陳珂丁艷平王建林邵寶平
(1. 蘭州大學(xué)生命科學(xué)學(xué)院,蘭州 730000;2. 西北師范大學(xué)生命科學(xué)學(xué)院,蘭州 730070)
p53參與代謝調(diào)控的研究進(jìn)展
陳珂1丁艷平2王建林1邵寶平1
(1. 蘭州大學(xué)生命科學(xué)學(xué)院,蘭州 730000;2. 西北師范大學(xué)生命科學(xué)學(xué)院,蘭州 730070)
p53作為腫瘤抑制因子,其不僅參與遺傳毒性應(yīng)激調(diào)節(jié),而且在代謝平衡調(diào)控中也發(fā)揮重要作用。當(dāng)機(jī)體或細(xì)胞處于不同生理逆境時(shí),活化的p53通過參與糖代謝、脂肪酸代謝、ROS水平等相關(guān)調(diào)節(jié)信號通路影響各種代謝途徑,進(jìn)而通過誘導(dǎo)細(xì)胞周期阻滯、修復(fù)、衰老或凋亡的發(fā)生,最終調(diào)控機(jī)體或細(xì)胞產(chǎn)生代謝應(yīng)激??偨Y(jié)了近年來p53途徑的相關(guān)報(bào)道,對p53與癌癥、代謝綜合證的關(guān)系進(jìn)行了闡述,以期為進(jìn)一步理解p53參與的代謝調(diào)控提供參考。
p53;代謝應(yīng)激;能量代謝;代謝調(diào)控
眾所周知,p53作為一個(gè)腫瘤抑制因子,在抑制癌癥的發(fā)生與發(fā)展的調(diào)節(jié)中發(fā)揮著關(guān)鍵作用[1]。近年來,大量研究表明,p53作為細(xì)胞應(yīng)激應(yīng)答的關(guān)鍵組成部分,其將會被遺傳毒性損傷、癌基因活化、正常細(xì)胞間接觸減少、營養(yǎng)物質(zhì)匱乏或缺氧等應(yīng)激信號激活[2];且p53介導(dǎo)的應(yīng)激應(yīng)答效應(yīng)取決于細(xì)胞類型、環(huán)境及應(yīng)激的持續(xù)時(shí)間、程度和起源;而嚴(yán)重或持久不可逆的損傷應(yīng)激,如極度基因毒性損傷或癌基因活化,會誘發(fā)p53調(diào)控的細(xì)胞死亡或衰老,這些應(yīng)答將有效清除被損傷的細(xì)胞,限制可遺傳基因損傷的不良積累,進(jìn)一步抑制惡性損傷的發(fā)展;但溫和的應(yīng)激也會誘發(fā)p53介導(dǎo)的應(yīng)激應(yīng)答,包括修復(fù)和防止損傷,如p53將會降低ROS水平參與抗氧化應(yīng)答,或誘導(dǎo)一個(gè)短暫的細(xì)胞周期阻斷而參與其DNA損傷修復(fù),使細(xì)胞能在損傷修復(fù)之前安全地存活。此外,短暫的代謝應(yīng)激,如可利用的氧和養(yǎng)分的波動也會引發(fā)更多p53參與的適應(yīng)性反應(yīng),在該過程中,p53誘導(dǎo)代謝重構(gòu)并促進(jìn)分解代謝,而協(xié)調(diào)減少細(xì)胞的增殖和生長[3,4]。
綜上所述,p53參與的代謝調(diào)控作為p53應(yīng)答的重要部分不僅有助于維持正常細(xì)胞代謝的動態(tài)平衡,也有助于控制癌癥的發(fā)展。在整個(gè)生命進(jìn)程中,通過代謝或其它應(yīng)激信號激活p53的機(jī)制是復(fù)雜的,同樣,在代謝調(diào)控中p53的活化效應(yīng)也是復(fù)雜的,其介導(dǎo)調(diào)控決定的細(xì)胞命運(yùn)是通過轉(zhuǎn)錄依賴還是獨(dú)立反應(yīng)調(diào)節(jié),是根據(jù)p53的表達(dá)水平、轉(zhuǎn)錄后修飾以及與其他蛋白質(zhì)和轉(zhuǎn)錄因子的相互作用來判斷的。本綜述對p53參與的代謝過程,包括對糖代謝、脂肪酸代謝、ROS產(chǎn)生的調(diào)節(jié)進(jìn)行討論,并闡述了p53與癌癥、代謝綜合癥的關(guān)系,旨為進(jìn)一步探討癌癥和糖尿病、肥胖癥等代謝相關(guān)嚴(yán)重威脅人類健康疾病的發(fā)病機(jī)理提供理論依據(jù)。
1.1 p53與細(xì)胞代謝感受器
p53與細(xì)胞代謝感受器mTOR互作,發(fā)揮其重要作用。mTOR蛋白是一種絲/蘇氨酸蛋白激酶,是細(xì)胞生長和增殖的正調(diào)節(jié)器,在糖尿病、衰老及癌癥的發(fā)生與發(fā)展中發(fā)揮著關(guān)鍵的調(diào)節(jié)作用[5]。這一蛋白在細(xì)胞內(nèi)存在兩種多聚蛋白復(fù)合物亞型,即mTORC1和mTORC2[6],其中mTORC1 由 mTOR蛋白和分別對復(fù)合體起正負(fù)調(diào)節(jié)作用的 Raptor 和Deptor 等附屬蛋白組成[7]。研究表明,mTORC1通過調(diào)節(jié)蛋白質(zhì)翻譯合成、線粒體合成、脂質(zhì)合成及細(xì)胞自噬參與細(xì)胞生長和能量代謝的調(diào)控[8]。例如,mTORC1通過磷酸化S6K和4E-BP1控制蛋白質(zhì)合成可影響細(xì)胞增殖、生長和生存[9,10]。mTORC2應(yīng)答生長因子,并在細(xì)胞骨架發(fā)生、細(xì)胞生存及細(xì)胞代謝的調(diào)控中發(fā)揮著重要作用[10]。mTORC1在適宜的生長環(huán)境(充足的營養(yǎng)、氧氣和能量)和促進(jìn)細(xì)胞分裂的有絲分裂原中是較活躍的;反之,在營養(yǎng)、氧氣或能量缺乏并發(fā)生細(xì)胞應(yīng)激時(shí),mTORC1會被抑制,此時(shí)將會在細(xì)胞分裂中誘發(fā)遺傳毒性損傷[11],在該過程中,p53應(yīng)激信號通路不僅參與mTORC1活性的調(diào)控,而且與mTORC1信號途徑有多重交叉互作,為細(xì)胞穩(wěn)態(tài)提供了一個(gè)完整的調(diào)控網(wǎng)絡(luò)系統(tǒng)。
一般情況下,p53是通過活化來應(yīng)答細(xì)胞應(yīng)激的,活化的p53通過激活A(yù)MPK、抑制mTOR來關(guān)閉細(xì)胞的生長、分裂及其不利的能量損耗;在DNA損傷時(shí),p53會活化下游的Sestrin1/2抑制mTORC1的效應(yīng)器4E-BP1[12];而p53刪除或失活增強(qiáng)mTOR活性[13]。除此之外,AMPK不僅在p53的下游,而且在其上游也發(fā)揮著重要的調(diào)節(jié)作用,即在遺傳毒性損傷應(yīng)激或非遺傳毒性損傷應(yīng)激的p53激活中,AMPK不僅可被上游p53激活來抑制mTORC1;且在劇烈應(yīng)激下,AMPK會在p53上游,通過Ser15磷酸化誘導(dǎo)mTORC1的抑制與AMPK依賴的p53活化同時(shí)發(fā)生作用[14]。在該信號通路中,存在一個(gè)p53依賴的G1-S檢驗(yàn)點(diǎn),即當(dāng)細(xì)胞能量供給不足以維持細(xì)胞分裂的大量需求時(shí)阻止細(xì)胞進(jìn)入S期,導(dǎo)致細(xì)胞周期阻滯。此外,AMPK可以通過各種機(jī)制激活p53[15],作用于mTOR,其激活p53的能力與組織特異性和環(huán)境因素相關(guān)。同樣,mTORC1不僅在p53下游起作用,而且也可影響p53的活性[16]。AKT介導(dǎo)的衰老發(fā)生是由mTORC1依賴的p53翻譯和p53蛋白的穩(wěn)定性調(diào)控的[17],其表明致瘤信號可以通過mTOR激活p53。當(dāng)細(xì)胞處于強(qiáng)烈應(yīng)激應(yīng)答時(shí),AMPK和mTOR共同參與的反饋機(jī)制等同于一個(gè)短暫的、自限性p53協(xié)同應(yīng)答機(jī)制。例如,5-氨基咪唑-4-甲酰胺核糖核苷酸(AICAR,一種AMPK激活劑)可以激活p53,表明該自限回饋回路在活化AMPK的同時(shí)也觸發(fā)了p53的快速活化(經(jīng)過Ser15絲氨酸磷酸化)和mTOR的抑制,最終關(guān)閉p53翻譯[18]。綜上所述,在不同應(yīng)激狀態(tài)下和/或不同類型細(xì)胞中,p53和mTOR間的相互作用模式不同。
1.2 p53與碳代謝
p53參與糖酵解、氧化磷酸化及磷酸戊糖途徑的調(diào)節(jié)[19]。一方面,p53作為腫瘤抑制因子,通過多重機(jī)制減少需氧糖酵解和促進(jìn)氧化磷酸化來抑制沃伯格效應(yīng)。促進(jìn)糖酵解途徑第三步的磷酸果糖酶是由糖代謝機(jī)制中各種代謝物變構(gòu)調(diào)節(jié)的,其代謝物包括ATP、檸檬酸鹽和乳酸,而磷酸果糖酶可直接抑制PFK1,而PFK1又可被AMP和果糖-2,6-二磷酸激活。p53在該信號通路中發(fā)揮著關(guān)鍵的調(diào)節(jié)作用,即p53通過上調(diào)TIGAR的表達(dá)而降低糖分解速率,同時(shí)促進(jìn)糖酵解且將其中間產(chǎn)物轉(zhuǎn)移到預(yù)定的磷酸戊糖途徑。此外,在該通路中p53對糖酵解酶具有抑制作用[20,21]。例如,在成纖維細(xì)胞中,p53不僅對促進(jìn)3-磷酸甘油酯轉(zhuǎn)變成2-磷酸甘油酯的磷酸甘油酸酯變位酶具有下調(diào)作用[22],而且對丙酮酸脫氫酶2的表達(dá)也有負(fù)調(diào)控作用,使丙酮酸脫氫酶活性降低,進(jìn)一步使丙酮酸轉(zhuǎn)變成乙酰輔酶A[23];p53與p10的共丟失會通過提高己糖激酶HK2的選擇性上調(diào)HK2介導(dǎo)的有氧糖酵解水平,而促進(jìn)腫瘤發(fā)展[24]。另一方面,p53通過調(diào)節(jié)糖酵解酶而抑制葡萄糖的攝取降低胞內(nèi)葡萄糖水平。同時(shí),p53還可直接下調(diào)葡萄糖轉(zhuǎn)運(yùn)體GLUT1和GLUT4的表達(dá)[25],如在HCC細(xì)胞中,CD147可以通過PI3K/ Akt/MDM2途徑下調(diào)p53,即通過p53依賴性GLUT1的下調(diào)抑制糖酵解[26];或者通過調(diào)節(jié)NF-κB通路來調(diào)節(jié)糖酵解通量[27];且在缺氧條件下,由p53阻止乳酸外流誘發(fā)的單羧酸轉(zhuǎn)運(yùn)體1表達(dá)的下調(diào)同樣會降低糖酵解速率[28]。此外,氧化應(yīng)激是通過激活磷酸戊糖途徑來增加NADPH產(chǎn)物和增強(qiáng)抗氧化能力的,且其中間產(chǎn)物TIGAR在抗氧化應(yīng)激[21]、代謝應(yīng)激[29,30]及缺氧應(yīng)激[31]中均發(fā)揮著重要作用。有趣的是,p53也可通過抑制癌細(xì)胞中PPP途徑來遏制自身生長和增殖必須基礎(chǔ)物質(zhì)的生產(chǎn),而阻礙腫瘤的發(fā)展;能通過結(jié)合6-磷酸葡萄糖脫氫酶抑制PPP途徑[32,33];p53參與氧化磷酸化核心組成成分細(xì)胞色素c氧化酶2合成的轉(zhuǎn)錄激活,并在細(xì)胞色素c氧化酶復(fù)合物組裝的調(diào)控中發(fā)揮關(guān)鍵作用,而p53對糖酵解通量的限制與驅(qū)動氧化磷酸化的能力是平行的,其后者在線粒體完整的維持中發(fā)揮著重要作用[34];除了促進(jìn)氧化磷酸化之外,p53還可通過增加TCA循環(huán)速率及轉(zhuǎn)錄抑制蘋果酸酶1和酶2的表達(dá),來抑制TCA循環(huán)的中間產(chǎn)物在下游生物合成途徑和NADPH產(chǎn)生中的利用[35]。p53限制糖酵解、增強(qiáng)氧化磷酸化的作用反映出它在溫和、短暫的代謝應(yīng)激下幫助維持胞內(nèi)穩(wěn)態(tài)的功能。
1.3 p53與脂肪酸代謝
p53通過激活脂肪酸氧化和抑制脂肪酸合成而發(fā)揮負(fù)調(diào)控器作用,其中主要是通過作用于GAMT、AMPK、CPT-1等調(diào)控脂肪酸代謝[36]。在“胚胎成纖維細(xì)胞被誘導(dǎo)分化成脂肪細(xì)胞”模型系統(tǒng)中,p53作為一個(gè)脂肪生成負(fù)調(diào)節(jié)器發(fā)揮了重要的調(diào)節(jié)作用,其中p53的活化會抑制脂肪細(xì)胞的分化[37],而p53的敲除會增加脂肪的積累[38]。然而,重要的是,在動物細(xì)胞中,p53作為核心因子之一參與了一個(gè)復(fù)雜的、受多方位干預(yù)的抗脂肪合成的作用機(jī)制。大量研究表明,脂代謝主要是由mTOR通路調(diào)控的,且該通路與提供脂質(zhì)合成基礎(chǔ)物質(zhì)的糖酵解和磷酸戊糖途徑密切相關(guān)。因此,p53可以通過干預(yù)mTOR通路及其相關(guān)代謝途經(jīng)而間接參與脂肪合成調(diào)控。同時(shí),在蛋白和基因表達(dá)調(diào)控的脂代謝中,p53可以直接發(fā)揮重要的調(diào)節(jié)作用[39]。例如,p53直接誘導(dǎo)負(fù)責(zé)將脂肪酸轉(zhuǎn)移到線粒體中進(jìn)行脂肪酸氧化的肉堿乙酰轉(zhuǎn)移酶蛋白的表達(dá)[40];p53調(diào)節(jié)負(fù)責(zé)參與決定細(xì)胞脂質(zhì)合成狀態(tài)基因表達(dá)的關(guān)鍵轉(zhuǎn)錄因子;在低糖應(yīng)激應(yīng)答中,p53可通過直接上調(diào)誘導(dǎo)GAMT的表達(dá)而促進(jìn)脂肪酸氧化[41]。此外,RP-MDM2-p53通路在維持肝臟脂質(zhì)平衡的調(diào)控中發(fā)揮著重要作用,其中p53通過直接激活并作用于MCD,而使線粒體脂肪酸攝取增多[42];而mTORC1的活性下調(diào)可使p53TSD/-鼠皮下脂肪減少[43]。
1.4 p53與ROS
在氧化應(yīng)激中,無論是可修復(fù)的ROS損害還是不可修復(fù)而利用細(xì)胞清除的ROS損害,p53均參與了上述氧化損傷消除的調(diào)節(jié),但其作用途經(jīng)是不同的。若損傷短暫可修復(fù)時(shí),p53會起用一套抗氧化應(yīng)答機(jī)制,其大多數(shù)與糖或脂代謝有關(guān)。例如,通過TIGAR活化的磷酸戊糖途徑產(chǎn)生NADPH促進(jìn)細(xì)胞抗氧化劑谷胱甘肽的合成;有趣的是,p53也可在絲氨酸剝奪后的核苷酸合成中直接促進(jìn)谷胱甘肽合成,而在代謝應(yīng)激中積極控制ROS水平[4]。此外,p53作為轉(zhuǎn)錄因子,通過轉(zhuǎn)錄調(diào)控激活抗氧化基因而修復(fù)ROS損傷。例如,p53可誘導(dǎo)sestrin家族成員[44]、乙醛脫氫酶[45]等抗ROS蛋白的表達(dá);也可抑制NOS2[46]和COX2[47]親氧化蛋白的表達(dá)。
另一方面,當(dāng)損傷不可修復(fù)時(shí),p53會喚起親氧化劑功能及其它功能,確保受損傷細(xì)胞死亡[48]。例如,在該細(xì)胞凋亡過程中,p53能激活脯氨酸氧化酶而抑制鐵氧化還原蛋白還原酶類的蛋白表達(dá)直接或通過轉(zhuǎn)錄抑制而參與抗氧化反應(yīng)[49];在ROS誘導(dǎo)的應(yīng)激中,p53也可以通過抑制胱氨酸吸收介導(dǎo)細(xì)胞死亡或凋亡[50]。雖然,一般而言“p53促氧化功能與增加細(xì)胞的死亡有關(guān)”;但是,p53調(diào)控的ROS水平卻被增殖或細(xì)胞死亡信號負(fù)反饋調(diào)控的ROS需求所復(fù)雜化。例如,p53激活產(chǎn)生ROS的一氧化氮合酶復(fù)合物的能力與調(diào)節(jié)細(xì)胞增值、生存的氧化還原敏感的信號轉(zhuǎn)導(dǎo)相關(guān)聯(lián)[51]。到目前為止,雖然應(yīng)激導(dǎo)致不同p53依賴ROS應(yīng)答的區(qū)別還尚未完全明晰,但p53和其他蛋白質(zhì)及轉(zhuǎn)錄因子的互作極有可能是調(diào)節(jié)這一過程的關(guān)鍵因素,且p53的轉(zhuǎn)錄后修飾或表達(dá)水平可能影響這種互作類型。例如,在生理狀態(tài)下,p53的低基礎(chǔ)水平可以增加過氧化氫酶活性并減少ROS;反之,p53被基因毒性壓力激活時(shí)抑制過氧化氫酶活性,成為親氧化劑狀態(tài)[52]。
2.1 p53與瘤細(xì)胞代謝
近年來,研究表明代謝改變是腫瘤發(fā)展必不可少的重要環(huán)節(jié),瘤細(xì)胞依賴代謝改變來重塑自身生長和生存的微環(huán)境[53,54];且已有大量研究發(fā)現(xiàn),p53參與糖酵解、氧化磷酸化、磷酸戊糖途徑、脂質(zhì)合成及活性氧生成的代謝調(diào)控是p53作為腫瘤抑制因子的核心機(jī)制[55]。例如,在p53缺失而表達(dá)p533KD的小鼠中,雖未能啟用p53依賴的細(xì)胞周期阻滯、凋亡及衰老的抑制調(diào)控,但因p533KD保留了WTp53的代謝功能,通過調(diào)節(jié)p53依賴的代謝靶基因如GLS2、GLUT3及TIGAR,而導(dǎo)致ROS水平、糖攝取及糖分解通量的降低,進(jìn)一步抑制了早期腫瘤的發(fā)生[56]。重要的是,最近一項(xiàng)研究通過p53調(diào)節(jié)的TCA循環(huán)酶可強(qiáng)烈誘導(dǎo)細(xì)胞衰老,進(jìn)一步強(qiáng)調(diào)p53在腫瘤抑制中經(jīng)典功能和代謝功能是相互依存的,但其代謝抑制更加重要[35]。然而,p53通過代謝調(diào)控是如何抑制腫瘤發(fā)生與發(fā)展的?到目前為止,已有研究表明,p53主要是通過調(diào)控相關(guān)代謝通路及途經(jīng)阻止遺傳毒性損傷的累積抑制腫瘤的。例如,p53通過調(diào)控mTOR和AMPK通路降低ROS水平、恢復(fù)氧化還原平衡能力以及活化自噬來清除衰老和發(fā)生機(jī)能障礙的細(xì)胞器,也通過IGF-1/AKT/mTOR通路對細(xì)胞生長起負(fù)調(diào)控作用[57,58],進(jìn)一步抑制細(xì)胞的生長和增殖;在甲狀腺瘤中,p53的激活可引發(fā)p53反應(yīng)而抑制腫瘤發(fā)展;但p53的丟失會導(dǎo)致mTOR通路的顯著激活而促進(jìn)腫瘤發(fā)展[59]。重要的是,p53可直接抵制惡性轉(zhuǎn)化和癌發(fā)展極為關(guān)鍵的代謝轉(zhuǎn)化。例如,p53可通過減弱糖酵解和促進(jìn)氧化磷酸化直接抵消沃伯格效應(yīng);p53可通過調(diào)節(jié)磷酸戊糖途徑、反向脂肪酸合成及FAO的活動,直接抑制相關(guān)合成代謝而阻止更多脂肪的生成。
但是,在腫瘤細(xì)胞代謝調(diào)控中,p53作為一把雙刃劍,除了抑制腫瘤的發(fā)生與發(fā)展外,在部分代謝環(huán)節(jié)和部分類型腫瘤中可促進(jìn)腫瘤細(xì)胞的存活和生長。例如,p53通過降低ROS水平而增強(qiáng)腫瘤細(xì)胞的抗氧化應(yīng)激能力;p53也可通過限制糖酵解而促進(jìn)糖酵解中間產(chǎn)物轉(zhuǎn)移到有益于腫瘤細(xì)胞生長的合成代謝途徑,如磷酸戊糖途徑。同樣,在代謝應(yīng)激條件下,p53誘導(dǎo)的細(xì)胞自噬會促進(jìn)腫瘤細(xì)胞的存活,且p53可保護(hù)瘤細(xì)胞免受葡萄糖或絲氨酸匱乏引起的代謝應(yīng)激損傷[3,4]。有趣的是,p53因靶蛋白的不同也具有雙重作用。例如,p53調(diào)節(jié)的CPT1C 的過表達(dá)會在葡萄糖匱乏或缺氧時(shí)增強(qiáng)癌細(xì)胞的存活能力[40];p53調(diào)節(jié)的TIAGR在缺氧時(shí)會增強(qiáng)PPP和HK2的活性[31],而進(jìn)一步會抵抗放療引起的DNA損傷和衰老[60]。除此之外,p53會因自身堿基缺失、錯義突變等因素導(dǎo)致其功能喪失[61],且p53突變是不同類型腫瘤發(fā)生的常見誘因之一[62]。p53的突變不僅導(dǎo)致該蛋白丟失經(jīng)典的腫瘤抑制功能,還可誘發(fā)獨(dú)立于p53的促癌功能,即通過促進(jìn)腫瘤脂代謝、增強(qiáng)糖酵解、增強(qiáng)磷酸戊糖途徑及降低有氧呼吸[63],而進(jìn)一步促進(jìn)瘤細(xì)胞增殖、入侵、轉(zhuǎn)移、血管生成和藥物抗性[64-66]。綜上所述,p53與瘤細(xì)胞代謝緊密相關(guān),對其所參與代謝途徑的研究將促進(jìn)對腫瘤這一疾病的防控。
2.2 p53與代謝綜合癥
p53在代謝疾病中的作用機(jī)制是復(fù)雜的,其與細(xì)胞所處的微環(huán)境密切相關(guān)。例如,在營養(yǎng)過剩后,高脂質(zhì)誘導(dǎo)氧化應(yīng)激水平的上升會導(dǎo)致p53活化,該活化的p53通過增加脂質(zhì)分解而減少脂質(zhì)積累[39];在肥胖相關(guān)的肝脂肪變性和慢性酒精肺病模型中,肝的p53水平是高的[67],其進(jìn)一步通過p53敲除或化學(xué)抑制均會減輕其臨床癥狀;在脂肪變性模型中,p53的抑制會減少甘油三酸脂的積累,而進(jìn)一步促進(jìn)肝臟的FAO[68];且p53的抑制會提高遺傳性肥胖大鼠的胰島素敏感性;而在高脂肪飲食模型中,p53的缺失會導(dǎo)致肝臟脂肪積累的增加和身體肥大[38];糖尿病鼠模型中,p53調(diào)節(jié)的葡萄糖代謝改變肝臟胰島素敏感性[69]。此外,最新研究表明高脂喂養(yǎng)模型中,p53 R72型(72位為精氨酸)鼠表現(xiàn)出更為嚴(yán)重的糖尿病癥狀,且p53的靶基因Tnf 和 Npc1/1均參與該過程的調(diào)節(jié)[70]。有趣的是,p53對于白色脂肪和肝臟中 ghrelin的活化是必須的,其可導(dǎo)致脂肪合成和脂肪基因表達(dá)水平的變化[71]。因此,p53在代謝疾病中的作用機(jī)制不僅具有組織特異性,而且還依賴多變的應(yīng)激類型。
綜上所述,p53在細(xì)胞處于逆境的代謝調(diào)控中發(fā)揮著獨(dú)特作用,其代謝功能不僅是抑制腫瘤還是維持正常胞內(nèi)穩(wěn)態(tài)所必要的。盡管大量研究已表明,在應(yīng)激狀態(tài)下,p53通過調(diào)節(jié)糖酵解速率、磷酸戊糖途徑來增加NADPH產(chǎn)物、增強(qiáng)抗氧化能力,也通過與細(xì)胞代謝感受器mTOR蛋白互作調(diào)控脂肪酸代謝及ROS水平,還通過與細(xì)胞中的關(guān)鍵信號通路(AMPK、Akt等)互作而活化p53靶蛋白來應(yīng)答代謝應(yīng)激;且p53抑制腫瘤的經(jīng)典功能與其促進(jìn)細(xì)胞死亡或抑制細(xì)胞增殖有關(guān);而調(diào)節(jié)多種代謝途徑,如平衡糖酵解及氧化磷酸化、限制ROS產(chǎn)生等作用均有助于細(xì)胞適應(yīng)溫和代謝應(yīng)激。但是,到目前為止,在正常生理應(yīng)激狀態(tài)或病理狀態(tài)下,p53參與細(xì)胞代謝調(diào)控的分子機(jī)理仍需深層次探討,以p53為靶點(diǎn)的疾病治療藥物仍是研究熱點(diǎn)。
[1]Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours[J]. Nature, 1992, 356(6366):215-221.
[2]Horn HF, Vousden KH. Coping with stress:multiple ways to activate p53[J]. Oncogene, 2007, 26(9):1306-1316.
[3]Jones RG, Plas DR, Kubek S, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint[J]. Mol Cell, 2005, 18(3):283-293.
[4]Maddocks OD, Berkers CR, Mason SM, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells[J]. Nature, 2013, 493(7433):542-546.
[5]Zoncu R, Efeyan A, Sabatini DM. mTOR:from growth signal integration to cancer, diabetes and ageing[J]. Nat Rev Mol Cell Biol, 2011, 12(1):21-35.
[6]Laplante M, Sabatini DM. mTOR signaling at a glance[J]. J Cell Sci, 2009, 122(Pt 20):3589-3594.
[7]鄭鵬生, 冀靜. mTOR信號通路與腫瘤的研究進(jìn)展[J]. 西安交通大學(xué)學(xué)報(bào):醫(yī)學(xué)版, 2010, 31(1):1-9.
[8]Howell JJ, Manning BD. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis[J]. Trends Endocrinol Metab, 2011, 22(3):94-102.
[9]Laplante M, Sabatini DM. mTOR signaling in growth control and disease[J]. Cell, 2012, 149(2):274-293.
[10]Huang K, Fingar DC. Growing knowledge of the mTOR signaling network[J]. Semin Cell Dev Biol, 2014, 36:79-90.
[11]Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress[J]. Mol Cell, 2010, 40(2):310-322.
[12]Cam M, Bid HK, Xiao L, et al. p53/TAp63 and AKT regulate mammalian target of rapamycin complex 1(mTORC1)signaling through two independent parallel pathways in the presence of DNA damage[J]. J Biol Chem, 2014, 289(7):4083-4094.
[13] Agarwal S, Bell CM, Taylor SM, et al. p53 Deletion or hot-spot mutations enhance mTORC1 activity by altering lysosomal dynamics of TSC2 and Rheb[J]. Mol Cancer Res, 2015, 1:66-77.
[14] Imamura K, Ogura T, Kishimoto A, et al. Cell cycle regulation via p53 phosphorylation by a 5’-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line[J]. Biochem Biophys Res Commun, 2001, 2:562-567.
[15]Lee CW, Wong LL, Tse EY, et al. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells[J]. Cancer Res, 2012, 72(17):4394-4404.
[16]Mungamuri SK, Yang X, Thor AD, et al. Survival signaling by Notch1:mammalian target of rapamycin(mTOR)-dependent inhibition of p53[J]. Cancer Res, 2006, 66(9):4715-4724.
[17]Astle MV, Hannan KM, Ng PY, et al. AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage:implications for targeting mTOR during malignancy[J]. Oncogene, 2012, 31(15):1949-1962.
[18]Lee CH, Inoki K, Karbowniczek M, et al. Constitutive mTOR activation in TSC mutants sensitizes cells to energy starvation andgenomic damage via p53[J]. Embo J, 2007, 23:4812-4823.
[19]Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health:a lifeguard with a licence to kill[J]. Nat Rev Mol Cell Biol, 2015, 16(7):393-405.
[20]Li H, Jogl G. Structural and biochemical studies of TIGAR(TP53-induced glycolysis and apoptosis regulator)[J]. J Biol Chem, 2009, 284(3):1748-1754.
[21]Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis[J]. Cell, 2006, 126(1):107-120.
[22]Kondoh H, Lleonart ME, Gil J, et al. Glycolytic enzymes can modulate cellular life span[J]. Cancer Res, 2005, 65(1):177-185.
[23]Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2[J]. Cancer Res, 2012, 72(2):560-567.
[24]Wang L, Xiong H, Wu F, et al. Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth[J]. Cell Rep, 2014, 8(5):1461-1474.
[25]Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression[J]. Cancer Res, 2004, 7:2627-2633.
[26]Singh SK, Chen NM, Hessmann E, et al. Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity[J]. Embo J, 2015, 34(24):2985-3037.
[27]Kawauchi K, Araki K, Tobiume K, et al. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation[J]. Nat Cell Biol, 2008, 10(5):611-618.
[28]Boidot R, Vegran F, Meulle A, et al. Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors[J]. Cancer Res, 2012, 4:939-948.
[29]Bensaad K, Cheung EC, Vousden KH. Modulation of intracellular ROS levels by TIGAR controls autophagy[J]. Embo J, 2009, 28(19):3015-3026.
[30]Wanka C, Steinbach JP, Rieger J. Tp53-induced glycolysis and apoptosis regulator(TIGAR)protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis[J]. J Biol Chem, 2012, 287(40):33436-33446.
[31]Cheung EC, Ludwig RL, Vousden KH. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death[J]. Proc Natl Acad Sci USA, 2012, 50:20491-20496.
[32]Jiang P, Du W, Wang X, et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase[J]. Nat Cell Biol, 2011, 13(3):310-316.
[33]Siegl C, Prusty BK, Karunakaran K, et al. Tumor suppressor p53 alters host cell metabolism to limit Chlamydia trachomatis infection[J]. Cell Rep, 2014, 9(3):918-929.
[34]Matoba S, Kang JG, Patino WD, et al. p53 regulates mitochondrial respiration[J]. Science, 2006, 312(5780):1650-1653.
[35]Jiang P, Du W, Mancuso A, et al. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence[J]. Nature, 2013, 493(7434):689-693.
[36]Puzio-Kuter AM. The role of p53 in metabolic regulation[J]. Genes Cancer, 2011, 2(4):385-391.
[37]Hallenborg P, Feddersen S, Madsen L, et al. The tumor suppressors pRB and p53 as regulators of adipocyte differentiation and function[J]. Expert Opin Ther Targets, 2009, 2:235-246.
[38]Wang X, Zhao X, Gao X, et al. A new role of p53 in regulating lipid metabolism[J]. J Mol Cell Biol, 2013, 5(2):147-150.
[39]Goldstein I, Rotter V. Regulation of lipid metabolism by p53 -fighting two villains with one sword[J]. Trends Endocrinol Metab, 2012, 23(11):567-575.
[40]Zaugg K, Yao Y, Reilly PT, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress[J]. Genes Dev, 2011, 25(10):1041-1051.
[41]Ide T, Brown-Endres L, Chu K, et al. GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress[J]. Mol Cell, 2009, 36(3):379-392.
[42]Liu Y, He Y, Jin A, et al. Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation[J]. Proc Natl Acad Sci USA, 2014, 111(23):E2414-22.
[43]Kim J, Nakasaki M, Todorova D, et al. p53 Induces skin aging by depleting Blimp1+ sebaceous gland cells[J]. Cell Death Dis, 2014, 27(5):87-97.
[44]Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling[J]. Cell, 2008, 134(3):451-460.
[45]Yoon KA, Nakamura Y, Arakawa H. Identification of ALDH4 as ap53-inducible gene and its protective role in cellular stresses[J]. J Hum Genet, 2004, 49(3):134-140.
[46]Ambs S, Ogunfusika MO, Merriam WG, et al. Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice[J]. Proc Natl Acad Sci USA, 1998, 95(15):8823-8828.
[47]Subbaramaiah K, Michaluart P, Chung WJ, et al. Resveratrol inhibits cyclooxygenase-2 transcription in human mammary epithelial cells[J]. Ann N Y Acad Sci, 1999, 889:214-223.
[48]Zhuang J, Ma W, Lago CU, et al. Metabolic regulation of oxygen and redox homeostasis by p53:lessons from evolutionary biology?[J]. Free Radic Biol Med, 2012, 53(6):1279-1285.
[49]Rivera A, Maxwell SA. The p53-induced gene-6(proline oxidase)mediates apoptosis through a calcineurin-dependent pathway[J]. J Biol Chem, 2005, 280(32):29346-29354.
[50]Jiang L, Hickman JH, Wang SJ, et al. Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses[J]. Cell Cycle, 2015, 14(18):2881-2885.
[51]Italiano D, Lena AM, Melino G, et al. Identification of NCF2/ p67phox as a novel p53 target gene[J]. Cell Cycle, 2012, 11(24):4589-4596.
[52]Kang MY, Kim HB, Piao C, et al. The critical role of catalase in prooxidant and antioxidant function of p53[J]. Cell Death Differ, 2013, 20(1):117-129.
[53]Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect:the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930):1029-1033.
[54]Ward PS, Thompson CB. Metabolic reprogramming:a cancer hallmark even warburg did not anticipate[J]. Cancer Cell, 2012, 21(3):297-308.
[55]Liu J, Zhang C, Hu W, et al. Tumor suppressor p53 and its mutants in cancer metabolism[J]. Cancer Lett, 2015, 356(2 Pt A):197-203.
[56]Li T, Kon N, Jiang L, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence[J]. Cell, 2012, 149(6):1269-1283.
[57]Feng Z, Levine AJ. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein[J]. Trends Cell Biol, 2010, 20(7):427-434.
[58]Hasty P, Sharp ZD, Curiel TJ, et al. mTORC1 and p53:clash of the gods?[J]. Cell Cycle, 2013, 12(1):20-25.
[59]Akeno N, Miller AL, Ma X, et al. p53 suppresses carcinoma progression by inhibiting mTOR pathway activation[J]. Oncogene, 2014, 27(10):589-599.
[60]Pena-Rico MA, Calvo-Vidal MN, Villalonga-Planells R, et al. TP53 induced glycolysis and apoptosis regulator(TIGAR)knockdown results in radiosensitization of glioma cells[J]. Radiother Oncol, 2011, 101(1):132-139.
[61]Singh RD, Patel KR, Patel PS. p53 mutation spectrum and its role in prognosis of oral cancer patients:A study from Gujarat, West India[J]. Mutat Res, 2015, 783(2016):15-26.
[62]Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers[J]. Science, 2006, 314(5797):268-274.
[63]繆明永. P53突變或缺失與腫瘤代謝重編程[J]. 腫瘤代謝與營養(yǎng)電子雜志, 2014, 1(2):26-30.
[64]Oren M, Rotter V. Mutant p53 gain-of-function in cancer[J]. Cold Spring Harb Perspect Biol, 2010, 2(2):a001107.
[65]Muller PA, Vousden KH. p53 mutations in cancer[J]. Nat Cell Biol, 2013, 15(1):2-8.
[66]Freed-Pastor WA, Prives C. Mutant p53:one name, many proteins[J]. Genes Dev, 2012, 26(12):1268-1286.
[67]Yahagi N, Shimano H, Matsuzaka T, et al. p53 Activation in adipocytes of obese mice[J]. J Biol Chem, 2003, 278(28):25395-25400.
[68]Derdak Z, Villegas KA, Harb R, et al. Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease[J]. J Hepatol, 2013, 58(4):785-791.
[69]Zhang X, Duan W, Lee WP, et al. Overexpression of p53 improves blood glucose control in an insulin resistant diabetic mouse model[J]. Pancreas, 2016, 45(7):1010-1017.
[70]Kung CP, Leu JI, Basu S, et al. The P72R polymorphism of p53 predisposes to obesity and metabolic dysfunction[J]. Cell Rep,2016, 14(10):2413-2425.
[71]Porteiro B, Diaz-Ruiz A, Martinez G, et al. Ghrelin requires p53 to stimulate lipid storage in fat and liver[J]. Endocrinology, 2013, 154(10):3671-3679.
(責(zé)任編輯 李楠)
Research Progress on p53-involved Metabolic Regulation
CHEN Ke1DING Yan-ping2WANG Jian-lin1SHAO Bao-ping1
(1. School of Life Sciences,Lanzhou University,Lanzhou 730000;2. School of Life Sciences,Northwest Normal University,Lanzhou 730070)
As a tumor suppressor,p53 not only is involved in the stress regulation of genetic toxicity,but also plays an important role in the regulation of metabolic balance. When the cells are in different physiological stresses,the activated p53 will affect various metabolic pathways by participating in the regulations of glucose metabolism,fatty acid metabolism,and ROS level. Consequently,the metabolic stress was generated by firstly inducing the occurrence of cell cycle arrest,repair,senescence or apoptosis and finally regulating the organisms and cells. This review summarized the current advances of p53 pathxxray, and discussed the role that p53 played in cancer and metabolic syndrome, which might benefit the study of p53 involved in metabolic regulation.
p53;metabolic stress;energy metabolism;metabolic regulation
10.13560/j.cnki.biotech.bull.1985.2016.11.007
2016-07-04
國家自然科學(xué)基金項(xiàng)目(31000190,31060141),神經(jīng)科學(xué)國家重點(diǎn)實(shí)驗(yàn)室開放課題(SKLN-20151305)
陳珂,女,碩士研究生,研究方向:高原神經(jīng)生物學(xué);E-mail:chenk2014@lzu.edu.cn
邵寶平,副教授,碩士生導(dǎo)師,研究方向:高原動物適應(yīng)性機(jī)理;E-mail:shaobp@lzu.edu.cn