劉少波,王暉,陳墾
(廣東藥科大學(xué) 1.中藥學(xué)院; 2.臨床醫(yī)學(xué)院,廣東 廣州 510006)
?
中藥提取物及活性成分激活PPARs信號(hào)對(duì)糖脂代謝的影響
劉少波1,王暉1,陳墾2
(廣東藥科大學(xué) 1.中藥學(xué)院; 2.臨床醫(yī)學(xué)院,廣東 廣州 510006)
摘要:過(guò)氧化物酶增殖體激活受體(PPARs)是調(diào)節(jié)脂肪酸、脂蛋白代謝、葡萄糖體內(nèi)平衡、細(xì)胞的增殖分化以及免疫應(yīng)答的關(guān)鍵因素,因此激活PPARs在體內(nèi)的表達(dá)對(duì)治療糖尿病具有重要的意義。近年來(lái)研究發(fā)現(xiàn),多種中藥有效成分通過(guò)激活PPARs在脂肪組織中的表達(dá),從而達(dá)到降血糖并改善胰島素敏感性,最終達(dá)到治療糖尿病的效果。本文就近年來(lái)中藥活性成分激活PPARs對(duì)糖脂代謝的研究進(jìn)展進(jìn)行綜述。
關(guān)鍵詞:PPARs; 中藥; 活性成分; 糖尿病; 脂肪酸
糖尿病是世界性分布的可嚴(yán)重危害人類生命健康的內(nèi)分泌性疾病,也是臨床增長(zhǎng)最快的代謝紊亂疾病,全球約有3.87億人受到糖尿病的影響,到2030年估計(jì)糖尿病患者會(huì)增至5.93億人[1]。隨著肥胖及超重人數(shù)的增加,糖尿病的發(fā)病率急劇上升,其死亡率也逐年上升,而且發(fā)病人群年輕化。研究顯示,核受體超家族成員參與調(diào)節(jié)免疫和炎癥反應(yīng),過(guò)氧化物酶增殖體激活受體(peroxisome proliferators-activated receptors,PPARs)是核激素受體家族中的配體激活受體,參與控制許多細(xì)胞內(nèi)的代謝過(guò)程[2-5]。中藥活性成分可通過(guò)激活體內(nèi)PPARs的表達(dá),起到抑制脂肪生成、降低血糖等作用。本文就近年來(lái)中藥提取物及活性成分通過(guò)激活PPARs表達(dá)參與改善糖脂代謝來(lái)治療糖尿病進(jìn)行綜述。
1PPARs信號(hào)通路對(duì)糖脂代謝的影響
PPARs是核激素受體家族成員,其結(jié)構(gòu)類似于甾類激素受體,可調(diào)節(jié)脂質(zhì)體內(nèi)平衡、細(xì)胞分化、增殖及免疫應(yīng)答;當(dāng)被配體如內(nèi)源性脂肪酸、脂肪酸衍生物等激活形成異質(zhì)二聚體,可與所調(diào)節(jié)基因啟動(dòng)子上游的過(guò)氧化物酶增殖體激活受體配件(peroxisome proliferators responselement,PPRE)結(jié)合并發(fā)揮對(duì)靶基因的轉(zhuǎn)錄調(diào)控作用,從而實(shí)現(xiàn)不同的生物學(xué)效應(yīng)。
PPARs受體主要有3種類型:PPARα、PPARβ、PPARγ。這3種亞型都可以通過(guò)結(jié)合到靶基因的PPRE上,來(lái)調(diào)節(jié)基因轉(zhuǎn)錄,成為多種疾病的治療靶點(diǎn)[6]。PPARα在肝臟、骨骼肌中高度表達(dá)并參與調(diào)節(jié)脂質(zhì)吸收、分解代謝以及基因表達(dá)等;激活PPARα可增強(qiáng)脂肪酸的吸收、氧化和抗炎作用,降低極低密度脂蛋白和三酰甘油水平,以及促進(jìn)膽固醇的流出[5,7-10],PPARα 可以調(diào)節(jié)若干線粒體脂肪酸催化酶的表達(dá),通過(guò)誘導(dǎo)肌肉和肝臟特異性的肉毒堿棕櫚酰轉(zhuǎn)運(yùn)酶表達(dá)而調(diào)控脂肪酸向線粒體的轉(zhuǎn)運(yùn),刺激β氧化過(guò)程,降低脂肪酸和三酰甘油合成[11];PPARβ表達(dá)廣泛,主要作用是參與脂肪酸酸化和免疫調(diào)節(jié)[12];PPARγ主要表達(dá)于脂肪組織中,是目前研究最深入的亞型,可通過(guò)多條信號(hào)通路對(duì)脂肪組織的形成起調(diào)節(jié)作用,包括調(diào)節(jié)胰島素敏感性、葡萄糖攝取、脂肪細(xì)胞的分化、能量代謝和胰島素釋放[13-18],PPARγ具有脂肪組織特異性,在脂肪細(xì)胞高表達(dá),是正常脂肪細(xì)胞分化過(guò)程中必不可少的[18],PPARγ在介導(dǎo)脂肪酸氧化及脂質(zhì)代謝中起重要作用,參與多種脂肪酸轉(zhuǎn)運(yùn)及代謝的基因在轉(zhuǎn)錄水平上受PPARγ調(diào)控。PPARγ能夠增強(qiáng)促進(jìn)脂肪酸儲(chǔ)存的基因表達(dá),如脂蛋白酯酶、脂肪酸轉(zhuǎn)運(yùn)蛋白與脂酰CoA合成酶基因等,能夠抑制促脂解和脂肪酸釋放的基因表達(dá),如過(guò)氧化物酶體脂肪酸氧化酶系[19]。研究表明:成脂和成肌關(guān)鍵轉(zhuǎn)錄因子PPARγ和MYOGENIN啟動(dòng)子區(qū)的DNA甲基化變化參與了成肌細(xì)胞的分化和脂肪沉積的調(diào)控[20],陳曉佩等[21]研究表明PPARγ基因的表達(dá)能顯著影響脂肪細(xì)胞的增殖與分化,可能與肉牛脂肪沉積有一定的關(guān)系;因而中藥通過(guò)作用于PPARγ調(diào)節(jié)脂肪細(xì)胞分化、脂肪細(xì)胞功能、改善脂肪代謝,可有效改善機(jī)體糖脂代謝紊亂。PPARγ的多態(tài)性能夠?qū)е乱葝u素分泌及其敏感性的改變,PPARγ2的AA純合子對(duì)糖尿病患者具有保護(hù)作用。
2激活PPARs影響糖脂代謝的中藥成分
2.1多糖類
肥胖引起的糖尿病會(huì)增加心肌攝取脂質(zhì)和脂肪酸氧化,導(dǎo)致心臟功能障礙形成脂毒性心肌病。利用糖尿病脂毒性心肌病小鼠模型,發(fā)現(xiàn)黃芪多糖(astragalus polysaccharide,APS)通過(guò)過(guò)氧化物酶增殖體激活受體-肌球蛋白重鏈(PPARα-MHC),明顯提高心肌細(xì)胞三酰甘油的沉積并改善心臟能量代謝紊亂;在db/db糖尿病小鼠心臟中,通過(guò)激活MHC-PPARα可抑制心肌對(duì)脂肪酸的吸收和氧化以及葡萄糖利用,因此APS通過(guò)PPAR介導(dǎo)可以預(yù)防糖尿病性心肌病的發(fā)展[22-23]。秋葵多糖(Okra polysaccharide,OP)可通過(guò)調(diào)節(jié)糖尿病小鼠肝臟和脂肪組織中PPARs和肝臟X受體(LXRs)的基因表達(dá),進(jìn)而降低糖尿病diet-fed C57BL/6小鼠的體質(zhì)量和血糖水平、改善糖耐量、降低血清總膽固醇水平[24]。結(jié)果提示多糖可通過(guò)活化PPAR信號(hào)治療糖尿病。
2.2皂苷類
人參中的提取物人參皂苷、原人參二醇皂苷Rh1等已被應(yīng)用于諸多疾病,如癌癥、糖尿病、炎癥和高脂血癥。研究顯示下調(diào)PPARγ在CCAAT/enhancer-binding蛋白(C/EBP)-α脂肪酸合酶及脂肪細(xì)胞中的表達(dá),導(dǎo)致脂肪細(xì)胞增殖能力增強(qiáng),而口服人參皂苷Rh1后PPARγ表達(dá)增加,從而抑制了糖尿病小鼠體質(zhì)量增加并降低血清三酰甘油水平[25]??梢?jiàn),人參皂苷Rh1可抑制脂肪細(xì)胞分化和改善脂質(zhì)代謝;人參皂苷的活性代謝物ComK可上調(diào)PPARα的表達(dá)和抑制?;o酶A氧化酶(ACOX1)表達(dá),減少FFA-loadedHup細(xì)胞形成和三酰甘油積累,并增加蛋白質(zhì)的磷酸化水平,從而降低脂肪肝病的發(fā)生[26],結(jié)果表明ComK對(duì)2型糖尿病引起的肝脂肪變性具有一定的抑制療效。原油皂苷桔梗皂苷(platycodi)對(duì)改善2型糖尿病患者的胰島素敏感性有一定的作用[27];platycodin acid(PA)通過(guò)激活PPAR-γ在肝臟和3t3-11脂肪細(xì)胞中的表達(dá)有效地改善了胰島素敏感性、促進(jìn)葡萄糖轉(zhuǎn)運(yùn)蛋白(GLUT4)向膜易位和增加葡萄糖的攝取,增加肝臟中糖原的積累并降低三酰甘油的存儲(chǔ),可見(jiàn),PA通過(guò)激活PPAR-γ有效提高肝臟和脂肪細(xì)胞的胰島素敏感性,從而改善2型糖尿病患者病情。
據(jù)報(bào)道橘皮苷通過(guò)上調(diào)肝臟中PPARγ的表達(dá)以及誘導(dǎo)一氧化氮mRNA的表達(dá)進(jìn)而抑制氧化應(yīng)激和NF-κB的表達(dá)對(duì)環(huán)磷酰胺(CYP)引起的Wistar大鼠肝損傷和血清促炎細(xì)胞因子升高具有保護(hù)作用[28]。
2.3多酚類
研究顯示姜黃素可通過(guò)上調(diào)GLUT2、GLUT3和GLUT4基因表達(dá)、促進(jìn)PPAR配體活動(dòng)、激活腺苷酸激酶從而改善胰腺細(xì)胞的功能、促進(jìn)胰島素分泌、減少胰島素抵抗從而促進(jìn)葡萄糖攝取、減少肝葡萄糖生產(chǎn),進(jìn)而降低血糖和抑制高血糖誘導(dǎo)的炎癥狀態(tài)[29],可見(jiàn)姜黃素在治療糖尿病方面有重要意義。葡萄酒中的鞣花酸和表兒茶素沒(méi)食子酸鹽(ECG)可能存在PPARγ配體具有類似于羅格列酮降糖效應(yīng)用于治療糖尿病[30];食用富含類黃酮多酚類化合物(如flavan-3-ols、黃烷酮類、黃酮醇、花青素、黃酮和異黃酮)的水果和蔬菜,可通過(guò)激活PPARs受體進(jìn)而減輕糖尿病患者胰島細(xì)胞炎癥損傷和減少細(xì)胞凋亡、增加胰島素分泌、減輕胰島素抵抗、并改善肝細(xì)胞葡萄糖代謝和增加葡萄糖攝取[31]。
2.4黃酮類
研究表明表兒茶素能激活分化型脂肪細(xì)胞中PPARγ的表達(dá)并抑制TNFα激活分化型脂肪細(xì)胞(3t3-l1)NF-κB信號(hào)轉(zhuǎn)導(dǎo)通路和蛋白激酶(MAPKs),從而抑制TNFα介導(dǎo)的基因轉(zhuǎn)錄和阻斷IL-6、MCP-1、TNFα、蛋白質(zhì)酪絡(luò)氨酸磷酸酶參與炎癥反應(yīng)和胰島素信號(hào)轉(zhuǎn)導(dǎo),減輕TNFα介導(dǎo)的炎癥反應(yīng)和胰島素抵抗,TOLL樣受體(TLRS)最近被證明參與2型糖尿病肥胖引起的脂肪組織炎癥,導(dǎo)致胰島素抵抗的發(fā)展[32],可見(jiàn),TLRS可作為治療糖脂代謝紊亂疾病的靶點(diǎn)進(jìn)一步研究。據(jù)報(bào)道柚苷配基柚皮素和柑橘類黃酮通過(guò)PPARγ介導(dǎo)可抑制TLR2在分化型脂肪細(xì)胞中表達(dá),進(jìn)而抑制NF-κB和c-Jun Nh1-terminal激酶通路活化,從而達(dá)到改善高血糖癥狀和抑制炎癥介質(zhì)[33]。
2.5生物堿類
從黃連(Coptidis)根莖提取的表小檗堿以濃度依賴方式可顯著抑制3 t3-l1細(xì)胞脂質(zhì)積累而不影響細(xì)胞的生存能力,通過(guò)激活PPAR-γ受體和CCAAT/增強(qiáng)子結(jié)合蛋白-α(CCAAT/enhancer-binding protein-α,C/EBP-α)可顯著降低脂肪細(xì)胞標(biāo)記基因的表達(dá)水平[34],結(jié)果表明Coptidis根莖提取物及其分離生物堿可能對(duì)于治療2型糖尿病有重要價(jià)值。胡蘆巴堿通過(guò)激活PPARγ和CCAAT元素結(jié)合蛋白(C/EBP-α)mRNA表達(dá)進(jìn)而調(diào)節(jié)其他基因如脂聯(lián)素、adipogenin,瘦素、抵抗素、脂肪細(xì)胞脂肪酸結(jié)合蛋白(aP2)表達(dá)從而控制細(xì)胞分化,表明胡蘆巴堿可通過(guò)脂肪組織中PPARγ介導(dǎo)途徑抑制3 t3-l1細(xì)胞分化和細(xì)胞脂質(zhì)積累[35],由此推測(cè)葫蘆巴堿可從降低肥胖來(lái)達(dá)到治療糖尿病的目的。
2.6其他
臨床發(fā)現(xiàn)食用番石榴可減輕糖尿病患者的病情。研究顯示用番石榴葉提取物治療糖尿病大鼠,結(jié)果顯示治療組大鼠肝臟組織中甘油三酸酯和脂肪點(diǎn)含量明顯降低、血清天門冬氨酸轉(zhuǎn)化酶下降,減輕了肝損傷和肝脂肪積累,番石榴葉提取物通過(guò)活化PPARα可顯著增加脂聯(lián)素受體的表達(dá)量,可見(jiàn),番石榴葉提取物能改善胰島素抵抗、增加脂聯(lián)素積表達(dá)對(duì)肝脂肪變性具有潛在治療作用[36]。Kim等[37]研究發(fā)現(xiàn)山茱萸葉提取物可增強(qiáng)PPARγ表達(dá)和3T3-L1細(xì)胞胰島素敏感,增加脂肪生成以及脂聯(lián)素和葡萄糖轉(zhuǎn)運(yùn)蛋白表達(dá),提示山茱萸葉提取物可用于治療高血糖和2型糖尿病。白術(shù)粳稻根莖是東亞的傳統(tǒng)草藥,常用于治療肥胖及相關(guān)并發(fā)癥,其機(jī)制可能是白術(shù)粳稻提取物通過(guò)激活PPARγ和胰島素信號(hào)通路進(jìn)而促進(jìn)脂肪細(xì)胞的分化從而實(shí)現(xiàn)治療糖尿病[38]。
3小結(jié)
中藥有效成分通過(guò)激活PPARS信號(hào)及其相關(guān)通路,可以顯著改善糖脂代謝紊亂,從而改善肥胖及其相關(guān)疾病癥狀,隨著中藥分離技術(shù)的不斷提高、中藥分析技術(shù)對(duì)中藥化學(xué)成分的不斷研究并闡明其作用機(jī)制,同時(shí)隨著對(duì)不同疾病狀態(tài)下的PPARS的作用和機(jī)制進(jìn)一步的深入研究,將會(huì)對(duì)中藥通過(guò)以PPARS作為治療靶標(biāo)來(lái)應(yīng)用于治療肥胖相關(guān)疾病及糖尿病,開(kāi)拓出新的視野,為人類的生命健康做出更大的貢獻(xiàn)。
參考文獻(xiàn):
[1] MAHAPATRA D K,ASATI V,BHARTI S K. Chalcones and their therapeutic targets for the management of diabetes:structural and pharmacological perspectives[J]. Eur J Med Chem,2015,92(7):839-865.
[2] MENENDEZ-GUTIERREZ M,ROSZER T,RICOTE M. Biology and therapeutic applications of peroxisome proliferator-activated receptors[J]. Curr Top Med Chem,2012,12(6):548-584.
[3] CHIGURUPATI S,DHANARAJ S A,BALAKUMAR P. A step ahead of PPARγ full agonists to PPARγ partial agonists:therapeutic perspectives in the management of diabetic insulin resistance[J]. Eur J Pharmacol,2015,755(1):50-57.
[4] LI Mindian,YANG Xiaoyong. A retrospective on nuclear receptor regulation of inflammation:lessons from GR and PPARs[J]. PPAR Res,2011,15(4):742-785.
[5] HUANG Huiyu,KORIVI M,YANG Huiting,et al. Effect of Pleurotus tuber-regium polysaccharides supplementation on the progression of diabetes complications in obese-diabetic rats[J]. Chin J Physiol,2014,57(4):198-208.
[6] 張秀紅,宣姣,亓志剛. PPARα,γ和δ:胰島素抵抗治療的靶點(diǎn)[J].中國(guó)生物化學(xué)與分子生物學(xué)報(bào),2014,30(6):543-548.
[7] BONFLEUR M L,BORCK P C,RIBEIRO R A,et al. Improvement in the expression of hepatic genes involved in fatty acid metabolism in obese rats supplemented with taurine[J]. Life Sci,2015,135:15-21.
[8] JUNG C H,LEE D H,AHN J,et al. γ-oryzanol enhances adipocyte differentiation and glucose uptake[J]. Nutrients,2015,7(6):4851-4861.
[9] CORBETT G T,GONZALEZ F J,PAHAN K. Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP[J]. PNAS,2015,112(27):8445-8450.[10] LIU Fenghua,SONG Ruisheng,FENG Yuanqing,et al. Upregulation of MG53 induces diabetic cardiomyopathy via transcriptional activation of PPAR-α[J]. Circulation,2015,131(9):795-804.
[11] PANADERO M,VIDAL H,HERRERA E,et al. Nutritionally induced changes in the peroxisome proliferator activated receptor-alpha gene expression in liver of suckling rats are dependent on insulinaemia[J]. Arch Biochem Biophys,2001,394(2):182-188.
[12] LI L,LI T,ZHANG Y,et al. Peroxisome proliferator-activated receptorβ/σ activation is essential for modulating p-Foxo1/Foxo1 status in functional insulin-positive cell differentiation[J]. Cell Death & Dis,2015,6(4):e1715,1-11.
[13] JIANG Shuzhong,WEI Hongkui,SONG Tongxing,et al. KLF13 promotes porcine adipocyte differentiation through PPARγ activation[J]. Cell & Bio,2015,5(1):1-14.
[14] JANG Y J,KOO H J,SOHN E H,et al. Theobromine inhibits differentiation of 3T3-L1 cells during the early stage of adipogenesis via AMPK and MAPK signaling pathways[J]. Food Funct,2015,6(7):2365-2374.
[15] STENEBERG P,SYKARAS AG,BACKLUND F,et al. Hyperinsulinemia enhances hepatic expression of the fatty acid transporter Cd36 and provokes hepatosteatosis and hepatic insulin resistance[J]. J Biol Chem,2015,290(31):19034-19043.
[16] HASAN A U,OHMORI K,KONISHI K,et al. Eicosapentaenoic acid upregulates VEGF-A through both GPR120 and PPARγ mediated pathways in 3T3-L1 adipocytes[J]. Mol Cell Endocrinol,2015,406(3):10-18. [17] CIPOLLETTA D,COHEN P,SPIEGELMAN B M,et al. Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue:age,diet,and PPARγ effects[J]. PNAS,2015,112(2):482-487.
[18] 蔣金航,馬云,王新莊. PPARγ基因調(diào)控脂肪細(xì)胞分化的研究進(jìn)展[J].中國(guó)畜牧雜志,2014,50(9):91-95.
[19] 宋新磊,王靜,崔煥先,等. PPARγ 對(duì)脂類代謝和脂肪細(xì)胞分化的調(diào)控[J].云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,23(6):851-855.
[20] 姜美華,巨婷婷,劉洋,等. 成肌細(xì)胞成脂過(guò)程中 PPARγ,C/EBPα 和 Myogenin 基因啟動(dòng)子的甲基化變化[J].中國(guó)農(nóng)業(yè)科學(xué),2013,46(14):3010-3021.
[21] 陳曉佩,于文浩,蔣金航,等.牛PPARγ基因?qū)χ炯?xì)胞增殖分化的影響[J].中國(guó)獸醫(yī)學(xué)報(bào),2016,36(1):101-107.
[22] CHEN Wei,XIA Yanping,ZHAO Xuelan,et al. The critical role of astragalus polysaccharides for the improvement of PPRAα-mediated lipotoxicity in diabetic cardiomyopathy[J]. Plos One,2012,7(10):e45541,1-10.
[23] CHEN Wei,CHEN Wenjie,XIA Yanping,et al. Therapy with Astragalus polysaccharides rescues lipotoxic cardiomyopathy in MHC-PPARα mice[J]. Mol Biol Rep,2013,40(3):2449-2459.
[24] FAN Shengjie,GUO Lu,ZHANG Yu,et al. Okra polysaccharide improves metabolic disorders in high-fat diet-induced obese C57BL/6 mice[J]. Mol Nutr & Food Res,2013,57(11):2075-2078.
[25] GU W,KIM K A,KIM D H. Ginsenoside Rh1 ameliorates high fat diet-induced obesity in mice by inhibiting adipocyte differentiation[J]. Biol Pharm Bull,2013,36(1):102-107.
[26] KIM M S,LEE K T,ISELI T J,et al. Compound K modulates fatty acid‐induced lipid droplet formation and expression of proteins involved in lipid metabolism in hepatocytes[J]. Liver Int,2013,33(10):1583-1593.
[27] KWON D Y,KIM Y S,RYU S Y,et al. Platyconic acid,a saponin fromPlatycodiradix,improves glucose homeostasis by enhancing insulin sensitivityinvitroandinvivo[J]. Eur J Nutr,2012,51(5):529-540.
[28] MAHMOUD A M. Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARγ and abrogation of oxidative stress and inflammation[J]. Can J Physiol Pharm,2014,92(9):717-724.
[29] GHORBANI Z,HEKMATDOOST A,MIRMIRAN P. Anti-Hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin[J]. Int J Endocrinol Metab,2014,12(4):e18081,1-9.
[30] ZOECHLING A,LIEBNER F,JUNGBAUER A. Red wine:a source of potent ligands for peroxisome proliferator-activated receptor γ[J]. Food & Funct,2011,2(1):28-38.
[31] BABU P V A,LIU Dongmin,GILBERT E R. Recent advances in understanding the anti-diabetic actions of dietary flavonoids[J]. J Nutr Biochem,2013,24(11):1777-1789.
[32] VAZQUEZ-PRIETO M A,BETTAIEB A,HAJ F G,et al. (-)-Epicatechin prevents TNFα-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes[J]. Arch Biochem Biophys,2012,527(2):113-118.
[33] YOSHIDA H,WATANABE W,OOMAGARI H,et al. Citrus flavonoid naringenin inhibits TLR2 expression in adipocytes[J]. J Nutr Biochem,2013,24(7):1276-1284.
[34] CHOI J S,KIM J H,ALI M Y,et al. Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-α and PPAR-γ[J]. Fitoterapia,2014,98(2):199-208.
[35] ILAVENIL S,ARASU M V,LEE J C,et al. Trigonelline attenuates the adipocyte differentiation and lipid accumulation in 3T3-L1 cells[J]. Phytomedicine,2014,21(5):758-765.
[36] YOSHITOMI H,GUO X,LIU T,et al. Guava leaf extracts alleviate fatty liver via expression of adiponectin receptors in SHRSP. Z-Leprfa/Izm rats[J]. Nutr Metab (Lond),2012,24(7):1276-1284.
[37] KIM D,PARK K K,LEE S K,et al. Cornus kousa F. Buerger ex Miquel increases glucose uptake through activation of peroxisome proliferator-activated receptor γ and insulin sensitization[J]. J Ethnopharmacol,2011,133(2):803-809.
[38] HAN Y,JUNG H W,PARK Y K. The roots of Atractylodes japonica Koidzumi promote adipogenic differentiation via activation of the insulin signaling pathway in 3T3-L1 cells[J]. BMC Complem Altern Med,2012,12(1):154-161.
(責(zé)任編輯:王昌棟)
Effects of extraction and active ingredients of traditional Chinese medicine on the glucose metabolism by activation of PPARs
LIU Shaobo1,WANG Hui1,CHEN Ken2
(1.SchoolofTraditionalChineseMedicine,2.SchoolofClinicalMedicine,GuangdongPharmaceuticalUniversity,Guangzhou510006,China)
Abstract:Peroxisome proliferator-activated receptors (PPARs),as a key factor,regulate the metabolism of fatty acid and lipoprotein,glucose homeostasis,the proliferation and differentiation of cells,and immune response. It is important that upregulation of PPARs activation in treatment of type 2 diabetes. Recent studies showed that a variety of traditional Chinese medicine decreased blood sugar and improved sensitivity of insulin in diabetes by upregulation of PPARs activation in the adipose tissues. This paper will summarize the effect of the active ingredients of traditional Chinese medicine on the glucolipid metabolism by activation of PPARs.
Key words:PPARs; traditional Chinese medicine; active ingredient; diabetes; fatty acid
DOI:10.16809/j.cnki.1006-8783.2016012402
中圖分類號(hào):R285
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1006-8783(2016)02-0256-04
作者簡(jiǎn)介:劉少波(1989—),男,2014級(jí)碩士研究生,主要從事藥理學(xué)和中藥藥理學(xué)研究,Email:soul1tourism@126.com;通信作者:陳墾(1963—),男,教授、主任醫(yī)師,碩士生導(dǎo)師,主要從事消化病學(xué)研究,Email:chenkenck@126.com。
基金項(xiàng)目:廣州市科技計(jì)劃項(xiàng)目(201300000157)
收稿日期:2016-01-24
網(wǎng)絡(luò)出版時(shí)間:2016-03-16 14:31網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/44.1413.R.20160316.1431.002.html