孫寧川,唐光木,徐萬(wàn)里,韓啟龍,羅志明,高永建
(1.新疆農(nóng)業(yè)科學(xué)院土壤肥料與農(nóng)業(yè)節(jié)水研究所,烏魯木齊 830091;2.新疆沙灣縣農(nóng)業(yè)技術(shù)推廣中心,新疆沙灣 834700)
棉稈炭和炭基專(zhuān)用肥對(duì)棉花生長(zhǎng)及產(chǎn)量的影響
孫寧川1,唐光木1,徐萬(wàn)里1,韓啟龍1,羅志明2,高永建2
(1.新疆農(nóng)業(yè)科學(xué)院土壤肥料與農(nóng)業(yè)節(jié)水研究所,烏魯木齊 830091;2.新疆沙灣縣農(nóng)業(yè)技術(shù)推廣中心,新疆沙灣 834700)
【目的】新疆是我國(guó)最大的商品棉生產(chǎn)基地,部分主產(chǎn)區(qū)連作時(shí)間長(zhǎng),棉稈還田對(duì)土壤帶來(lái)了一定的病蟲(chóng)害,研究棉稈炭和炭基專(zhuān)用肥對(duì)棉花生長(zhǎng)及產(chǎn)量的影響,為棉花秸稈制備生物炭或生物炭基肥再返還到棉田提供依據(jù)?!痉椒ā棵藁ń斩掗L(zhǎng)度控制在8~12 cm,在缺氧的環(huán)境下燃燒制炭。棉稈炭與化肥按一定的比例加工炭基肥,通過(guò)田間試驗(yàn)進(jìn)行驗(yàn)證?!窘Y(jié)果】與對(duì)照處理相比,生物炭處理與炭基肥處理提高花蕾數(shù)38%、92.3%,果苔數(shù)都提高25%,總生物量分別提高25.8%、39%,生物炭處理比對(duì)照增產(chǎn)28.9%,炭基肥處理比對(duì)照增產(chǎn)25.1%;棉花產(chǎn)量生物炭處理與炭基肥處理比較差異不顯著(P<0.05)?!窘Y(jié)論】生物炭處理、炭基肥處理、對(duì)照處理的株高、SPAD值比較差異不顯著,炭基肥處理與對(duì)照處理的花蕾數(shù)、果苔數(shù)比較差異不顯著,而生物總量、產(chǎn)量有極顯著提高,生物炭處理多項(xiàng)指標(biāo)表現(xiàn)最好。
棉花秸稈;生物炭;炭基肥;棉花產(chǎn)量
【研究意義】新疆維吾爾自治區(qū)位于中國(guó)西北邊陲,跨E73°40′~96°23′,N34°25′~49°10′,總面積166×104km2。橫亙新疆中部的天山把它分為南北兩半,習(xí)慣上稱(chēng)天山以南為南疆,天山以北為北疆。由于新疆特殊的地理位置,使得它擁有了得天獨(dú)厚的氣候資源,全年日照時(shí)間平均為2 600~3 400 h,積溫為3 000~4 000℃。棉花是一種好熱喜光的作物,其生育在120~145 d,新疆長(zhǎng)時(shí)間的日照,充足的積溫以及長(zhǎng)無(wú)霜期給棉花的生長(zhǎng)創(chuàng)造了非常有利的條件。新疆棉花種植面積占全國(guó)的30%~40%。大部分地區(qū)棉花秸稈進(jìn)行了還田,棉花秸稈還田補(bǔ)充了土壤損失的有機(jī)質(zhì)、礦物質(zhì)元素。但隨著棉田連作年數(shù)的增加,棉花土傳病害爛根病、枯萎病、黃萎病等病情指數(shù)呈上升趨勢(shì)。所以不少農(nóng)戶(hù)為了防止病蟲(chóng)害,將棉花秸稈當(dāng)作廢物丟棄或明火燃燒。棉花秸稈還田會(huì)令土壤中含有大量的碳元素,但是這些碳相對(duì)而言是不穩(wěn)定的,受氣候影響很大,一旦遇到像農(nóng)耕這樣的變化,土壤就會(huì)釋放出CO2。而棉花秸稈制成生物炭可以穩(wěn)定地將碳元素固定在土壤50~100 a,甚至更大其中的碳元素被礦化后很難再分解?!厩叭搜芯窟M(jìn)展】生物炭是在低氧環(huán)境下,通過(guò)高溫裂解將木材、草、玉米稈或其他農(nóng)作物廢物碳化形成的穩(wěn)定固體物質(zhì)被稱(chēng)為“生物炭”[1,2]。生物炭具有高度芳香化結(jié)構(gòu),使其有較高的生物學(xué)和化學(xué)惰性,表現(xiàn)出一定的穩(wěn)定性,同時(shí)生物炭具有較高的比表面積和羧基、羥基、酚羥基等多種功能團(tuán),具有較強(qiáng)的吸附能力和保肥功能,能吸持環(huán)境中的污染物質(zhì)[3],其含有作物所需的N、P、K、Ca、Mg等營(yíng)養(yǎng)元素,也可以用作改良劑提供土壤肥力[4,5]。生物炭具有很高的穩(wěn)定性,在土壤中不易被微生物分解[5,6]。吳鳳芝等[7]曾報(bào)道,隨著作物連作年限的增加,土壤中過(guò)氧化氫酶、脲酶和蔗糖酶活性顯著降低。孫偉等[8]研究報(bào)道,連作棉田加入活性炭土壤脲酶、蔗糖酶、氧化氫酶和多酚氧化酶活性有不同程度的升高,說(shuō)明活性炭可吸附根系分泌物中的化感物質(zhì),緩解了根系分泌物的毒害作用,生物炭還田降低大氣CO2濃度,將生物質(zhì)中50%左右的碳素固定在土壤中[9],有望成為人類(lèi)應(yīng)對(duì)全球氣候變化的一條重要途徑[10-12]。【本研究切入點(diǎn)】把棉花秸稈制成棉稈生物炭,應(yīng)用到棉田對(duì)棉花生長(zhǎng)及產(chǎn)量的影響,同時(shí)考慮到生物炭質(zhì)地輕,呈粉末狀,占空間大,運(yùn)輸和貯存成本較高,而且在農(nóng)田施用過(guò)程中也存在施用不便、粉塵污染等困難,限制了生物炭的農(nóng)業(yè)推廣和利用[13]。根據(jù)生物炭的特性,可以把棉花秸稈炭看做是純天然的、有機(jī)的并且是生產(chǎn)緩效肥很好的原材料,按照棉花的需肥規(guī)律配制炭基專(zhuān)用肥來(lái)研究探討對(duì)棉花生長(zhǎng)及產(chǎn)量的影響,研究表明:炭基肥料[14-15]是利用生物炭與其他肥料混合制成的長(zhǎng)效肥料。【擬解決的關(guān)鍵問(wèn)題】生物炭施入農(nóng)田,利用自身超強(qiáng)的吸附性把土壤中作物生長(zhǎng)所需的營(yíng)養(yǎng)元素吸附在其周?chē)?,可以防止肥料的流失而達(dá)到緩釋的效果[12],達(dá)到棉花增產(chǎn)增收的目的,為棉稈炭以及棉桿炭基專(zhuān)用肥在生產(chǎn)實(shí)踐中的應(yīng)用提供理論依據(jù)。
1.1 研究區(qū)概況
研究區(qū)沙灣縣位于新疆西北部,準(zhǔn)噶爾盆地南緣,天山北麓,東距烏魯木齊 185 km,是一個(gè)以農(nóng)業(yè)為主、農(nóng)牧結(jié)合的農(nóng)業(yè)大縣,境內(nèi)水土、光熱等自然資源豐富,是塔城地區(qū)乃至北疆片區(qū)棉花、糧油、蔬菜、林果等生產(chǎn)供應(yīng)基地。全縣現(xiàn)有耕地5.7×104hm2,還有分布在廣大農(nóng)區(qū)的夾荒地近6.7×104hm2。全縣氣候干燥,晝夜溫差大,夏季酷熱,冬季嚴(yán)寒,四季冬夏季長(zhǎng)、春秋季短。氣象要素隨高度變化明顯。平原地區(qū)由北至南年平均氣溫6.3~6.9 ℃,降水量140~200 mm,年蒸發(fā)量1 500~2 000 mm,年日照時(shí)數(shù)2 800~2 870 h,≥10℃積溫3 400 ~3 600 ℃,無(wú)霜期170~190 d。
1.2 材 料
1.2.1 棉花秸稈生物炭的制取
棉花秸稈生物炭制備方法:選用THI-Ⅱ-B環(huán)保型炭化爐,把棉花秸稈打碎成8~12 cm,秸稈水分<30%,在缺氧的環(huán)境下燃燒,點(diǎn)燃秸稈使之長(zhǎng)時(shí)間無(wú)焰燃燒,逐步添加秸稈,每次在燃燒爐添加完秸稈,控制秸稈的密度后蓋蓋,每爐燒好后的碳出爐時(shí)及時(shí)用水澆滅所有火星,碳晾干或烘干后的碳水分<15%裝袋備料。
1.2.2 棉花秸稈生物炭基肥的制備
棉花秸稈生物炭基肥配方中所有材料處理成粉狀,其中石膏>100目、膨潤(rùn)土>100目,棉稈生物炭原料粉碎到20目。棉花秸稈生物炭基肥總養(yǎng)分含量>32%(N∶P2O5∶K2O=11∶15∶6),每100 kg棉花專(zhuān)用生物炭基肥不同原料的添加量:磷酸銨(P2O5-44、N-11)34.1 kg、尿素15.7 kg、硫酸鉀(K2O-50)12 kg、硫酸鋅1.5 kg、硼酸1.5 kg,生物炭18 kg、石膏與膨潤(rùn)土17.2 kg,每個(gè)材料按上述配比充分混合均勻后,然后用擠壓造粒機(jī)造粒。
1.3 方 法
1.4 數(shù)據(jù)統(tǒng)計(jì)
數(shù)據(jù)統(tǒng)計(jì)分析應(yīng)用SSPS Statistics17.0與Duncan軟件,制圖用Excel 2007軟件。
2.1 不同處理棉花花蕾數(shù)、果苔數(shù)
研究表明,花蕾數(shù)比較: 對(duì)照、炭基肥、生物炭的均值分別為13、18、25個(gè),均值由高到低生物炭>炭基肥>對(duì)照,對(duì)照與炭基肥比較差異不顯著(P<0.01),生物炭與炭基肥、對(duì)照分別比較差異達(dá)到極顯著P<0.01),棉花花蕾數(shù)生物炭比炭基肥、對(duì)照分別提高38%、92.3%;果苔數(shù)比較:對(duì)照、炭基肥、生物炭的均值分別為8、8、10,對(duì)照與炭基肥比較差異不顯著,生物炭與炭基肥、對(duì)照分別比較差異達(dá)到極顯著(P<0.01),棉花果苔數(shù)生物炭比炭基肥、對(duì)照都提高25%。圖1
圖1 不同處理棉花花蕾數(shù)和果苔數(shù)比較
Fig.1 Different treatment of cotton buds and fruit branch comparison
2.2 不同處理棉花根重、莖重、花鈴重、葉片重、總的生物量干重
研究表明,根重比較:對(duì)照、炭基肥、生物炭的均值分別為5.95、8.19、9.55(g),均值由高到低生物炭>炭基肥>對(duì)照,對(duì)照與炭基肥、生物炭比較差異達(dá)到極顯著,生物炭與炭基肥比較差異不顯著,棉花根重生物炭、炭基肥比對(duì)照分別提高60.5%、16.6%。
莖重比較:對(duì)照、炭基肥、生物炭的均值分別為13.94、19.57、27.03(g),均值由高到低生物炭>炭基肥>對(duì)照,對(duì)照與炭基肥、生物炭比較差異達(dá)到極顯著(P<0.01),炭基肥與生物炭比較差異達(dá)到極顯著(P<0.01),棉花莖重生物炭比炭基肥、對(duì)照分別提高38.1%、93.9%;炭基肥比對(duì)照提高40.4%。
花鈴重比較:對(duì)照、炭基肥、生物炭的均值分別為18.87、22.06、32.26(g),均值由高到低生物炭>炭基肥>對(duì)照,對(duì)照、炭基肥比較差異不顯著,生物炭、對(duì)照與炭基肥分別比較差異達(dá)到極顯著(P<0.01),棉花花鈴重生物炭比炭基肥、對(duì)照分別提高46.2%、71%。
葉片重比較:對(duì)照、炭基肥、生物炭的均值分別為13.95、19.69、23.88(g),均值由高到低生物炭>炭基肥>對(duì)照,對(duì)照與炭基肥、生物炭比較差異達(dá)到極顯著(P<0.01),炭基肥與生物炭比較差異達(dá)到極顯著(P<0.01),棉花葉片重生物炭比炭基肥、對(duì)照分別提高21.3%、71.2%;炭基肥比對(duì)照提高41.2%。
總生物量=根重+莖重+葉片重+花鈴重,總生物量比較:對(duì)照、炭基肥、生物炭的均值分別為50.81、70.64、88.89(g),均值由高到低處生物炭>炭基肥>對(duì)照,對(duì)照與炭基肥、生物炭比較差異達(dá)到極顯著(P<0.01),炭基肥與生物炭比較同樣差異達(dá)到極顯著,棉花總生物量(干重)生物炭比炭基肥、對(duì)照分別提高25.8%、74%;炭基肥比對(duì)照提高39%。圖2
圖2 不同處理棉花根、莖、花鈴、葉重及總生物量比較
Fig 2 Different treatment of cotton root weight, stem weight, flower bell weight, leaf weight, total biomass dry weight
2.3 不同處理棉花莖粗和株高
研究表明,不同處理單株莖粗比較:對(duì)照、炭基肥、生物炭的均值分別為9.99、10.96、11.39(mm),均值由高到低生物炭>炭基肥>對(duì)照,對(duì)照與炭基肥、生物炭比較差異達(dá)到極顯著(P<0.01),炭基肥與生物炭比較差異不顯著,棉花單株莖粗生物炭比對(duì)照提高14%;炭基肥比對(duì)照提高9.7%。
不同處理單株株高比較:對(duì)照、炭基肥、生物炭的均值分別為80.47、83.37、85.57cm,株高均值由高到低生物炭>炭基肥>對(duì)照,其中三個(gè)處理相互比較差異不顯著。表1
表1 不同處理棉花單株莖粗和株高比較
Table 1 Different processing cotton plant stem diameter and height comparison
莖粗Stemdiameter(mm)株高Plantheight(cm)對(duì)照Controltreatment炭基肥Carbonbasefertilizer生物炭Biochar對(duì)照Controltreatment炭基肥Carbonbasefertilizer生物炭BiocharⅠ10 1210 8211 681 980 288 1Ⅱ10 1210 7711 3878 286 682 9Ⅲ9 7411 2811 1981 380 388 7均值Mean9 99±0 22Bb10 96±0 28Aa11 39±0 21Aa80 47±1 99a82 37±3 67a86 57±3 19a
注:不同大寫(xiě)字母代表極顯著性比較,不同小寫(xiě)字母代表顯著性比較,下同
2.4 不同處理棉花單株葉面積和SPAD值
不同處理單株葉面積研究表明,對(duì)照、炭基肥、生物炭的均值分別為0.17、0.23、0.25(),均值由高到低生物炭>炭基肥>對(duì)照,其中對(duì)照與炭基肥、生物炭比較差異達(dá)到極顯著(P<0.01),炭基肥與生物炭比較差異不顯著, 棉花單株葉面積生物炭比對(duì)照提高47.1%,炭基肥比對(duì)照提高35.3%;SPAD值表明,對(duì)照、炭基肥、生物炭的均值分別為61.12、60.09、61.3,均值由高到低生物炭>對(duì)照>炭基肥,其中三個(gè)處理相互比較差異不顯著。表2
表2 不同處理棉花單株葉面積和SPAD值比較
Table 2 Different treatment of cotton leaf area and SPAD value comparison
單株葉面積Plantleafarea(m2)SPAD值SPADvalues對(duì)照Controltreatment炭基肥Carbonbasefertilizer生物炭Biochar對(duì)照Controltreatment炭基肥Carbonbasefertilizer生物炭BiocharⅠ0 190 260 2463 5858 4360 53Ⅱ0 140 20 2760 0160 7961 21Ⅲ0 170 240 2459 7861 0662 17均值Mean0 17±0 025Bb0 23±0 031Aa0 25±0 017Aa61 12±2 13Aa60 09±1 45Aa61 3±0 82Aa
2.5 不同處理棉花產(chǎn)量
不同處理棉花產(chǎn)量研究表明,對(duì)照、炭基肥、生物炭的均值分別為5 204.1、6 508.4、6 705.9(kg/hm2),均值由高到低生物炭>炭基肥>對(duì)照,其中對(duì)照、炭基肥、生物炭比較差異達(dá)到極顯著(P<0.01),炭基肥與生物炭比較差異不顯著,炭基肥比對(duì)照增產(chǎn)25.1%,生物炭比對(duì)照增產(chǎn)28.9%。表3
表3 不同處理棉花產(chǎn)量比較(kg/hm2)
Table 3 Comparison of different treatment cotton production
對(duì)照Controltreatment炭基肥Carbonbasefertilizer生物炭BiocharⅠ5079 56552 56373 9Ⅱ5079 86317 16814 9Ⅲ5328 36655 56928 8均值Mean5204 1±175 7Bb6508 4±173 5Aa6705 9±293 1Aa
棉花秸稈生物炭同其他生物炭如水稻秸稈炭、小麥秸稈炭、竹炭、木炭等比重不同,理化指標(biāo)不同,棉花植株中鉀的含量遠(yuǎn)大于以上其他秸稈炭的含量。從原材料性?xún)r(jià)比上看,水稻秸稈、小麥秸稈在新疆單價(jià)為2元/kg,且產(chǎn)量尚不能滿(mǎn)足牛、羊食用;棉花秸稈在新疆價(jià)格較低、而且產(chǎn)量大,不少棉區(qū)因棉花的枯黃萎病的加重使得不少棉花秸稈就地燃燒。秸稈生物量方面,新疆實(shí)際種植的棉花超過(guò)130×104hm2,棉花秸稈量超過(guò)1 000×104t。國(guó)內(nèi)外對(duì)生物炭的發(fā)現(xiàn)和研究時(shí)間較長(zhǎng),而對(duì)生物炭基肥的研究尚處于起步階段,喬志剛等[13]研究報(bào)道小麥秸稈炭基肥對(duì)青椒產(chǎn)量提高13.3%,單果鮮重提高33,7%。任少用等[14]研究報(bào)道,施用炭基肥后,馬鈴薯單株結(jié)薯數(shù)、單薯重、大薯率以及產(chǎn)量均高于普通施肥。盧廣遠(yuǎn)等[16]研究報(bào)道,施用炭基肥料的玉米穗長(zhǎng)、穗粗、出籽率、穗粒數(shù)和千粒重均表現(xiàn)較好。
對(duì)照與炭基肥(等養(yǎng)分含量的棉花秸稈炭基肥)的花蕾數(shù)、果苔數(shù)比較差異不顯著,而總生物量、棉花產(chǎn)量對(duì)照與炭基肥比較差異達(dá)到極顯著,可表明(炭基肥處理)肥料的長(zhǎng)效性;生物炭處理棉稈炭的量占根層土壤的1%,它同對(duì)照、炭基肥棉花的株高、SPAD值上差異不顯著;棉花的株高一般在田間管理上要進(jìn)行統(tǒng)一化控制,所以三處理株高差異不顯著屬于正常;生物炭與炭基肥的產(chǎn)量上差異不顯著,花蕾數(shù)、果苔數(shù),總生物量生物炭處理與對(duì)照、炭基肥處理比較都表現(xiàn)最好,達(dá)到極顯著差異。
對(duì)照與炭基肥處理的花蕾數(shù)、果苔數(shù)差異不顯著;而總生物量、棉花產(chǎn)量方面,對(duì)照與炭基肥處理差異達(dá)到極顯著,炭基肥比對(duì)照增產(chǎn)25.1%,生物總量提高39%,可表明炭基肥的長(zhǎng)效性,生物炭處理與炭基肥處理的產(chǎn)量差異不顯著;花蕾數(shù)、果苔數(shù),總生物量比較,生物炭與對(duì)照、炭基肥比較達(dá)到極顯著差異,分別是提高花蕾數(shù)38%、92.3%,果苔數(shù)25%,總生物量25.8%、74%,生物炭比對(duì)照增產(chǎn)28.9%;棉花單株葉面積對(duì)比,生物炭比對(duì)照提高47.1%,炭基肥比對(duì)照提高35.3%,炭基肥與生物炭比較差異不顯著;不同處理單株莖粗比較,對(duì)照與炭基肥、生物炭比較差異達(dá)到極顯著,炭基肥與生物炭比較差異不顯著,生物炭比對(duì)照提高14%;炭基肥比對(duì)照提高9.7%,三個(gè)處理棉花的株高、SPAD值差異不顯著。
References)
[1] Marchal, G., Smith, K. E. C., Rein, A., Winding, A., Jonge, L. W. D., & Trapp, S., et al. (2013). Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil.EnvironmentalPollution, 181(6):200-210.
[2] 李力,劉婭,陸宇超,等.生物炭的環(huán)境效應(yīng)及應(yīng)用研究的進(jìn)展[J].環(huán)境化學(xué),2011,30(8):1 411-1 421.
LI Li, LIU Ya, LU Yu-chao, et al. (2011). Progress environmental effects of biochar and applied research [J].EnvironmentalChemistry, 30 (8):1,411-1,421. (in Chinese)
[3] Chun, Y., Sheng, G., Chiou, C. T., & Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars.EnvironmentalScience&Technology, 38(17):4,649-4,655.
[4] Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use.TransactionsoftheAsabe, 51(6):2,061-2,069.
[5] Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. S. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil.SoilScience, 174(2):105-112.
[6] Asai, H,, Samson, B. K., Stephan, H. M,, Songyikhangsuthor, K., & Homma, K. (2009). Biochar amendment techniques for upland rice production in northern Laos.FieldCropsResearch, (111):81-84.
[7]吳鳳芝,孟立君,王學(xué)征.設(shè)施蔬菜輪作和連作土壤酶活性的研究[J].植物營(yíng)養(yǎng)與土壤學(xué)報(bào),2006,12(4):554-558.
WU Feng-zhi, MENG Li-jun, WANG Xue-zheng. (2006). Vegetable crop rotation and continuous cropping soil enzyme activity [J].PlantNutritionandSoilScience, 12 (4): 554-558. (in Chinese)
[8]張偉,孫艷艷,李彥斌,等.活性炭處理對(duì)連作棉田土壤酶活性的影響[J].新疆農(nóng)業(yè)科學(xué),2009,46(4):789-792.
ZHANG Wei, SUN Yan-yan, LI Yan-bin, et al. (2009). Effect of activity charcoal treatment on the activities of soil enzymes of continuous cropping cotton field [J].XinjiangAgriculturalSciences,46 (4):789-792. (in Chinese)
[9] Lehmann J,Bio-energyintheblackFrontiersinEcologyandtheEnvironment,2007,(5):381-387.
[10] Harder B, Smoldered-Earth Policy: Created by ancient Amazania natives,fertile, dark soils retain abundant carbon.ScienceNews, 2006,169: 133 .
[11]Lehman J.Ahandful of carbon.Natur,2007, 442:143-144.
[12] Marris E.Black is the new gree.Nature,2006,(442):624-626.
[13] Steiner C, Teixeria Wg, Lehmann J, et al. Long term effects of manure, charcoal, and mineral: fertilization on crop production and fertility on a highly weathered central Amazonian upland soil[J].PlantandSoil,2007,(291):275-290.
[14] Lehmann J, Joseph S.BiocharforEnvironmentalManagementScienceandTechnology[M]. UK and USA: Earthscan, 2009.
[15] 高海英,陳心想,張?chǎng)?,?生物炭和生物炭基肥的理化特征及其作物肥料評(píng)價(jià)[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,41(4):69-78.
GAO Hai-ying, CHEN Xin-xiang, ZHANG Wen, et al. (2013). Physicochemical properties and efficiencies of biochar and biochar-based nitrogenous fertilizer [J].JournalofNorthwestA&FUniversity(Nat.Sci.Ed.), 41 (4):69-78.( in Chinese)
[16]孟軍,張偉明,王紹斌,等.農(nóng)林廢棄物炭化還田技術(shù)的發(fā)展與前景[J].沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2011,42(4):387-392.
MENG Jun, ZHANG Wei-ming, WANG Shao-bin, et al. (2011). Development and prospect of carbonization and returning technology of agr-forestry residue [J].JournalofShenyangAgriculturalUniversity, 42 (4): 387-392. (in Chinese)
[17]喬志剛,付嘉英,鄭金偉,等.不同炭基肥對(duì)青椒生長(zhǎng)、品質(zhì)和氮素農(nóng)學(xué)利用率的影響[J].土壤通報(bào),2014,45(1):174-179.
QIAO Zhi-gang, FU Jia-ying, ZGENG Jin-wei, et al. (2014). Effect of different biocher fertilizer on growth quality and agronomic N Use efficiency of green pepper [J].ChineseJournalofSoilScience, 45 (1):174-179. (in Chinese)
[18]任少用,王姣,黃美華,等.炭基肥對(duì)馬鈴薯品質(zhì)產(chǎn)量的影響[J].中國(guó)農(nóng)學(xué)報(bào),2014,30(6):233-237.
REN Shao-yong,WANG Jiao, HUANG Mei-hua, et al. (2014).The effects of carbon based fertilizer on the yield and quality of [J].ChineseAgriculturalScienceBulletin, 30 (6): 233-237. (in Chinese)
[19]盧廣遠(yuǎn),張艷,王祥福,等.炭基肥料對(duì)土壤物理性質(zhì)及玉米產(chǎn)量的影響[J].河北農(nóng)業(yè)科學(xué),2011,15(5):50-53.
LU Guang-yuan, ZHANG Yan, WANG Xiang-fu, et al. (2011). Effects of carbon base fertilizers on soil physical properties and maize yield [J].JournalofHebeiAgriculturalScience, 15 (5): 50-53.(in Chinese)
[20]馬歡歡,周建斌,王劉江,等.秸稈炭基肥料擠壓造粒成型優(yōu)化及主要性能[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(5):270-275.
MA Huan-huan, ZHOU Jian-bin, WANG Liu-jiang, et al. (2014). Straw carbon based fertilizer granulation molding optimization and its main properties [J].TransactionsoftheChineseSocietyAgriculturalEngineering, 30(5): 270-275. ( in Chinese)
[21]康日峰,張乃明,史靜,等.生物炭基肥料對(duì)小麥生長(zhǎng)、養(yǎng)分吸收及土壤肥力的影響[J].中國(guó)土壤與肥料,2014,(6):33-38.
KANG Rifeng,ZHANG Nai-ming, SHI Jing, et al. (2014). Effects of biochar based fertilizer on growth, nutrient uptake and soil fertility of Wheat [J].ChinaSoilandFertilizer, (6): 33-38. (in Chinese)
Fund project:Project Funds: Supported by the Basic Science and Technology Research Support Funds of Non-profit Research Institutions of Xinjiang Uygur Autonomous Region (KY2012059)and the Science and Technology Support Program of Xinjiang Uygur Autonomous Region ( 201431108)
The Impact of Cotton Stalk Carbon and Carbon-based Specialty Fertilizer on the Cotton Growth and Yield
SUN Ning-chuan1,TANG Guang-mu1,XU Wan-li1,HAN Qi-long1,LUO Zhi-ming2,GAO Yong-jian2
(1.ResearchInstituteofSoil&Fertilizer,andAgriculturalWaterConservation,XinjiangAcademyofAgriculturalSciences,Urumqi830091,China; 2.XinjiangShawanCountyAgriculturalTechnologyExtensionCenter,ShawanXinjiang834700,China)
【Objective】 Xinjiang is the largest cotton production area in China due to a long time continuous cultivation period in many major cultivation places. The cotton straws returned to the soil bring a certain amount of soil pests. If the cotton stalks are changed into biochar or carbon base fertilizer and then returned to the cotton fields, they might turn the negative effect into something favorable advantage. 【Method】 The cotton stalks length was controled in 8-12 cm, in anoxic environments they were burned into charcoal. Biochar and fertilizer were combined by a certain percentage into base fertilizer and then it went through field trials. 【Result】 Compared with the control group, biochar treatment and carbon base fertilizer treatment increased the cotton buds by 38% and 92.3%, the fruit moss by 25%, the total biomass by 25.8% and 39%, respectively. As a result, t he yield was increased 28.9% by the former one and 25.1% by the latter. No obvious difference (P< 0.05) was found between the two treatments.【Conclusion】 Among the biochar treatment, carbon base fertilizer treatment and the control treatment, the difference in SPAD value is not significant, the difference of bud number and fruit moss between carbon-based fertilizer treatment and the control treatment is not significantly either, but the total biomass and the yield was improved greatly. And, many indexes by biochar treatment are well.
cotton stalk; biochar; carbon base fertilizer; cotton yeild
10.6048/j.issn.1001-4330.2016.01.022
2015-03-12
自治區(qū)公益性科研院所基本科研業(yè)務(wù)經(jīng)費(fèi)資助項(xiàng)目(ky2012059);新疆科技支撐計(jì)劃項(xiàng)目(201431108)
孫寧川(1960-),男,重慶人,研究方向?yàn)榻斩捥炕€田技術(shù)應(yīng)用和推廣,(E-mail)289528791@qq.com
徐萬(wàn)里(1971-),男,陜西人,研究員,博士,研究方向?yàn)榫G洲農(nóng)田土壤質(zhì)量和碳氮,(E-mail)wlxu2005@163.com
S562;S514
A
1001-4330(2016)01-0163-07