劉秀位, 張小雨, 張喜英
中國科學(xué)院農(nóng)業(yè)水資源和河北省節(jié)水農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室,遺傳與發(fā)育生物學(xué)研究所農(nóng)業(yè)資源研究中心,石家莊 050021
?
大氣氣溶膠增加對(duì)作物的影響研究進(jìn)展
劉秀位, 張小雨, 張喜英*
中國科學(xué)院農(nóng)業(yè)水資源和河北省節(jié)水農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室,遺傳與發(fā)育生物學(xué)研究所農(nóng)業(yè)資源研究中心,石家莊050021
摘要:大氣氣溶膠是指懸浮在大氣中的固態(tài)和液態(tài)顆粒物總稱。近年來空氣污染帶來了一些區(qū)域大氣氣溶膠濃度上升明顯,一定程度上對(duì)作物生長(zhǎng)環(huán)境帶來影響。國內(nèi)外關(guān)于大氣氣溶膠增加可能對(duì)作物產(chǎn)生的影響表現(xiàn)在:(1)大氣氣溶膠增加會(huì)導(dǎo)致直接輻射減少,而散射輻射可能會(huì)有一定程度增加;散射輻射增加有利于一些作物整個(gè)冠層光合能力的提高。(2)大氣氣溶膠帶來輻射的改變也會(huì)影響近地面小氣候環(huán)境,尤其是大氣晝夜溫度變化,從而影響作物干物質(zhì)積累;而輻射與溫度的改變同時(shí)也會(huì)影響農(nóng)田蒸散和最終水分利用效率。(3)大氣氣溶膠形成的干沉降會(huì)停留在葉片表面,減少光合有效輻射到達(dá)葉片的量,同時(shí)對(duì)作物葉片結(jié)構(gòu)和功能產(chǎn)生直接影響。在總結(jié)國內(nèi)外研究進(jìn)展基礎(chǔ)上,提出未來關(guān)于大氣氣溶膠增加對(duì)作物影響需要進(jìn)一步明確大氣氣溶膠帶來的作物生長(zhǎng)環(huán)境改變對(duì)作物碳同化、積累和消耗的影響以及直接和散射輻射比例改變?nèi)绾斡绊懽魑锕夂虾驼趄v的相互關(guān)系,通過全面系統(tǒng)的研究大氣氣溶膠對(duì)作物產(chǎn)量形成的影響機(jī)制,提出有針對(duì)性的田間應(yīng)對(duì)技術(shù)。
關(guān)鍵詞:大氣氣溶膠;輻射;作物;響應(yīng)
太陽輻射是地球表面能量交換的主要來源,它為植物光合作用提供能量,是影響陸地生態(tài)系統(tǒng)生產(chǎn)力、碳收支和水循環(huán)的重要因子。很多研究顯示地球表面接收到的輻射正在逐漸減少,即全球變暗現(xiàn)象,這種現(xiàn)象與大氣污染氣體尤其是氣溶膠濃度增加有關(guān)[1- 2]。大氣氣溶膠是懸浮在大氣中的固態(tài)和液態(tài)顆粒物的總稱,不僅在全球氣候變化中起著重要作用,也是區(qū)域大氣灰霾污染的主要構(gòu)成。據(jù)估計(jì)到2100年全球二次有機(jī)氣溶膠顆粒含量將增加36%[3],中國大氣中氣溶膠光學(xué)厚度增加幅度將更大[4]。近兩年北方地區(qū)已出現(xiàn)了嚴(yán)重的霧霾[5],例如位于華北的石家莊2013年重度污染天數(shù)占39.8%,達(dá)標(biāo)天數(shù)只占11.5%。大氣氣溶膠增加對(duì)人類健康和環(huán)境帶來的危害已引起社會(huì)重視,而其對(duì)農(nóng)業(yè)生產(chǎn)產(chǎn)生的直接影響也亟待研究。張喜英等研究發(fā)現(xiàn),最近10年天氣因素驅(qū)動(dòng)的華北典型地點(diǎn)冬小麥產(chǎn)量比20世紀(jì)80年代低8%—10%,其中晝夜溫差變小和日照時(shí)數(shù)降低是天氣因素驅(qū)動(dòng)的產(chǎn)量潛力降低的主要原因[6],而大氣氣溶膠濃度上升對(duì)這兩個(gè)氣象因素將產(chǎn)生不利影響。Roderick 和Farquhar認(rèn)為在氣溶膠增加幅度較大的中國,氣溶膠對(duì)作物產(chǎn)量形成過程的影響應(yīng)該特別關(guān)注[7]。本文著重綜述前人在作物生理生態(tài)響應(yīng)方面的成果。
1作物產(chǎn)量的響應(yīng)機(jī)制
大氣氣溶膠對(duì)作物的影響主要有兩個(gè)方面:通過影響輻射而間接影響作物生長(zhǎng)和大氣氣溶膠沉降到葉片后直接影響作物結(jié)構(gòu)和生理過程。
1.1直接輻射和散射輻射變化對(duì)作物產(chǎn)量影響
大氣對(duì)太陽輻射的吸收具有選擇性,因而使到達(dá)地面的太陽輻射光譜變得極不規(guī)則。太陽輻射中對(duì)植物光合作用有效的光譜成分稱為光合有效輻射(PAR)。PAR占太陽直接輻射的比例隨太陽高度角的增加而增加,最高可達(dá)45%。而在散射輻射中,光合有效輻射的比例可達(dá)60%—70%之多,散射輻射增加可增加PAR在輻射中的比例,從而對(duì)作物光合作用有利。大氣氣溶膠可直接反射或者吸收太陽輻射,也會(huì)散射太陽輻射,氣溶膠的存在在減少到達(dá)地面直接輻射的同時(shí),也增加了散射輻射[8]。氣溶膠光學(xué)厚度(aerosol optical depth, AOD)增加對(duì)太陽輻射中不同波段比如綠光、藍(lán)光和紅光光譜影響不同,當(dāng)AOD從0.05增加到0.5時(shí),散射的藍(lán)光會(huì)增加83%;若AOD繼續(xù)增加,綠光將會(huì)增加[9]。植物光合作用主要利用的是藍(lán)光(0.4—0.5 mm),因此,當(dāng)AOD增加到一定程度時(shí),其散射輻射的增加可能更有利于植物光合作用,增加二氧化碳吸收固定。因此,越來越多的研究認(rèn)為散射輻射增加有利于陸地生態(tài)系統(tǒng)碳凈積累[10- 11]。但當(dāng)大氣氣溶膠濃度達(dá)到一定程度后散射輻射的增加不能彌補(bǔ)直接輻射減少帶來的對(duì)作物影響時(shí),將顯著降低陸地生態(tài)系統(tǒng)的碳積累[12- 14]。
植物對(duì)散射輻射增加的響應(yīng)也取決于植物種類、冠層結(jié)構(gòu)、葉面積指數(shù)以及生長(zhǎng)環(huán)境[8]。Steiner和Chameides 發(fā)現(xiàn)在晴天里作物葉片容易受到光抑制,高濃度氣溶膠遮陰作用能夠降低葉片溫度,減輕光抑制,從而使得光合與蒸騰都提高[15]。但是也有一些研究認(rèn)為散射輻射對(duì)光合能力的提高不足于彌補(bǔ)氣溶膠或者云的遮陰作用帶來的不利作用[16],這些結(jié)果表明對(duì)植物生長(zhǎng)來說應(yīng)該存在一個(gè)合適的散射輻射范圍[17]。一般認(rèn)為葉面指數(shù)高的植物對(duì)散射輻射反應(yīng)更為敏感,因?yàn)楣趯釉酱?,其截獲的輻射就越多;而冠層以下接收到的輻射很少,因此散射輻射的增加使得更多的光合有效輻射被遮陰的葉片所吸收利用,從而增加了整個(gè)冠層的光合能力[18]。比如Alton等[19]研究發(fā)現(xiàn)在散射輻射下葉面積指數(shù)為2的針葉林光能利用率增加了6%,而葉面積指數(shù)為5.5的熱帶森林的光能利用率提高了33%。為分析散射與直射輻射對(duì)植物冠層光能利用率的影響, Gu等[20]改進(jìn)了冠層光合模型,認(rèn)為冠層光響應(yīng)曲線接近線性,而散射輻射不僅能夠促進(jìn)植被冠層的光能利用率,還能減緩植被冠層的光合達(dá)到飽和。這主要是因?yàn)樯⑸涔饩鶆蛐愿哂谥鄙涔?,散射光能夠均勻的分配到冠層葉片上[21]。
不同植物對(duì)光照強(qiáng)度反應(yīng)存在差異,一般C4作物光飽和點(diǎn)較高[22],散射輻射增加可能不能彌補(bǔ)直接輻射減少帶來的對(duì)作物生長(zhǎng)的不利影響;而C3作物的葉片在高光強(qiáng)或者高輻射下光合作用很容易達(dá)到飽和狀態(tài),散射輻射對(duì)C3植物促進(jìn)作用潛力可能會(huì)較大, 但長(zhǎng)期低輻射也會(huì)降低C3作物如冬小麥的葉片光合效率和產(chǎn)量[23]。相對(duì)較弱的光照條件有利于植物營養(yǎng)器官的生長(zhǎng),而強(qiáng)光照有利于作物果實(shí)和籽粒的生長(zhǎng),產(chǎn)品中的蛋白質(zhì)、含糖量等都比較高,直接輻射的減少可能對(duì)農(nóng)作物產(chǎn)品品質(zhì)帶來不利影響。因此大氣氣溶膠增加帶來的直接輻射和散射輻射變化對(duì)作物的影響與作物類型、作物生長(zhǎng)時(shí)期、大氣氣溶膠濃度有關(guān),并可能對(duì)產(chǎn)品品質(zhì)帶來影響。
1.2晝夜溫度變化對(duì)作物產(chǎn)量影響
大氣溫室氣體增加使全球面臨溫度升高帶來的氣候變化影響,而大氣氣溶膠濃度增加可增加太陽光的反射,具有降低白天大氣溫度的效應(yīng)。很多學(xué)者提到的地球工程(Geo- engineering,也被稱為人工氣候改造)探討釋放大量粒子至大氣層,為地球制造一層保護(hù)膜來降低地球溫度,很多研究用不同的地球系統(tǒng)模型模擬氣候工程實(shí)施可能對(duì)全球溫度、降水和農(nóng)業(yè)生產(chǎn)的影響,得到在二氧化碳倍增情況下降低輻射可降低白天高溫脅迫對(duì)作物的影響,從而對(duì)一些作物產(chǎn)生有利作用[24- 26]。大氣氣溶膠雖然在白天對(duì)短波輻射的遮蔽作用大于長(zhǎng)波輻射,但在夜間熱量收支微弱情況下,氣溶膠對(duì)長(zhǎng)波輻射的遮蔽效應(yīng)就顯示出來,氣溶膠的存在對(duì)大氣低層起保溫作用,使近地層晝夜溫差變小[27]。
氣溫日較差是重要的氣候生態(tài)因子之一,對(duì)農(nóng)業(yè)生產(chǎn)具有十分重要意義。近年來,很多研究利用模型模擬方法對(duì)晝夜溫差變化對(duì)作物產(chǎn)量可能的影響進(jìn)行模擬,不同作物和不同地點(diǎn)模擬結(jié)果不盡相同[28- 31]。主要原因是由于光合作用和呼吸作用對(duì)溫度的敏感性不同,晝夜溫度變化會(huì)改變兩個(gè)過程之間的平衡,從而對(duì)不同作物產(chǎn)生不同影響。Zhang 等[6]利用華北30a定點(diǎn)冬小麥產(chǎn)量結(jié)果進(jìn)行模擬分析,發(fā)現(xiàn)天氣因素影響的冬小麥產(chǎn)量最近10年比20世紀(jì)80年代低9.2%,其中日照時(shí)數(shù)和晝夜溫差降低是天氣因素驅(qū)動(dòng)的冬小麥產(chǎn)量降低的主要原因,Xiao等[32]也得出相似結(jié)果。在華北夏玉米生長(zhǎng)期間,在過去的40年間平均最低溫度比平均最高溫度增加的幅度高0.86 ℃,在這種升溫趨勢(shì)下,模型模擬結(jié)果也顯示溫度條件驅(qū)動(dòng)的華北平原玉米產(chǎn)量將呈下降趨勢(shì)[33- 35]。因此,大氣氣溶膠增加導(dǎo)致晝夜溫差變小對(duì)華北冬小麥和夏玉米生產(chǎn)可能帶來負(fù)面影響。
1.3對(duì)農(nóng)田蒸散和水分利用效率影響
作物葉片光合作用與蒸騰作用是兩個(gè)同時(shí)進(jìn)行的氣體交換過程,氣孔作為氣體交換的門戶,其行為調(diào)節(jié)和控制著光合與蒸騰,光合與蒸騰兩者一起決定著葉片水平上的水分利用效率[36]。很多研究顯示光合速率和蒸騰速率之間是非線性關(guān)系,當(dāng)光合有效輻射在一定界限值以下時(shí),光合速率和蒸騰速率均隨著光合有效輻射的增加而增加;當(dāng)光合有效輻射超過一定值時(shí),蒸騰速率依然線性增加,而光合速率反而下降。因此,大氣氣溶膠在一定濃度范圍內(nèi)可能通過減少直接輻射量降低葉片的蒸騰速率,而不影響葉片的光合速率,從而提高了水分利用效率。Moffat等[11]用模型模擬發(fā)現(xiàn)散射輻射對(duì)作物生產(chǎn)力的影響大于對(duì)潛熱通量的影響,使生態(tài)系統(tǒng)水平上的水分利用效率得到了提高。
直接輻射降低也可以減少土壤蒸發(fā),從而降低農(nóng)田蒸散,利于農(nóng)田水分利用效率的提高。特別是在缺水條件下,農(nóng)田蒸散量的減少可彌補(bǔ)光合速率降低帶來的對(duì)作物不利影響,最終對(duì)作物產(chǎn)量是正效應(yīng)[18]。但在充分供水條件下,當(dāng)大氣氣溶膠濃度達(dá)到一定程度,直接輻射降低對(duì)光合作用的影響不能被散射輻射的增加所彌補(bǔ),葉片光合速率將隨著輻射降低而降低。在這種情況下,大氣氣溶膠存在雖然可降低農(nóng)田耗水,但對(duì)作物生長(zhǎng)將產(chǎn)生不利影響。另外,葉片水平水分利用效率的提高并不意味著最終農(nóng)田水分利用效率的提高,提高單位耗水生產(chǎn)的經(jīng)濟(jì)產(chǎn)量是農(nóng)業(yè)高效用水的目標(biāo),很多研究顯示產(chǎn)量水平的水分利用效率和葉片水平的水分利用效率以及生物量水平的水分利用效率之間沒有必然聯(lián)系[37- 38],因?yàn)楫a(chǎn)量水平的水分利用效率除了和作物整個(gè)生育期積累的生物量有關(guān)外,還與干物質(zhì)在各個(gè)器官的分配關(guān)系密切[39- 40]。因此,大氣氣溶膠濃度變化對(duì)直接輻射和散射輻射的影響將影響葉片蒸騰和光合速率的相關(guān)關(guān)系,也影響作物的營養(yǎng)和生殖生長(zhǎng)過程,從而對(duì)作物葉片和最終產(chǎn)量水平的水分利用效率產(chǎn)生影響。
1.4大氣干沉降對(duì)作物葉片功能的直接影響
干沉降指的是大氣氣溶膠直接沉降到地表。Bergin等[41]研究認(rèn)為,大氣污染物中非水溶性顆粒停留在葉片表面,會(huì)阻擋光合有效輻射到達(dá)葉片的量,從而降低葉片光合速率。大氣中的有機(jī)污染物可能直接進(jìn)入植物體而對(duì)人類健康產(chǎn)生危害[42]。研究發(fā)現(xiàn)中國長(zhǎng)江區(qū)域2個(gè)月時(shí)間內(nèi)葉片上積聚的非水溶性顆粒可減少葉片獲得的35%的光合有效輻射量[41]。很多研究發(fā)現(xiàn)灰塵覆蓋處理后多種C3和C4植物的凈光合速率、氣孔導(dǎo)度和瞬時(shí)光合效率均有明顯的下降[43- 45]。由于對(duì)紅外輻射較高的吸收率,灰塵處理的植株葉片光合部位溫度高于對(duì)照2—3 ℃,灰塵覆蓋處理的植株葉片對(duì)于光合有效輻射的反射率明顯高于對(duì)照,嚴(yán)重灰塵處理通過抑制光合作用而抑制植物生長(zhǎng),植物葉面積明顯下降[46- 47]。
Burkhardt等[48]一直關(guān)注氣溶膠與葉片的相互作用,2010年提出“hydraulic activation of stomata”(HAS)概念。認(rèn)為葉片表面臘層的疏水性能夠保證外部的液滴不進(jìn)入葉片內(nèi)部,但是葉片表面的氣溶膠鹽分通過吸收葉片蒸騰水分,形成一層極薄水分子層與質(zhì)外體溶液連為一體,使葉片保水性下降,在反復(fù)干燥與吸濕過程中出現(xiàn)“毛細(xì)管作用”而加速蒸騰,降低植物抗旱性。Burkhardt等[49]也發(fā)現(xiàn)沉降物中的鹽分使葉片表面蠟質(zhì)層退化,使樹木耐旱性降低。Rai等[50]的研究發(fā)現(xiàn)大氣污染物對(duì)很多作物的葉片結(jié)構(gòu)和功能產(chǎn)生了影響,他們把10種植物的葉片連續(xù)60 d進(jìn)行塵埃處理,發(fā)現(xiàn)葉片生長(zhǎng)速率、葉片表皮細(xì)胞和氣孔大小都受到影響,葉片表皮也受到破壞,從而對(duì)整個(gè)植物生長(zhǎng)產(chǎn)生負(fù)作用?;覊m提高了細(xì)胞膜透性和葉片溫度,降低葉片的PAR吸收并且阻塞毛孔,以上現(xiàn)象導(dǎo)致氧化脅迫的出現(xiàn),從而降低了葉片過氧化氫酶(CAT)和超氧化物歧化酶(SOD)的活性[46,51]。因此,大氣氣溶膠在葉片形成的干沉降對(duì)作物的直接影響也需要關(guān)注。
2研究展望
綜上所述,大氣氣溶膠對(duì)作物影響與大氣氣溶膠濃度與構(gòu)成、作物類型、作物生長(zhǎng)環(huán)境等密切相關(guān)。大氣氣溶膠增加對(duì)作物有利有弊,然而以前的研究較多的關(guān)注其中的一個(gè)方面,模型模擬研究較多,直接田間試驗(yàn)較少,難以明白氣溶膠對(duì)作物影響的機(jī)制。特別是針對(duì)國內(nèi)霧霾嚴(yán)重且糧食主產(chǎn)區(qū)例如華北地區(qū)冬小麥和玉米的田間系統(tǒng)研究報(bào)道較少。雖然近10年來全國糧食實(shí)現(xiàn)了10連增,但是將來糧食能否繼續(xù)增產(chǎn),增產(chǎn)的可能性與霧霾的嚴(yán)重性是矛盾的還是統(tǒng)一的?這些問題值得深入探討。面對(duì)近年來空氣氣溶膠濃度增加、污染加重、持續(xù)時(shí)間長(zhǎng)的現(xiàn)狀,亟需全面系統(tǒng)地研究作物對(duì)大氣氣溶膠濃度增加的響應(yīng)機(jī)制及其對(duì)作物產(chǎn)量形成過程的影響。
(1) 氣溶膠吸收和反射帶來的輻射光譜構(gòu)成和光照強(qiáng)度改變?nèi)绾斡绊懽魑锶~片光合、蒸騰速率以及呼吸速率? 氣溶膠對(duì)不同波段光譜的反射和散射程度不一致,可能會(huì)影響到作物光合需要的能量,影響作物有機(jī)物質(zhì)的合成;同時(shí)能量改變帶來葉片或者冠層溫度的改變也會(huì)影響作物蒸騰速率。三者之間的相互關(guān)系影響最終的有機(jī)質(zhì)的積累和水分的利用效率。大氣氣溶膠在夜間使近地層溫度升高和降低白天溫度引起的晝夜溫差縮小對(duì)干物質(zhì)積累、分配和呼吸消耗可能也會(huì)產(chǎn)生影響。所以需要系統(tǒng)研究大氣氣溶膠對(duì)作物葉片的生理響應(yīng)以及干物質(zhì)積累過程。
(2)塵埃顆粒物在作物葉片上的干沉降對(duì)葉片結(jié)構(gòu)和功能產(chǎn)生了怎樣的影響?除了氣溶膠的間接作用外,氣溶膠沉降到葉片后引起葉片結(jié)構(gòu)和生理的反應(yīng)也需要研究。比如氣溶膠不同成分對(duì)作物葉片的影響可能不同,其直接沉降到葉片后可能導(dǎo)致葉片氣孔堵塞,也可能出現(xiàn)“毛細(xì)管作用”而利于蒸騰作用。除了氣孔行為外,葉片內(nèi)部的結(jié)構(gòu)以及生理過程如何變化都需要詳細(xì)的研究。
(3)整體評(píng)價(jià)大氣氣溶膠增加的散射輻射能否彌補(bǔ)直接輻射減少對(duì)作物產(chǎn)量影響,氣溶膠的直接作用和間接作用的最終結(jié)果是產(chǎn)量增加還是減少都值得深入探討。不同地區(qū)糧食作物對(duì)氣溶膠增加的響應(yīng)機(jī)制有可能不同,所以需要評(píng)價(jià)不同地區(qū)氣溶膠對(duì)作物產(chǎn)量的影響。尤其是全國糧食主產(chǎn)區(qū),比如華北地區(qū)嚴(yán)重缺水,大氣氣溶膠帶來的農(nóng)田能量平衡改變?nèi)绾斡绊懽魑镎趄v與耗水過程、農(nóng)田水分平衡和作物水分利用效率值得關(guān)注。
(4)田間試驗(yàn)與模型模擬的結(jié)合研究。提高作物產(chǎn)量就是縮小實(shí)際產(chǎn)量與潛力產(chǎn)量間的差距,那么在霧霾條件下作物產(chǎn)量潛力是否受到氣溶膠的影響?目前模型估算的產(chǎn)量潛力沒有考慮氣溶膠帶來的輻射變化,尤其是散射輻射增加帶來有利作用,所以結(jié)果可能導(dǎo)致模型估算的產(chǎn)量潛力偏低。反過來,在不受氣溶膠影響下作物產(chǎn)量潛力是否會(huì)增加?所以需要開展相應(yīng)的田間試驗(yàn)研究,并結(jié)合模型進(jìn)一步分析作物增產(chǎn)的可能性。
參考文獻(xiàn)(References):
[1]Norris J R, Wild M. Trends in aerosol radiative effects over China and Japan inferred from observed cloud cover, solar “dimming, ” and solar “brightening”. Journal of Geophysical Research: Atmospheres, 2009, 114(D10), doi: 10.1029/2008JD011378.
[2]Wang Y W, Yang Y H, Zhao N, Liu C, Wang Q X. The magnitude of the effect of air pollution on sunshine hours inChina. Journal of Geophysical Research: Atmospheres, 2012, 117(D21), doi: 10.1029/2011JD016753.
[3]Heald C L, Henze D K, Horowitz L W, Feddema J, Lamarque J F, Guenther A, Hess P G, Vitt F, Seinfeld J H, Goldstein A H, Fung I. Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. Journal of Geophysical Research: Atmospheres,2008, 113(D5), doi: 10.1029/2007JD009092.
[4]Streets D G, Yu C, Wu Y, Chin M, Zhao Z C, Hayasaka T, Shi G Y. Aerosol trends overChina, 1980—2000. Atmospheric Research, 2008, 88(2): 174- 182.
[5]Mu M, Zhang R H. Addressing the issue of fog and haze: A promising perspective from meteorological science and technology. ScienceChina Earth Sciences, 2014, 57(1): 1- 2.
[6]Zhang X Y, Wang S F, Sun H Y, Chen S Y, Shao L W, Liu X W. Contribution of cultivar, fertilizer and weather toyield variation of winter wheat over three decades: A case study in the North China Plain. European Journal of Agronomy, 2013, 50: 52- 59.
[7]Roderick M L, Farquhar G D. Geoengineering: Hazy, cool and well fed?. Nature Climate Change, 2012, 2(2): 76- 77.
[8]Kanniah K D, Beringer J, North P, Hutley L. Control of atmospheric particles on diffuse radiation and terrestrial plant productivity: A review. Progress in Physical Geography, 2012, 36(2): 209- 237.
[9]Kanniah K D, Beringer J, Tapper N J, Long C N. Aerosols and their influence on radiation partitioning and savanna productivity in northern Australia. Theoretical and Applied Climatology, 2010, 100(3/4): 423- 438.
[10]Mercado L M, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox P M. Impact of changes in diffuse radiation on the global land carbon sink. Nature, 2009, 458(7241): 1014- 1017.
[11]Moffat A M, Reichstein M, Cescatti A, Lasslop G, Zaehle S. Diffuse radiation and its effects on ecosystem-level water use efficiency. Geophysical Research Abstracts, 2011, 13: EGU2011- 12687.
[12]Kobayashi H, Iwabuchi H. A coupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape. Remote Sensing of Environment, 2008, 112(1): 173- 185.
[13]Oliveira P H F, Artaxo P, Pires C, De Lucca S, Procópio A, Holben B, Schafer J, Cardoso L F, Wofsy S C, Rocha H R. The effects of biomass burning aerosols and clouds on the CO2flux in Amazonia. Tellus B, 2007, 59(3): 338- 349.
[14]Yamasoe M A, von Randow C V, Manzi A O, Schafer J S, Eck T F, Holben B N. Effect of smoke and clouds on the transmissivity of photosynthetically active radiation inside the canopy. Atmospheric Chemistry and Physics, 2006, 6(6): 1645- 1656.
[15]Steiner A L, Chameides W.Aerosol‐induced thermal effects increase modelled terrestrial photosynthesis and transpiration. Tellus B, 2005, 57(5): 404- 411.
[16]Alton P B. Reduced carbon sequestration in terrestrial ecosystems under overcast skies compared to clear skies. Agricultural andForest Meteorology, 2008, 148(10): 1641- 1653.
[17]Knohl A, Baldocchi D D. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. Journal of Geophysical Research: Biogeosciences (2005—2012), 2008, 113(G2), doi: 10.1029/2007JG000663.
[18]Greenwald R, Bergin M H, Xu J, Cohan D, Hoogenboom G, Chameides W L. The influence of aerosols on crop production: A study using the CERES crop model. Agricultural Systems, 2006, 89(2/3): 390- 413.
[19]Alton P B, North P R, Los S O. The impact of diffuse sunlight on canopy light‐use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Global Change Biology, 2007, 13(4): 776- 787.
[20]Gu L, Baldocchi D, Verma S B, Black T A, Vesala T, Falge E M, Dowty P R. Advantages of diffuse radiation for terrestrial ecosystem productivity.Journal of Geophysical Research: Atmosphere (1984—2012), 2002, 107(D6): ACL 2-1-ACL 2- 23.
[21]Brodersen C R, Vogelmann T C, Williams W E, Gorton H L. A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal.Plant, Cell & Environment, 2008, 31(1): 159- 164.
[22]Chapin III F S, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology. New York: Springer-Verlag, 2002.
[23]Mu H, Jiang D, Wollenweber B, Dai T, Jing Q, Cao W. Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat. Journal of Agronomy and Crop Science, 2010, 196(1): 38- 47.
[24]Schmidt H, Alterskjr K, Bou Karam D, Boucher O, Jones A, Kristjánsson J E, Niemeier U, Schulz M, Aaheim A, Benduhn F, Lawrence M, Timmreck C. Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth system models. Earth System Dynamics, 2012, 3(1): 63- 78.
[25]Pongratz J, Lobell D B, Cao L, Caldeira K.Crop yields in a geoengineered climate. Nature Climate Change, 2012, 2(2): 101- 105.
[26]Kravitz B, Caldeira K, Boucher O, Robock A, Rasch P J, Alterskjr K, Karam D B, Cole J N S, Curry C L, Haywood J M, Irvine P J, Ji D Y, Jones A, Kristjásson J E, Lunt D J, Moore J C, Niemeier U, Schmidt H, Schulz M, Singh B, Tilmes S, Watanabe S, Yang S T, Yoon J H. Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research: Atmospheres, 2013, 118(15): 8320- 8332.
[27]Huang Y, Dickinson R E, Chameides W L.Impact of aerosol indirect effect on surface temperature over East Asia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(12): 4371- 4376.
[28]Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Cassman K G, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27): 9971- 9975.
[29]Lobell D B, Ortiz- Monasterio J I, Asner G P, Matson P A, Naylor R L, FalconW P.Analysis of wheat yield and climatic trends in Mexico. Field Crops Research, 2005, 94(2): 250—256.
[30]Kanno K, Makino A. Increased grain yield and biomass allocation in rice under cool night temperature.Soil Science & Plant Nutrition, 2010, 56(3): 412- 417.
[31]Chen C Q, Lei C X, Deng A X, Qian C R, Hoogmoed W, Zhang W J. Will higher minimum temperatures increase corn production inNortheast China? An analysis of historical data over 1965—2008. Agricultural and Forest Meteorology, 2011, 151(12): 1580- 1588.
[32]Xiao D P, Tao F L. Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades.European Journal of Agronomy, 2014, 52: 112- 122
[33]Tao F L, Yokozawa M, Xu Y L, Hayashi Y, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981—2000.Agricultural and Forest Meteorology, 2006, 138(1/4): 82- 92.
[34]Tao F L, Zhang Z. Adaptation of maize production to climate change in North China Plain: Quantify the relative contributions of adaptation options.European Journal of Agronomy, 2010, 33(2): 103- 116.
[35]Liu S X, Mo X G, Lin Z H, Xu Y Q, Ji J J, Wen G, Richey J. Crop yield responses to climate change in the Huang-Huai-Hai Plain of China. Agricultural Water Management, 2010, 97(8): 1195- 1209.
[36]Rajaona A M, Brueck H, Asch F. Leaf gas exchange characteristics of Jatropha as affected by nitrogen supply, leaf age and atmospheric vapour pressure deficit.Journal of Agronomy and Crop Science, 2013, 199(2): 144- 153.
[37]Wang Y Z, Zhang X Y, Liu X W, Zhang X Y, Shao L W, Sun H Y, Chen S Y. The effects of nitrogen supply and water regime on instantaneous WUE, time-integrated WUE and carbon isotope discrimination in winter wheat. Field Crops Research, 2013, 144: 236- 244.
[38]Flanagan L B, Farquhar G D. Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to water-use efficiency at the leaf-and ecosystem-scales in a northern Great Plains grassland. Plant, Cell & Environment, 2014, 37(2): 425- 438.
[39]Gulías J, Seddaiu G, Cifre J, Salis M, Ledda L. Leaf and plant water use efficiency in cocksfoot and tall fescue accessions under differing soil water availability. Crop Science, 2012, 52(5): 2321- 2331.
[40]Tomás M, Medrano H, Pou A, Escalona J M, Martorell S, Ribas-CarbM, Flexas J.Water- use efficiency in grapevine cultivars grown under controlled conditions: effects of water stress at the leaf and whole-plant level. Australian Journal of Grape and Wine Research, 2012, 18(2): 164- 172.
[41]Bergin M H, Greenwald R, Xu J, Berta Y, Chameides W L. Influence of aerosol dry deposition on photosynthetically active radiation available to plants: A case study in the Yangtze delta region of China. Geophysical Research Letters, 2001, 28(18): 3605- 3608.
[42]王傳飛, 王小萍, 龔平, 姚檀棟. 植被富集持久性有機(jī)污染物研究進(jìn)展. 地理科學(xué)進(jìn)展, 2013, 32(10): 1555- 1566.
[43]Sharifi M R, Gibson A C, Rundel P W. Surface dust impacts on gas exchange inMojave Desert shrubs. Journal of Applied Ecology, 1997, 34(4): 837- 846.
[44]翟薇, 趙艷霞, 王春乙, 吳則金. 大氣氣溶膠變化對(duì)農(nóng)業(yè)影響的研究進(jìn)展. 氣象科技, 2006, 34(6): 705- 710.
[45]王宏煒, 曹瓊輝, 黃峰, 袁琳. 塵污染對(duì)植物的生理和生態(tài)特性影響. 廣西植物, 2009, 29(5): 621- 626.
[46]van Heerden P D R, Krüger G H J, Kilbourn Louw M. Dynamic responses of photosystem II in theNamib Desert shrub,Zygophyllumprismatocarpum, during and after foliar deposition of limestone dust. Environmental Pollution, 2007, 146(1): 34- 45.
[47]Kanniah K D, Beringer J, Hutley L B. The comparative role of key environmental factors in determining savanna productivity and carbon fluxes: A review, with special reference to northern Australia. Progress in Physical Geography, 2010, 34(4): 459- 490.
[48]Burkhardt J. Hygroscopic particles on leaves: nutrients or desiccants?. Ecological Monographs, 2010, 80(3): 369- 399.
[49]Burkhardt J, Pariyar S. Particulate pollutants are capable to ‘degrade’ epicuticular waxes and to decrease the drought tolerance of Scots pine (PinussylvestrisL.). Environmental Pollution, 2014, 184: 659- 667
[50]Rai A, Kulshreshtha E, Srivastava P K, Mohanty C S.Leaf surface structure alterations due to particulate pollution in some common plants. The Environmentalist, 2010, 30: 18- 23.
[51]劉平, 張強(qiáng), 杜文波, 白光潔, 李麗君, 丁玉川. 焦化廠煤粉塵的沉降規(guī)律及其對(duì)玉米抗氧化系統(tǒng)的影響. 中國農(nóng)學(xué)通報(bào), 2011, 27(7): 249- 252.
A review of the research on crop responses to the increase in aerial aerosol
LIU Xiuwei, ZHANG Xiaoyu, ZHANG Xiying*
KeyLaboratoryofAgriculturalWaterResources,CenterforAgriculturalResourcesResearch,InstituteofGeneticsandDevelopmentalBiology,ChineseAcademyofSciences,Shijiazhuang050021,China
Key Words:air aerosol; radiation; crop; response
Abstract:Aerial aerosol is defined as a colloid of fine solid particles or liquid droplets in the atmosphere. With the improvements in economic and social development, aerosol emissions are rapidly increasing in some Chinese regions. Consequently, haze and fog frequently occur and there are widespread concerns about the possible harmful effects of the haze on human beings. Its possible effects on agricultural production have also been studied and some results, based on related studies carried out globally, have shown that (1) Anthropogenic fossil fuel and biomass combustion have released aerosols into the atmosphere that have affected the quantity and optical properties of aerosols (known as aerosol optical depth). Changes in aerosol optical depth modify the solar radiation reaching the ground, which directly affects the carbon balance of terrestrial ecosystems. The change in crop yield due to the influence of aerosols was found to be extremely dependent on the magnitude of the reduction in direct radiation and the increase in the diffuse fraction. These particles can directly scatter and/or absorb surface solar radiation in different ways because of differences in the composition and density of air pollutants. The accepted view is that the increase in the aerosol optical depth will reduce direct radiation, and that diffuse radiation will increase to some extent. Furthermore, the increased diffuse radiation should benefit crop canopy photosynthesis and have a larger effect on gross primary production than the latent radiation. (2) The change in radiation also affects air temperature near the surface. The daytime temperature will decrease, but the nighttime temperature might increase, which may lead to a reduced diurnal temperature difference. As a result, crop production and crop water use might fall. (3) The direct effects of aerosol on crops have also been measured, along with the indirect effects of air pollution on crop growth and yield production. The deposition of dry particles on the leaf surface may block the radiation reaching the leaf surface and negatively affect leaf structure and function, which could reduce the photosynthetic capacity of crops. The above-mentioned results showed that there were possible positive and negative effects of air pollution on crop growth. However, the overall effects of the aerosol on crop production are still not clear in regions with serious air pollution problems. Therefore, it is necessary to further quantify the influence of aerosols on radiation partitioning, and their interactions with carbon processes, crop-water relations, crop leaf properties, and photosynthetic functions, to determine the magnitude of the air pollution effects on crop performance and provide possible counter-measures to mitigate the negative effects of air pollution on crop growth.
基金項(xiàng)目:國家科技支撐計(jì)劃項(xiàng)目(2013BAD051302); 公益性行業(yè)科研專項(xiàng)(201203077)
收稿日期:2014- 09- 03; 網(wǎng)絡(luò)出版日期:2015- 08- 05
*通訊作者
Corresponding author.E-mail: xyzhang@sjziam.ac.cn
DOI:10.5846/stxb201409031751
劉秀位, 張小雨, 張喜英.大氣氣溶膠增加對(duì)作物的影響研究進(jìn)展.生態(tài)學(xué)報(bào),2016,36(7):2084- 2090.
Liu X W, Zhang X Y, Zhang X Y.A review of the research on crop responses to the increase in aerial aerosol.Acta Ecologica Sinica,2016,36(7):2084- 2090.