馬見青, 李慶春, 王衛(wèi)東, 王美丁, 李春蘭
(1.長安大學 地質(zhì)工程與測繪學院, 陜西 西安 710054; 2.西北有色地質(zhì)勘查局 物化探總隊,陜西 西安 710068)
?
臺站地震資料的時頻域自適應極化分析和濾波①
馬見青1, 李慶春1, 王衛(wèi)東1, 王美丁2, 李春蘭2
(1.長安大學 地質(zhì)工程與測繪學院, 陜西 西安 710054; 2.西北有色地質(zhì)勘查局 物化探總隊,陜西 西安 710068)
摘要:提出一種自適應協(xié)方差的時頻域極化濾波方法。該方法在廣義S變換時頻方法的基礎(chǔ)上,構(gòu)造時頻域自適應協(xié)方差矩陣,通過特征分析計算時頻域瞬時極化參數(shù),設(shè)計極化濾波器,實現(xiàn)多分量地震極化分析和濾波。其優(yōu)勢在于協(xié)方差矩陣的分析時窗的長度由多分量地震數(shù)據(jù)的瞬時頻率確定,可以自適應于有效信號的周期,在每個時頻點計算極化參數(shù)不需要進行插值處理;結(jié)合時間頻率信息,解決在時間域或頻率域波形或頻率重疊的信號具有明顯的直觀性。模型數(shù)據(jù)及實際三分量臺站地震數(shù)據(jù)處理結(jié)果表明,該極化濾波方法在臺站地震資料分析和處理方面具有很好的直觀性和較高的分辨率。
關(guān)鍵詞:極化濾波; 時頻分析; 廣義S變換; 自適應協(xié)方差矩陣; 多分量地震
0引言
不同類型地震波的極化特性不同,地震波場實質(zhì)上是不同極化特性的振動相互干涉和疊加的結(jié)果。極化濾波是在波的極化特性基礎(chǔ)上的一種信號處理方法。目前極化分析方法在地球物理領(lǐng)域已經(jīng)得到了廣泛應用。Benhama[1]、李英康等[2]利用空間方向濾波方法來壓制面波及分離縱橫波;李錦飛等[3-4]利用小波包變換,在時頻域通過極化濾波方法對信號進行處理, 以達到從實際運動波場中分離出有用波, 消除干擾波和無用波的目的。張建軍等[5]用極化分析法提取有效瑞利波信號。葛勇等[6]、Schimmel等[7]利用極化濾波技術(shù)提取線性極化波、橢圓極化波及去噪。陳赟等[8]、劉春園等[9]、馬見青等[10]利用自適應偏振濾波器剔除三分量地震資料中的隨機與非隨機噪聲。高原等[11]利用極化分析方法進行面波壓制及非平面波消除。嚴又生等[12]、崔汝國等[13]利用極化分析方法對VSP資料進行波場分離和合成。Meissner等[14]、Helbig等[15]利用極化分析方法進行橫波分裂分析和各向異性研究。唐曉燕等[16]通過極化分析,找出所期望的波的空間投影方向,使其具有最大的信噪比,從而能夠較容易地分辨快、慢橫波,提取有效信息。與走時、振幅和波形相比,偏振與發(fā)震時刻、震源的輻射圖樣、地震波的衰減無關(guān),所以偏振層析成像是研究速度結(jié)構(gòu)的一個較為理想的方法,可以通過三分量地震資料的偏振資料(P波、面波偏振),獨立地或與其他資料聯(lián)合層析、反演地下巖石構(gòu)造的速度結(jié)構(gòu)。這對深化地球本體或地下介質(zhì)的認識具有重要的理論意義和實際應用價值[17-20]。Bai等[21-22]、Reading等[23]提出了利用極化分析法進行多波震相自動識別和地震波到時的檢測,該方法是根據(jù)P波和S波不同的極化特征來識別和確定初動時間的。馬見青等[24]對目前發(fā)展起來的各種類型的極化分析方法進行分析總結(jié),包括其方法原理、各自的優(yōu)缺點、應用范圍、以及發(fā)展前景。
對于基于多分量記錄的協(xié)方差矩陣或奇異值分解的主分量分析的這些極化分析方法,需要在分析時選擇一個時窗[25]。時窗的選擇是進行極化分析的關(guān)鍵性步驟。對于含有頻散特性的面波的多分量數(shù)據(jù)以及在時間上有重疊的地震波來說,時窗長度的選擇變得更加復雜。因此對于每一段需要分析的地震波來說,時窗長度應該適當選擇,以匹配有效信號的優(yōu)勢周期。Diallo等[26]提出了一種在時間域的極化分析法,通過使用自適應時窗,對分析時窗的約束已經(jīng)放寬了。但在波形初至很接近時,再利用這種單一的時間域方法來刻畫不同波型的極化分布就變得比較困難了。
時頻分析方法特別適合解決在時間上重疊但有不同頻譜的地震信號分離以及瞬時信號分析問題。它可以描述一個信號的頻率成分隨時間的變化。基于時頻分析方法的優(yōu)點,可以將其應用于極化分析中。姚家駿等[27]利用短時傅里葉變換、S變換、CWD分布及ZAM分布四種時頻分析方法對實際臺站地震信號進行時頻域分析,總結(jié)了這四種時頻分析方法在分辨地震波中的應用效果及優(yōu)缺點。許康生等[28]通過小波變換分析近地震波相對能量特征,很好地揭示近地震能量分布在頻率域的特征。
本文通過使用廣義S變換[29-31],將Diallo等[26]提出的時間域自適應極化濾波方法引入到時頻域,在時頻域中計算多分量地震記錄中質(zhì)點振動的極化分布,以取得有明確頻率意義的極化分布。該方法建立在協(xié)方差矩陣的基礎(chǔ)上,用一個近似方程來計算時窗內(nèi)的協(xié)方差矩陣,這個時窗是由多分量記錄的瞬時頻率確定的,其長度自適應于每個時頻點處的地震波的優(yōu)勢周期,然后在每個時頻點估計極化特征參數(shù)。最后,在時頻域中設(shè)計合適的濾波器,進行地震信號的分析和處理。
1時頻域自適應協(xié)方差極化分析方法
對三分量地震信號ui(t)(i=x,y,z)分別做GST,得到各自的時頻譜GSTi(t,f)。定義Ωi(t,f)為i分量的瞬時頻率函數(shù)[32]。
(1)
利用三分量數(shù)據(jù)的GSTi(t,f),可以構(gòu)造時頻域中的交叉能量矩陣MS:
(3)
這里均值μkm(t,f)定義為:
(4)
時窗長度Tkm(t,f)由下式確定:
其中:R(·)表示復數(shù)的實部;sinc(x)表示辛格函數(shù);N為一正整數(shù),在刻畫橢圓極化屬性時,選取N=1或2就足夠了,當需要刻畫三維空間里的結(jié)構(gòu)更為復雜的極化屬性時可以選取較大的N值。
矩陣MS(t,f)是在時頻域中每個時頻點上定義的,對它進行特征值分析,得到特征值λi(t,f)(i=1,2,3),且λ1≥λ2≥λ3,Vi(t,f)(i=1,2,3)為λi(t,f)對應的特征向量,通過特征值和特征向量計算時頻域中的瞬時極化參數(shù)。主要的極化參數(shù)如下:
瞬時極化軸(瞬時極化主軸、瞬時極化中間軸、瞬時極化次軸)
2濾波算法
隨著自適應協(xié)方差法推廣到時頻域,我們可以構(gòu)造基于瞬時極化分布的極化濾波算法來分離不同類型的地震波。例如可以通過橢圓率ρ(t,f)和仰角θ(t,f)=π/2-δ(t,f)的約束組合構(gòu)建一個分離體波和面波的濾波算法[32],該算法表達式如下:
式中:Fe是時頻域的濾波因子,作用在原始信號的每個分量上;Pρ和Pθ分別用來限定ρ和θ的變化范圍,通過選擇Pρ和Pθ的值來得到期望得到的地震波。
在表1中總結(jié)了可用于檢測具有特定極化特征的信號的濾波器。
3模型數(shù)據(jù)處理
現(xiàn)對人工合成的一個三分量記錄(圖1)進行極化分析,進一步解釋時頻域的自適應協(xié)方差極化分析方法。該模型由5個波段構(gòu)成:A段表示平穩(wěn)橢圓,B段表示旋轉(zhuǎn)橢圓,C段表示線性極化的情況,D段表示三維空間的平穩(wěn)橢圓,E段對應于旋轉(zhuǎn)橢球的情況。前三段只在X-Y平面內(nèi)分布,而后兩段則在整個三維空間均存在。
表 1 各類波對應的極化濾波器
圖2為用標準協(xié)方差方法和自適應協(xié)方差方法得到的瞬時極化軸??梢钥吹?,標準協(xié)方差方法與自適應協(xié)方差方法相比,精度很低,這主要是由于其時窗長度很難準確地選擇,也就是說,時窗長度的選取對于標準協(xié)方差極化分析法的精度有很大的影響。圖3是時頻域自適應協(xié)方差極化方法得到的極化參數(shù)。通過比較可以看到,時間域和時頻域方法得到的極化參數(shù)具有很好的對應關(guān)系,但時間域極化參數(shù)不含頻率信息,而時頻域極化參數(shù)由于采用時間-頻率的聯(lián)合表示,具有很好的直觀性、較高的分辨率和較強的實用性。
圖1 三分量人工合成記錄[26]Fig.1 Three-component synthetic record[26]
圖2 時間域瞬時極化參數(shù)——極化軸Fig.2 Instantaneous polarization attributes in time domain——polarization axis
圖3 時頻域極化參數(shù)——瞬時極化軸Fig.3 Polarization attributes in time-frequency domain——instantaneous polarization axis
4實際三分量臺站資料處理
圖4是陜西省地震臺網(wǎng)2002年記錄的三分量實際地震數(shù)據(jù),該臺站位于34.25° N,108.95° E,高程600 m。圖5為各分量相應的廣義S變換時頻譜,從原始記錄和時頻譜中可以清楚看到各分量都分布有面波。圖6為三個橢圓率的時頻譜。
圖7為利用極化橢圓率來壓制該地震記錄的面波。由于地震面波的極化橢圓率比體波大,綜合分析三分量地震信號和極化橢圓率的時頻譜,選ρs(t,f)>0.18,并將該區(qū)域充為零,再與各分量的時頻譜相乘,并作廣義S反變換,得到圖7(c)所示的濾波結(jié)果。從圖中可以看到瑞利面波得到了有效壓制。如果極化橢圓率選擇的過大,雖然可以保證線性極化的體波全部保留,但同時會保留部分橢圓極化的面波;反之,如果極化橢圓率選擇的過小,雖然可以保證橢圓極化的面波全部壓制,但同時會損失部分線性極化的有效體波。因此在實際應用中需要根據(jù)地震信號的時頻譜,確定地震面波的有效頻率范圍,結(jié)合極化橢圓率的時頻譜選取大小合適的極化橢圓率參數(shù)值。
圖4 陜西地震臺網(wǎng)記錄的三分量地震數(shù)據(jù)Fig.4 The three-component seismogram recorded by Shaanxi seismic net
圖5 三分量實際數(shù)據(jù)的時頻譜Fig.5 Time-frequency spectrum of the three-component seismogram
圖7 基于極化橢圓率的極化濾波Fig.7 Polarization filtering based on the polarization ellipticity
圖8為通過極化傾角進行濾波。垂直極化地震波的極化傾角比水平極化地震波要大,為了壓制垂直極化地震波,只需將高極化傾角的區(qū)域充為零。圖中將極化傾角設(shè)置為β(t,f)∈[65°,90°],保留了與水平極化有關(guān)的傾角值,來壓制垂直極化的地震波。圖8(c)是濾波結(jié)果,濾波之后的水平分量的極化波得到了增強,而垂向分量的地震波則幾乎完全被壓制掉了。如果極化橢圓傾角選擇的過大,雖然可以保證水平極化波全部保留,但同時會保留部分垂直極化波;反之,如果極化橢圓傾角選擇的過小,雖然可以保證垂直極化波全部壓制,但同時會損失部分水平極化的有效波。因此在實際應用中需要結(jié)合地震信號和極化傾角的時頻譜,綜合選取大小合適的極化傾角參數(shù)值來壓制特定極化方向的地震波。
5結(jié)語
本文實現(xiàn)了基于自適應協(xié)方差的廣義S變換域時頻極化分析方法,通過構(gòu)造濾波器進行波場分離,并討論了該方法在多分量臺站地震資料分析和處理中的應用。
圖8 基于傾角的極化濾波Fig.8 Polarization filtering based on the dip angle
該極化分析方法和其他極化分析技術(shù)(Rene et al.1986; Morozov&Smithson 1996)是一致的。在理論上,當瞬時頻率對于所有分量都一樣時,本文方法和用Morozov & Smithson(1996)方法提取的極化參數(shù)的結(jié)果是一樣的。但是,本文提出的方法在范圍上更具普遍性,因為它可以描述任意數(shù)目分量的極化分布。新穎之處在于把時頻分析方法和自適應協(xié)方差矩陣方法結(jié)合起來。
(1) 該方法建立在協(xié)方差矩陣的基礎(chǔ)上,用一個近似方程來計算時窗內(nèi)的協(xié)方差矩陣,這個時窗是由多分量記錄的瞬時頻率確定的,其長度自適應于每個時頻點處的波的優(yōu)勢周期。然后在每個時頻點估計特征參數(shù),不需要進行插值。
(2) 該方法在每個時頻點上計算協(xié)方差矩陣元素,因此沒必要為了在各點上獲得特征參數(shù)而處理邊界效應。
(3) 實例的處理結(jié)果表明,該方法可以在時頻域中準確提取各個采樣點的所有極化屬性,這在實際應用中非常有用。
(4) 明確將極化分布和時頻分析方法聯(lián)系起來,通過在時頻域設(shè)計中使用濾波器,在整個時頻域內(nèi)進行波場識別和分離,這對于分離體波和面波是非常重要的。而且其他的一些極化屬性如方位角、傾角和正負橢圓率等也可以用于改進極化濾波算法。
參考文獻(References)
[1]Benhama A, Cliet C, Dubesset M.Study and Applications of Spatial Directional Filtering in Three-component Recordings[J].Geophys,1988,36:591-613.
[2]李英康, 崔作舟.分離縱波和橫波的偏振旋轉(zhuǎn)法[J].地球物理學報,1994,37(增刊Ⅱ):372-382.
LI Ying-kang, CUI Zuo-zhou.P and S-waves Separated by Polarization Revolving Method[J].Chinese J Geophys,1994,37(Supp.2):372-382.(in Chinese)
[3]李錦飛, 李人厚, 劉貴忠, 等.基于小波多分辨分析的極化分析和濾波方法[J].信號處理, 1999, 15(1):88-92,97.
LI Jin-fei,LI Ren-hou,LIU Gui-zhong,et al.A Technique on Polarization Analysis and Filtering Based on Wavelet Multiresolution Analtsis[J].Signal Processing,1999,15(1):88-92,97.(in Chinese)
[4]李錦飛, 李人厚.小波包變換空間濾波法分離信號研究[J].煤田地質(zhì)與勘探,1998,26(4):56-60.
LI Jin-fei,LI Ren-hou.Study on the Signal Separation Using Space Filtering Method Based on Wavelet Package Transform[J].Coal Geology & Exploration,1998,26(4):56-60.(in Chinese)
[5]張建軍,李占強.用極化分析法提取有效瑞雷波信號[J].礦業(yè)科學技術(shù), 1999(3-4):8-13.
ZHANG Jian-jun,LI Zhan-qiang.Extract Effective Rayleigh Wave Signal Using Polarization Analysis Method[J].Mining Science and Technology,1999(3-4):8-13.(in Chinese)
[6]葛勇,韓立國,韓文明,等.極化分析研究及其在波場分離中的應用[J].長春地質(zhì)學院學報,1996,26(1):83-88.
GE Yong,HAN Li-guo,HAN Wen-ming,et al.Study and Application of Polarization Analysis in Wave Field separation[J].Journal of Changchun University of Earth Sciences, 1996,26(1):83-88. (in Chinese)
[7]Schimmel M,Gallart J.The Use of Instantaneous Polarization Attributes for Seismic Signal Detection and Image Enhancement[J].Geophysical Journal International,2003,155:653-668.
[8]陳赟,張中杰,田小波.基于加窗Hilbert變換的復偏振分析方法及其應用[J].地球物理學報,2005,48(4):889-895.
CHEN Yun,ZHANG Zhong-jie,TIAN Xiao-bo.Complex Polarization Analysis Based on Windowed Hilbert Transform and Its Application[J].Chinese J Geophys,2005,48(4):889-895.(in Chinese)
[9]劉春園,徐勝峰.極化濾波在三分量噪聲衰減中的應用研究[J].地球物理學進展,2009,24(5):1814-1823.
LIU Chun-yuan,XU Sheng-feng.Research on the Three-component Noise Attenuation through Polarization Filtering[J].Progress in Geophysics,2009,24(5):1814-1823.(in Chinese)
[10]馬見青,李慶春.提高臺站地震資料信噪比的自適應極化濾波[J].地震工程學報,2014,36(2):398-404.
MA Jian-qing,LI Qing-chun.Adaptive Polarization Filtering for Improving the S/N of Station Seismic Data[J].China Earthquake Engineering Journal, 2014,36(2): 398-404.(in Chinese)
[11]高原,蔡燕.極化分析及其在地震勘探中的應用初探[J].江漢石油科技,1997,7(4):11-15,55.
GAO Yuan,CHAI Yan.Polarization Analysis and Preliminary Application in Seismic Exploration[J].Jianghan Petroleum Science and Technology,1997,7(4):11-15,55.(in Chinese)
[12]嚴又生,宜明理,魏新,等.三維三分量VSP數(shù)據(jù)處理方法及效果[J].石油地球物理勘探,2005,4(1):18-24.
YAN You-sheng,YI Ming-li,WEI Xin,et al.3D 3C VSP Data Processing Methods and Effects[J].Oil Geophysical Prospecting,2005,4(1):18-24.(in Chinese)
[13]崔汝國,牟風明,宋維琪,等.VSP浮動坐標系偏振濾波[J].石油地球物理勘探,2010,45(1):10-14.
CUI Ru-guo,MOU Feng-ming,SONG Wei-qi,et al.Polarization Filtering in VSP Floating Coordinate System[J].Oil Geophysical Prospecting,2010,45(1):10-14.(in Chinese)
[14]Meissner R,Hegazy M A.The Ratio of the PP-to the SS-reflection Coefficients:A Possible Future Method to Estimate oil and Gas Reservoirs[J].Geophys Prosp,1981,29:533-540.
[15]Helbig K,Mesdag C S.The Potential of Shear Wave Observations[J].Geophys Prosp,1982,30:413-431.
[16]唐曉雪,唐建侯.地震波的偏振分析與應用[J].石油地球物理勘探, 1996,31(增刊2):67-73.
TANG Xiao-xue,TANG Jian-hou.The Polarization Analysis and Application of Seismic Wave[J].Oil Geophysical Prospecting,1996,31(Supp.2):67-73.(in Chinese)
[17]黃忠賢,陳虹,王貴華,等.面波偏振與中國大陸巖石層橫向不均勻性[J].地球物理學報,1994,37(4):456-468.
HUANG Zhong-xian,CHEN hong,WANG Gui-hua,et al.Surface Wave Polarization and Lateral Heterogeneities of the Lithosphere in China[J].Chinese J Geophys, 1994, 37(4): 456-468.(in Chinese)
[18]陳虹,黃忠賢.利用時頻偏振分析技術(shù)研究面波傳播的復雜性[J].地震學報,1998,20(2):144-149.
CHEN hong,HUANG Zhong-xian.Study the Complexity of Surface Wave Propagation Using the Time-frequency Polarization Analysis Technique[J].Acta Seismologica Sinica,1998,20(2):144-149.(in Chinese)
[19]王懷軍,劉福田,陳曉非.P波偏振層析成像[J].地球物理學進展,2000,15(3):7-13.
WANG Huai-jun,LIU Fu-tian,CHEN Xiao-fei.P-wave Polarization Tomography[J].Progress in Geophysics,2000,15(3):7-13.(in Chinese)
[20]劉福田,胡戈,王懷軍,等.由單臺遠震P波偏振資料反演北京臺站鄰域的速度結(jié)構(gòu)[J].中國科學:D輯,2000,30(6):642-649.
LIU Fu-tian,HU ge,WANG Huai-jun,et al.Inversion Velocity Structure of Beijing Station Neighborhood from a Single Teleseismic P-wave Polarization Data[J].Scientia in China:Series D,2000,30(6):642-649.(in Chinese)
[21]BAI Chao-ying,Kennett B L N.Automatic Phase-detection and Identification by Full Use of a Single Three-component Broadband Seismogram[J].Bull Seism Soc Am,2000,90:187-198.
[22]BAI Chao-ying,Kennett B L N.Phase Identification and Attribute Analysis of Broadband Seismogram at Far-regional Distances[J].Journal of Seismology,2001,5:217-231.
[23]Reading A M.Polarization Filtering for Automatic Picking of Seismic Data and Improved Converted Phase Detection[J].Geophysical Journal International,2001,147:227-234.
[24]馬見青,李慶春,王美丁.多分量地震極化分析評述[J].地球物理學進展,2011,26(3):992-1003.
MA Jian-qing,LI Qing-chun,WANG Mei-ding.Review of Multi-component Seismic Polarization Analysis[J].Progress in Geophysics,2011,26(3):992-1003.(in Chinese)
[25]Morozov I B,Smithson S B.Instantaneous Polarization Attributes and Direction Filtering[J].Geophysics,1996,15:872-881.
[26]Diallo M S,Kulesh M,Holschneider M,et al.Instantaneous Polarization Attributes Based on Adaptive Covariance Method[J].Geophysics,2006,71(5):99-109.
[27]姚家駿,楊立明,馮建剛.常用時頻分析方法在數(shù)字地震波特征量分析中的應用[J].西北地震學報,2011,33(2):105-110.
YAO Jia-jun,YANG Li-ming,FENG Jian-gang.Application of Common Time-frequency Analysis Methods in Analyzing Characteristic Quantity of Digital Seismic Wave[J].NorthWestern Seismological Journal,2011,33(2): 105-110.(in Chinese)
[28]許康生,李英,李秋紅.近地震波的小波相對能量分布特征分析[J].地震工程學報,2013,35(1):166-170.
XU Kang-sheng,LI Ying,LI Qiu-hong.Distribution Characteristics of Wavelet Relative Energy on Near-earthquake Wave[J].China Earthquake Engineering Journal,2013,35(1): 166-170.
[29]Stockwell R G,Mansinha L,Lowe R P.Localization of the Complex Spectrum: the S transform[J].IEEE Transactions on Signal Processing,1996,44(4):998-1001.
[30]Pinnegar C R,Mansinha L.The S-transform with Windows of Arbitrary and Varying Shape[J].Geophysics,2003,68(1):381-385.
[31]Pinnegar C R,Mansinha L.The Bi-gaussian S-transform[J].SIAM Journal of Scientific Computing,2003,24(5):1678-1692.
[32]Kulesh M,Diallo M S,Holschneider M,et al.Polarization Analysis in the Wavelet Domain Based on the Adaptive Covariance Method[J].Goephys J Int,2007,169:1-12.
Adaptive Polarization Analysis and Filtering of Station Seismic Data in Time-Frequency Domain
MA Jian-qing1, LI Qing-chun1, WANG Wei-dong1, WANG Mei-ding2, LI Chun-lan2
(1.SchoolofGeologicalEngineeringandSurveying,Chang’anUniversity,Xi’an710054,Shaanxi,China;2.TeamofGeophysicalandGeochemicalExploration,NorthwesternGeologyExplorationBureauforNonferrousMetalResources,Xi’an710068,Shaanxi,China)
Abstract:Polarization filtering methods based on a covariance matrix play an important role in the processing of multicomponent seismograms due to their explicit physical meaning, ease of implementation, and high efficiency. Conventional polarization filtering methods that are realized in a time domain have major limitations in resolving seismic signals in which waveforms or frequencies overlap. Time-frequency analysis methods are especially suitable for resolving separate seismic signals that overlap in time but have different spectra for instantaneous signal analysis. These methods can describe frequency components of a signal that change over time. Owing to the advantages of the time-frequency analysis method, it can be used in polarization analysis. This study presents a polarization filtering method based on the generalized S-transform to suppress surface waves in a time-frequency domain. On one hand, we remold the window function of the S-transform and improve the frequency resolution of seismic signals by increasing regulatory factors to create a nonlinear change in the window function with the signal frequency. On the other, we structure the cross-energy matrix in the time-frequency domain using the generalized S-transform, compute instantaneous polarization attributes by eigenanalysis, and design a filtering algorithm in the time-frequency domain to achieve polarization filtering of multicomponent seismic signals. The specialties of this method are that the length of the time window of the covariance matrix is determined by the instantaneous frequency of the multicomponent seismic data and it can adapt to the dominant period of the desired signal. Moreover, it calculates polarization parameters at each time-frequency point and no longer needs to perform interpolation. It is particularly accurate in processing signals with overlapping waveforms or frequencies in the time or frequency domain. The results of processing data from models and real three-component seismograms show that this method has very high clarity, high resolution, and practicability in the data analysis and processing of seismograms. This representation enables the detection of dispersion in polarization attributes, which can be further exploited to infer some physical characteristics of the medium under investigation. Moreover, this representation offers the ability to distinguish between attributes that belong to different coherent events that may overlap in time but with different frequency contents separated by time-dependent frequency cutoffs. Identifying and separating different wave types are made possible by designing filters that operate in the time-frequency domain. Attributes such as azimuth, dip, and signed ellipticity can also be used to improve the filtering algorithms.
Key words:polarization filtering; time-frequency analysis; generalized S-transform; adaptive covariance matrix; multi-component seismogram
DOI:10.3969/j.issn.1000-0844.2016.01.0136
中圖分類號:P315.63
文獻標志碼:A
文章編號:1000-0844(2016)01-0136-08
作者簡介:馬見青(1984-),男,山西人,博士,講師,主要從事地震信號多尺度分析和處理研究工作。E-mail:majianqing1984@126.com。通信作者:李慶春(1961-),男,山東人,教授,博士生導師,主要從事多波多分量地震、金屬礦地震偏移成像的研究工作。E-mail:dcliqc@chd.edu.cn。
基金項目:國家自然科學 (41374145);高等學校博士點 (20120205130002);中央高校 (310826161008)
收稿日期:①2014-11-20