呂昭弟,宋練鵬, 2,王凱,張龍
?
連續(xù)擠壓對(duì)Cu-Cr-Zr合金組織與性能的影響
呂昭弟1,宋練鵬1, 2,王凱1,張龍1
(1. 中南大學(xué)材料科學(xué)與工程學(xué)院,長沙 410083;2. 中南大學(xué)有色金屬材料科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室,長沙 410083)
對(duì)Cu-0.71Cr-0.04Zr合金熱擠壓棒材進(jìn)行連續(xù)擠壓,得到相同直徑的連續(xù)擠壓棒材,采用掃描電鏡(SEM)、透射電鏡(TEM)以及X射線衍射儀(XRD)等對(duì)該合金在連續(xù)擠壓前后的組織與物相組成進(jìn)行觀察與分析,并測試合金的抗拉強(qiáng)度與導(dǎo)電性能,研究連續(xù)擠壓對(duì)該合金組織與性能的影響。結(jié)果表明,連續(xù)擠壓后,合金的抗拉強(qiáng)度由228 MPa大幅提高到352 MPa,電導(dǎo)率略有下降,為52.4%IACS。合金經(jīng)過連續(xù)擠壓后,(111)晶面上的衍射峰強(qiáng)度大幅提升,粗大的晶粒消失,均勻分布著大量具有一定方向性的亞晶和形變晶粒,平均晶粒尺寸在0.5~1 μm之間,夾雜少量平均尺寸約200nm的等軸再結(jié)晶晶粒,同時(shí)伴有細(xì)小的析出相析出。
連續(xù)擠壓;Cu-Cr-Zr合金;晶粒取向;形變;析出相
Cu-Cr-Zr合金具有良好的導(dǎo)電和導(dǎo)熱性能及較高的強(qiáng)度,廣泛應(yīng)用于集成電路引線框架、電力機(jī)車接觸線等領(lǐng)域[1?2]。隨著現(xiàn)代工業(yè)的迅猛發(fā)展,對(duì)Cu-Cr- Zr合金的強(qiáng)度和導(dǎo)電性能提出了更高的要求。Cu-Cr- Zr系合金是1種析出強(qiáng)化型合金[3],通過向Cu中添加Cr,Zr元素以及固溶時(shí)效處理,可在基體中形成彌散分布的析出相,從而提高合金強(qiáng)度,但這些元素的添加增加了Cu基體的缺陷,加大了基體對(duì)電子的散射作用,導(dǎo)致合金的導(dǎo)電性能下降[4?5]。研究表明[6?7],通過大塑性變形可獲得超細(xì)晶粒,使合金具備更高強(qiáng)度的同時(shí)又有很好的導(dǎo)電性能。連續(xù)擠壓技術(shù)是1種大塑性變形加工方法,這項(xiàng)技術(shù)于1971年在英國提出[8],因其具有耗能少、易于連續(xù)化生產(chǎn)等優(yōu)點(diǎn),已廣泛應(yīng)用于鋁、銅等合金的工業(yè)生產(chǎn)[9?10]。然而,由于Cu-Cr-Zr合金在連續(xù)擠壓過程中的強(qiáng)化機(jī)制較復(fù)雜,既有晶粒細(xì)化,又產(chǎn)生析出相,目前在Cu-Cr-Zr合金的應(yīng)用很少[11]。本文作者通過對(duì)熱擠壓態(tài)的Cu- 0.71Cr-0.04Zr合金棒材進(jìn)行連續(xù)擠壓,研究連續(xù)擠壓對(duì)該合金組織與性能的影響,為今后連續(xù)擠壓技術(shù)在Cu-Cr-Zr合金上的應(yīng)用提供參考。
Cu-Cr-Zr合金鑄錠由康盛新材料公司提供,表1所列為Cu-Cr-Zr合金的化學(xué)成分。鑄錠經(jīng)銑面后進(jìn)行熱擠壓及在線淬火,得到直徑為22 mm的熱擠壓棒材,再在LJ400連續(xù)擠壓機(jī)上進(jìn)行擠壓,得到直徑仍為22 mm的連續(xù)擠壓棒材。連續(xù)擠壓時(shí)工模具預(yù)熱溫度為450~500 ℃,擠壓輪轉(zhuǎn)速為4 r/min。
在D60K電導(dǎo)儀上測量材料的電導(dǎo)率。采用MTS?810電液伺服材料試驗(yàn)機(jī)對(duì)Cu-Cr-Zr合金棒材進(jìn)行拉伸實(shí)驗(yàn),拉伸速率為2 mm/min,圓棒狀拉伸試樣的平行段長度為30 mm,原始標(biāo)距為25 mm,平行段直徑為8 mm。在FEI Quanta-200環(huán)境掃描電鏡下觀察拉伸斷口形貌。用D/Max 2500型X射線衍射儀對(duì)棒材的縱截面進(jìn)行物相分析,掃描速度為8 (°)/min。通過Tecnai G220透射電鏡觀察棒材縱截面的顯微組織,試樣采用雙噴電解減薄的方法制備,減薄溫度控制在?30 ℃左右,電解液是體積比為3:7的硝酸–甲醇溶液。
表1 Cu-Cr-Zr合金的化學(xué)成分
2.1 合金性能
圖1所示為Cu-Cr-Zr合金熱擠壓棒材及其連續(xù)擠壓后的應(yīng)力?應(yīng)變曲線,其力學(xué)與電學(xué)性能列于表2。由圖1可知,經(jīng)過連續(xù)擠壓后,合金強(qiáng)度大幅提高,而塑性顯著下降。熱擠壓態(tài)合金棒材的抗拉強(qiáng)度和屈服強(qiáng)度分別為228和117 MPa,伸長率為49.44%;連續(xù)擠壓后,抗拉強(qiáng)度和屈服強(qiáng)度分別提高124和179 MPa,伸長率下降到33.96%,降幅為25.26%,電導(dǎo)率為52.4%IACS,略有下降。
圖1 連續(xù)擠壓前后Cu-0.71Cr-0.04Zr合金的應(yīng)力–應(yīng)變曲線
表2 連續(xù)擠壓對(duì)Cu-0.71Cr-0.04Zr合金性能的影響
2.2 微觀組織
圖2所示為Cu-Cr-Zr合金棒材縱截面的TEM圖像。從圖2(a)可見熱擠壓態(tài)合金中粗大的晶粒之間夾雜少量平均晶粒尺寸為1μm左右的細(xì)小等軸晶,這表明熱擠壓過程中有動(dòng)態(tài)再結(jié)晶發(fā)生[1]。從圖2(b)可看出經(jīng)過連續(xù)擠壓后,粗大的晶粒消失,均勻分布著大量的細(xì)小晶粒,它們是具有一定方向性的亞晶和形變晶粒,平均晶粒尺寸在0.5~1 μm之間;在亞晶和形變晶粒之間夾雜少量等軸的再結(jié)晶晶粒(見圖2(b)箭頭所指處),再結(jié)晶晶粒的平均尺寸約200 nm。
圖3所示為連續(xù)擠壓態(tài)Cu-Cr-Zr合金再結(jié)晶晶粒的TEM圖像。由圖可見在連續(xù)擠壓過程中,合金中產(chǎn)生高密度纏結(jié)位錯(cuò)(見圖3(a)),它們首先發(fā)生集聚;隨應(yīng)變增加,為了使系統(tǒng)自由能降低,纏結(jié)的位錯(cuò)發(fā)生重組生成亞晶(見圖3(b)),合金晶粒得到細(xì)化;繼續(xù)形變,位錯(cuò)等缺陷進(jìn)一步增多,合金溫度升高[10, 12],亞晶界等小角度晶界通過吸收位錯(cuò)等方式長大成為大角度晶界(見圖3(c)),部分亞晶逐漸演變?yōu)榧?xì)小的等軸晶,這就是再結(jié)晶晶粒。這一研究結(jié)果與隋賢等[10?11]的研究結(jié)果相似。熱擠壓棒材經(jīng)過連續(xù)擠壓后,晶粒得到很大程度的細(xì)化,這在一定程度上可提高合金的力學(xué)性能。
圖2 連續(xù)擠壓前后Cu-0.71Cr-0.04Zr合金縱截面的TEM圖像
連續(xù)擠壓過程中型腔溫度可達(dá)550~600 ℃,比Cu-Cr-Zr合金的時(shí)效溫度高100 ℃左右[13?14],有利于產(chǎn)生析出相;同時(shí),連續(xù)擠壓使合金中產(chǎn)生大量的位錯(cuò)等缺陷,位錯(cuò)可作為析出相的擇優(yōu)形核處和快速析出通道,促進(jìn)析出相的析出[1]。圖4所示為Cu-0.71Cr- 0.04Zr合金的XRD譜。連續(xù)擠壓后仍然只有銅的衍射峰,未出現(xiàn)其它峰,這可能是由于連續(xù)擠壓過程十分短暫,Cr與Zr的析出量很少,XRD無法檢測到。由圖4可知,連續(xù)擠壓后合金的衍射峰發(fā)生明顯變化,連續(xù)擠壓前Cu的特征峰出現(xiàn)在(200)與(220)晶面上,(111),(311)和(222)晶面上的峰強(qiáng)接近于零;連續(xù)擠壓后,這5個(gè)晶面上的銅衍射峰強(qiáng)度均明顯提高,最大峰強(qiáng)出現(xiàn)在(111)晶面上。這表明連續(xù)擠壓改變了Cu-0.71Cr-0.04Zr合金的晶粒取向[15?16]。
圖3 連續(xù)擠壓態(tài)Cu-Cr-Zr合金的TEM圖像
圖4 連續(xù)擠壓前后合金縱截面的XRD譜
根據(jù)施密特因子的定義[17]可知,施密特因子越小,合金強(qiáng)度越高。施密特因子的計(jì)算公式如下:
式中:為施密特因子;和分別為施加的外力與滑移面法線、以及外力與滑移面的夾角。連續(xù)擠壓改變了Cu-Cr-Zr合金的晶粒取向,Cu-Cr-Zr合金縱截面上的大部分晶粒擇優(yōu)取向于(111)滑移面,導(dǎo)致施密特因子降低,從而使合金強(qiáng)度提高。
圖5所示為Cu-0.71Cr-0.04Zr合金連續(xù)擠壓前后析出相的TEM圖像。從圖5(a)可見連續(xù)擠壓前Cu-Cr-Zr合金的基體上分布著極少量的平均尺寸在5 nm左右的細(xì)小析出相;連續(xù)擠壓后,細(xì)小析出相明顯增多(見圖5(b)),均勻分布在基體、位錯(cuò)和晶界處,這與FENG等[11]的研究結(jié)果一致。據(jù)文獻(xiàn)[11, 13]可知,析出相可能是與基體共格的Cr,Cu4Zr等。本研究中,連續(xù)擠壓機(jī)擠壓型腔的溫度達(dá)到550~600 ℃,高于合金的時(shí)效溫度[13?14],有利于產(chǎn)生析出相,但由于擠壓時(shí)間十分短暫,使得析出相的尺寸較細(xì)小,與擠壓前的析出相尺寸相近。
彌散分布的細(xì)小析出相可阻礙位錯(cuò)的運(yùn)動(dòng)和再結(jié)晶的發(fā)生[11?12],有效提高合金強(qiáng)度,同時(shí)又會(huì)對(duì)電子產(chǎn)生散射,對(duì)導(dǎo)電性能產(chǎn)生不利影響[18]。而析出相的產(chǎn)生使基體固溶體貧化,材料的電導(dǎo)率增加。
圖5 合金連續(xù)擠壓前后析出相的TEM圖像
圖6所示為Cu-Cr-Zr合金連續(xù)擠壓前后的拉伸斷口形貌。從宏觀形貌可看出斷口均由灰色纖維區(qū)和剪切唇組成,是典型的韌性斷裂。連續(xù)擠壓前(見圖6(a))比連續(xù)擠壓后(見圖6(c))頸縮更嚴(yán)重,這表明連續(xù)擠壓前合金的塑性更好。從圖6(b)和(d)可見斷口均為等軸韌窩,這表明合金是在孔洞形核、長大、集聚后斷裂的[5, 16]。連續(xù)擠壓前斷口的韌窩很深,分布較均勻;連續(xù)擠壓后在粗大韌窩周圍存在很多細(xì)小韌窩,韌窩明顯較淺。
1) Cu-Cr-Zr合金熱擠壓棒材經(jīng)過連續(xù)擠壓后,抗拉強(qiáng)度和屈服強(qiáng)度分別提高124和179 MPa;電導(dǎo)率為52.4%IACS,略有下降;塑性明顯降低,伸長率降幅為25.26%。
圖6 連續(xù)擠壓前后Cu-0.71Cr-0.04Zr合金的拉伸斷口形貌
2) 連續(xù)擠壓改變了Cu-Cr-Zr合金棒材縱截面的晶粒取向。連續(xù)擠壓前,Cu在(111)晶面的衍射峰強(qiáng)度接近于零;連續(xù)擠壓后,Cu在(111)晶面的衍射峰強(qiáng)度最大。
3) 連續(xù)擠壓使合金得到亞微米級(jí)的細(xì)小晶粒,同時(shí)伴有細(xì)小的析出相析出,這使得合金的力學(xué)性能得到提高。
[1] DENG Jianqi, ZHANG Xiuqing, SHANG Shuzhen, et al. Effect of Zr addition on the microstructure and properties of Cu-10Cr in situ composites[J]. Materials and Design, 2009, 30(10): 4444?4449.
[2] 宋魯南, 劉嘉斌, 黃六一, 等. 強(qiáng)變形對(duì)Cu-Cr合金組織性能的影響[J]. 金屬學(xué)報(bào), 2012, 48(12): 1459?1466. SONG Lun’an, LIU Jiabin, HUANG Liuyi, et al. Effect of heavily drawing on the microstructure and properties of Cu-Cr alloy[J]. Acta Metallurgica Sinica 2012, 48(12): 1459?1466.
[3] XIA Chengdong, ZHANG Wan, KANG Zhanyuan, et al. High strength and high electrical conductivity Cu-Cr system alloys manufactured by hot rolling-quenching process and thermomechanical treatments[J]. Materials Science and Engineering: A, 2012, 538(2): 295?301.
[4] LIU Keming, LU Deping, ZHOU Haitou, et al. Influence of Ag microalloying on the microstructure and properties of Cu-7Cr in situ composite[J]. Journal of Alloys and Compounds, 2010, 500(2): L22?L25.
[5] YE Youxiong, YANG Xuyue, WANG Jun, et al. Enhanced strength and electrical conductivity of Cu-Zr-B alloy by double deformation–aging process[J]. Journal of Alloys and Compounds, 2014, 615(2): 249?254.
[6] YANG Guang, LI Zhou, YUAN Yuan, et al. Microstructure, mechanical properties and electrical conductivity of Cu-0.3Mg- 0.05Ce alloy processed by equal channel angular pressing and subsequent annealing[J]. Journal of Alloys and Compounds, 2015, 640(4): 347?354.
[7] LEON K V, MUNOZ-MORRIS M A, MORRIS D G. Optimisation of strength and ductility of Cu-Cr-Zr by combining severe plastic deformation and precipitation[J]. Materials Science and Engineering A, 2012, 536(2): 181?189.
[8] 鐘毅. 連續(xù)擠壓技術(shù)及其應(yīng)用[M]. 北京: 冶金工業(yè)出版社, 2004: 14?15. ZHONG Yi. Continuous Extrusion Technology and Its Application[M]. Beijing: Metallurgical Industry Press, 2004: 14?15.
[9] LU J, SSLUJA N, RIVIERE A L, et al. Computer modeling of the continuous forming extrusion process of AA6061 alloy[J]. Journal of Materials Processing Technology, 1998, 79(1/3): 200?212.
[10] 隋賢, 宋寶韜, 李冰, 等. H65黃銅合金連續(xù)擠壓過程中的組織和性能演變特征[J]. 中國有色金屬學(xué)報(bào), 2009, 19(6): 1049?1054. SUI Xian, SONG Baoyun, LI Bing, et al. Characteristic of microstructure and properties evolution of H65 brass alloy during continuous extrusion process[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(6): 1049?1054.
[11] FENG Hui, JIANG Haichang, YAN Desheng, et al. Effect of continuous extrusion on the microstructure and mechanical properties of a CuCrZr alloy[J]. Materials Science and Engineering A, 2013, 582(10): 219?224.
[12] 孫健, 劉平, 劉新寬, 等. Cu-Ni-Si合金連續(xù)擠壓過程中的組織演變及性能[J]. 中國有色金屬學(xué)報(bào), 2014, 24(4): 944?949. SUN Jian, LIU Ping, LIU Xinkuan, et al. Microstructure evolution and properties of Cu-Ni-Si alloy during continuous extrusion process[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(4): 944?949.
[13] SU Juanhua, DONG Qiming, LIU Ping, et al. Research on aging precipitation in a Cu-Cr-Zr-Mg alloy[J]. Materials Science and Engineering A, 2005, 392(1): 422?426.
[14] HOYT J J. On the coarsening of precipitates located on grain boundaries and dislocations[J]. Acta Metallurgica et Materialia, 1991, 39(9): 2091?2098.
[15] ZHANG Hui, YAN Qiqi, LI Luoxing. Microstructures and tensile properties of AZ31 magnesium alloy by continuous extrusion forming process[J]. Materials Science and Engineering A, 2008, 486(1): 295?299.
[16] KONG Xiangxin, ZHANG Hui, JI Xiankun. Microstructures and mechanical properties evolution of an Al-Fe-Cu alloy processed by repetitive continuous extrusion forming[J]. Materials Science and Engineering A, 2014, 612: 131?139.
[17] 胡庚祥, 蔡荀, 戎詠華, 等. 材料科學(xué)基礎(chǔ)[M]. 上海: 上海交通大學(xué)出版社, 2011: 200?202. HU Gengxiang, CAI Xun, RONG Yonghua, et al. Foundamentals of Materials Science[M]. Shanghai: Shanghai Jiao Tong University Press, 2011: 200?202.
[18] 鐘建偉, 周海濤, 趙仲凱, 等. 形變熱處理對(duì)Cu-Cr-Zr合金時(shí)效組織和性能的影響[J]. 中國有色金屬學(xué)報(bào), 2008, 18(6): 1032?1038. ZHONG Jianwei, ZHOU Haitao, ZHAO Zhongkai, et al. Effects of thermo-mechanical heat treatment processing on microstructure and properties of Cu-Cr-Zr alloy[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(6): 1032?1038.
(編輯 湯金芝)
Effects of conform on the microstructure and properties of Cu-Cr-Zr alloy
Lü Zhaodi1, SONG Lianpeng1, 2, WANG Kai1, ZHANG Long1
(1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;2. Key Laboratory of Nonferrous Metal Materials Science and Engineering,Ministry of Education, Changsha 410083, China)
Hot extrusion rods of Cu-0.71Cr-0.04Zr were subjected to conform in order to obtain conform rods with the same dimension. In this paper, scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM) were employed to observe and analyse the microstructure and phase composition, and the tensile strength and electrical conductivity were also tested. The effects of conform process on the microstructure and properties of Cu-Cr-Zr alloy were investigated. The results show that conform can obviously increase the tensile strength from 228 MPa to 352 MPa, but slightly decrease the electrical conductivity, which is 52.4%IACS. After conform the intensity of peak (111) was enhanced significantly and the bulky grains disappear, and the grains change to be subgrain and deformed grains whose mean size is 0.5~1 μm. A few recrystallized grains whose mean size is 200 nm appear. In the meantime, fine precipitations distribute in the matrix.
conform; Cu-Cr-Zr; crystal orientation; deformation; precipitation
TG146.1
A
1673?0224(2016)05?789?06
2015?06?10;
2015?10?12
宋練鵬,副教授,博士。電話:13873182916;E-mail: songlp@csu.edu.cn