損失呈顯著負(fù)相關(guān),且與pH45和肌內(nèi)脂肪含量呈顯著正相關(guān)[33]。巴馬香豬與長(zhǎng)白豬的肉品質(zhì)對(duì)比試驗(yàn)表明,其背最長(zhǎng)肌中AMPK和PGC-1α基因的表達(dá)水平與氧化型肌纖維Ⅰ、Ⅱa型呈極顯著正相關(guān)[34];與大白豬相比,二花臉豬背最長(zhǎng)肌中含有較高比例的MyHC Ⅰ型和Ⅱa型肌纖維[32];榮昌豬MyHC Ⅱb型肌纖維的比例低于三元豬,而PGC-1α基因的表達(dá)水平則顯著提高[35],以上結(jié)果都可能與地方豬的優(yōu)良肉質(zhì)相關(guān)。
3.2對(duì)人類健康的改善
遺傳因素決定了最基本的肌纖維類型,但是生理因素比如運(yùn)動(dòng),可在出生后影響肌纖維類型的組成、線粒體的生物合成以及能量代謝途徑。機(jī)體的胰島素敏感性以及胰島素刺激的葡萄糖轉(zhuǎn)運(yùn)與Ⅰ型肌纖維的比例呈正相關(guān)[36]。長(zhǎng)期的運(yùn)動(dòng)訓(xùn)練能增加氧化型肌纖維的比例和線粒體的生物合成,而這又促進(jìn)運(yùn)動(dòng)能力以及脂肪酸和葡萄糖的氧化[37-38],并伴隨AMPK以及SIRT1介導(dǎo)的PGC-1α去乙?;痆39];反之,如果減少運(yùn)動(dòng),尤其是在肥胖癥或者慢性病狀態(tài)下,Ⅰ型和Ⅱa型肌纖維比例降低,骨骼肌利用葡萄糖的能力以及胰島素敏感性顯著下降[40]。因此,通過運(yùn)動(dòng)訓(xùn)練能改變骨骼肌纖維類型的組成從而改善機(jī)體的健康。
4結(jié)語(yǔ)
肌纖維類型組成決定了骨骼肌組織最基本的生物學(xué)特性,能量感應(yīng)網(wǎng)絡(luò)AMPK/SIRT1/PGC-lα介導(dǎo)的肌纖維類型轉(zhuǎn)化伴隨著動(dòng)物的生長(zhǎng)發(fā)育,但其確切機(jī)制還需要進(jìn)一步研究與探討。肌細(xì)胞分化前的胚胎期成肌細(xì)胞有著分子特征的差異[41],有必要了解胚胎期肌纖維類型的差異以及產(chǎn)生這種差異的成肌細(xì)胞譜系的分子機(jī)制,針對(duì)這些差異采取相應(yīng)的營(yíng)養(yǎng)干預(yù)方法,提高畜牧生產(chǎn)的同時(shí),也為人的營(yíng)養(yǎng)研究提供參考與借鑒。
參考文獻(xiàn):
[1]KARAGOUNIS L G,HAWLEY J A.Skeletal muscle:increasing the size of the locomotor cell[J].The International Journal of Biochemistry & Cell Biology,2010,42(9):1376-1379.
[2]CHANG K C,FERNANDES K.Developmental expression and 5 end cDNA cloning of the porcine 2x and 2b myosin heavy chain genes[J].DNA Cell Biology,1997,16(12):1429-1437.
[3]GOUSPILLOU G,SGARIOTO N,NORRIS B,et al.The relationship between muscle fiber type-specific PGC-1α content and mitochondrial content varies between rodent models and humans[J].PLoS One,2014,9(8):e103044.
[4]MOYES C D,HOOD D A.Origins and consequences of mitochondrial variation in vertebrate muscle[J].Annual Review of Physiology,2003,65:177-201.
[5]GUEGUEN N,LEFAUCHEUR L,FILLAUT M,et al.Control of skeletal muscle mitochondria respiration by adenine nucleotides:differential effect of ADP and ATP according to muscle contractile type in pigs[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2005,140(2):287-297.
[6]JOANISSE S,GILLEN J B,BELLAMY L M,et al.Evidence for the contribution of muscle stem cells to nonhypertrophic skeletal muscle remodeling in humans[J].The FASEB Journal,2013,27(11):4596-4605.
[7]RELAIX F,ZAMMIT P S.Satellite cells are essential for skeletal muscle regeneration:the cell on the edge returns centre stage[J].Development,2012,139(16):2845-2856.
[8]WANG J H,WANG Q J,WANG C,et al.Heterogeneous activation of a slow myosin gene in proliferating myoblasts and differentiated single myofibers[J].Developmental Biology,2015,402(1):72-80.
[9]VENHOFF N,LEBRECHT D,PFEIFER D,et al.Muscle-fiber transdifferentiation in an experimental model of respiratory chain myopathy[J].Arthritis Research and Therapy,2012,14:R233.
[10]RODGERS J T,LERIN C,GERHART-HINES Z,et al.Metabolic adaptations through the PGC-1α and SIRT1 pathways[J].FEBS Letters,2008,582(1):46-53.
[11]LAGE R,DIéGUEZ C,VIDAL-PUIG A,et al.AMPK:a metabolic gauge regulating whole-body energy homeostasis[J].Trends in Molecular Medicine,2008,14(12):539-549.
[12]HARDIE D G.Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism[J].Proceedings of the National Academy of Sciences of the United States of America,2011,70(1):92-99.
[13]IWABU M,YAMAUCHI T,OKADA-IWABU M,et al.Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+and AMPK/SIRT1[J].Nature,2010,464(7293):1313-1319.
[14]HARDIE D G,ROSS F A,HAWLEY S A.AMPK:a nutrient and energy sensor that maintains energy homeostasis[J].Nature Reviews Molecular Cell Biology,2012,13(4):251-262.
[15]PARSONS S A,WILKINS B J,BUENO O F,et al.Altered skeletal muscle phenotypes in calcineurin Aα and Aβ gene-targeted mice[J].Molecular and Cellular Biology,2003,23(12):4331-4343.
[16]KRAMEROVA I,KUDRYASHOVA E,ERMOLOVA N,et al.Impaired calcium calmodulin kinase signaling and muscle adaptation response in the absence of calpain 3[J].Human Molecular Genetics,2012,21(14):3193-3204.
[17]SCHEFFLER T L,SCHEFFLER J M,PARK S,et al.Fiber hypertrophy and increased oxidative capacity can occur simultaneously in pig glycolytic skeletal muscle[J].American Journal of Physiology-Cell Physiology,2014,306(4):C354-C363.
[18]FELDMAN J L,DITTENHAFER-REED K E,DENU J M.Sirtuin catalysis and regulation[J].Journal of Biological Chemistry,2012,287:42419-42427.
[19]JENINGA E H,SCHOONJANS K,AUWERX J.Reversible acetylation of PGC-1:connecting energy sensors and effectors to guarantee metabolic flexibility[J].Oncogene,2010,29(33):4617-4624.
[20]CHAU M D L,GAO J P,YANG Q,et al.Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1α pathway[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(28):12553-12558.
[21]CHALKIADAKI A,IGARASHI M,NASAMU A S,et al.Muscle-specific SIRT1 gain-of-function increases slow-twitch fibers and ameliorates pathophysiology in a mouse model of duchenne muscular dystrophy[J].PLoS Genetics,2014,10(7):e1004490.
[22]BULER M,AATSINKI S M,IZZI V,et al.SIRT5 is under the control of PGC-1α and AMPK and is involved in regulation of mitochondrial energy metabolism[J].The FASEB Journal,2014,28(7):3225-3237.
[23]WU Z D,PUIGSERVER P,ANDERSSON U,et al.Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1[J].Cell,1999,98(1):115-124.
[24]AQUILANO K,VIGILANZA P,BALDELLI S,et al.Peroxisome proliferator-activated receptor γ Co-activator 1α (PGC-1α) and sirtuin 1 (SIRT1) reside in mitochondria[J].The Journal of Biological Chemistry,2010,285(28):21590-21599.
[26]LAGOUGE M,ARGMANN C,GERHART-HINES Z,et al.Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α[J].Cell,2006,127(6):1109-1122.
[27]GURD B J.Deacetylation of PGC-1α by SIRT1:importance for skeletal muscle function and exercise-induced mitochondrial biogenesis[J].Applied Physiology,Nutrition,and Metabolism,2011,36(5):589-597.
[28]LIN J,WU H,TARR P T,et al.Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres[J].Nature,2002,418(6899):797-801.
[29]HANDSCHIN C,CHOI C S,CHIN S,et al.Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout mice reveals skeletal muscle-pancreatic β cell crosstalk[J]. The Journal of Clinical Investigation,2007,117(11):3463-3474.
[30]ARANY Z,FOO S Y,MA Y H,et al.HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α [J].Nature,2008,451(7181):1008-1012.
[31]MORMENEO E,JIMENEZ-MALLEBRERA C,PALOMER X,et al.PGC-1α induces mitochondrial and myokine transcriptional programs and lipid droplet and glycogen accumulation in cultured human skeletal muscle cells[J].PLoS One,2012,7:e29985.
[32]楊飛云.豬骨骼肌肌纖維類型分布及轉(zhuǎn)化的分子機(jī)理研究[D].博士學(xué)位論文.雅安:四川農(nóng)業(yè)大學(xué),2008.
[33]敖秋桅.骨骼肌肌纖維類型與巴馬香豬肉質(zhì)性狀的相關(guān)性研究[M].碩士學(xué)位論文.南寧:廣西大學(xué),2014.
[34]楊曉靜.豬骨骼肌生長(zhǎng)及肌纖維類型分布的分子機(jī)理研究[D].博士學(xué)位論文.南京:南京農(nóng)業(yè)大學(xué),2004.
[35]LARZUL C,LEFAUCHEUR L,ECOLAN P,et al.Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth,carcass,and meat quality traits in large white pigs[J].Journal of Animal Science,1997,75(12):3126-3137.
[36]HOLLOSZY J O.Regulation by exercise of skeletal muscle content of mitochondria and GLUT4[J].Journal of Physiology and Pharmacology,2008,59:5-18.
[37]YAN Z,OKUTSU M,AKHTAR Y N,et al.Regulation of exercise-induced fiber type transformation,mitochondrial biogenesis,and angiogenesis in skeletal muscle[J].Journal of Applied Physiology,2011,110(1):264-274.
[38]LI L,PAN R P,LI R,et al.Mitochondrial biogenesis and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) deacetylation by physical activity:intact adipocytokine signaling is required[J].Diabetes,2011,60(1):157-167.
[39]ZIERATH J R,HAWLEY J A.Skeletal muscle fiber type:influence on contractile and metabolic properties[J].PLoS Biology,2004,2(10):e348.
[40]WEIMER K,THEOBALD J,CAMPBELL K S,et al.Genome-wide expression analysis and EMX2 gene expression in embryonic myoblasts committed to diverse skeletal muscle fiber type fates[J].Developmental Dynamics,2013,242(8):1001-1020.
[41]KOLTAI E,SZABO Z,ATALAY M,et al.Exercise alters SIRT1,SIRT6,NAD and NAMPT levels in skeletal muscle of aged rats[J].Mechanisms of Ageing and Development,2010,131(1):21-28.
*Correspoding author, associate professor, E-mail: lifengna@isa.ac.cn
(責(zé)任編輯武海龍)
Energy Sensing Network AMPK/SIRT1/PGC-lα Involved in Regulating Skeletal Muscle Fiber Type Transformation
WEN Chaoyue1,2DUAN Yehui2,3LI Yinghui2,3GUO Qiuping2,3KONG Xiangfeng2LI Fengna2*
(1. College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; 2. Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract:AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and silent information regulator 1 (SIRT1) act as an orchestrated network to regulate the signal of cellular energy output, that is called energy sensing, to modulate energy metabolism, mitochondria and muscle fiber transformation of the whole body. This review extracted the new advances and summarized the critical roles of the AMPK/PGC-1α/SIRT1 energy network in regulating muscle fiber transformation, so as to provide references for livestock production and human nutrition.[Chinese Journal of Animal Nutrition, 2016, 28(1):57-63]
Key words:skeletal muscle fiber-type transformation; AMPK/SIRT1/PGC-lα; mitochondrial function; energy metabolism
中圖分類號(hào):S852.2
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1006-267X(2016)01-0057-07
作者簡(jiǎn)介:文超越(1992—)男,四川遂寧人,本科生,動(dòng)物醫(yī)學(xué)專業(yè)。E-mail: 18390973474@163.com*通信作者:李鳳娜,副研究員,E-mail: lifengna@isa.ac.cn
基金項(xiàng)目:國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(2013CB127305,2012CB124704);國(guó)家自然科學(xué)基金(31110103909,31330075);中科院STS項(xiàng)目(KFJ-EW-STS-063)
收稿日期:2015-07-24
doi:10.3969/j.issn.1006-267x.2016.01.009