羅云漢,吳 楓,曹軍驥,郭 曉
(1. 中國科學院地球環(huán)境研究所 中國科學院氣溶膠化學與物理重點實驗室,西安 710061;2. 中國科學院大學,北京 100049;3. 西安交通大學 全球環(huán)境變化研究院,西安710049;4. 海南熱帶海洋學院 理工學院,三亞 572022)
不同提取液中源區(qū)沙塵溶解性鐵價態(tài)組成特征
羅云漢1,2,吳 楓1,曹軍驥1,3,郭 曉1,4
(1. 中國科學院地球環(huán)境研究所 中國科學院氣溶膠化學與物理重點實驗室,西安 710061;2. 中國科學院大學,北京 100049;3. 西安交通大學 全球環(huán)境變化研究院,西安710049;4. 海南熱帶海洋學院 理工學院,三亞 572022)
利用pH 4.7醋酸銨溶液和pH 2硫酸溶液對四個沙塵總懸浮顆粒物(TSP)樣品進行溶解性鐵提取,分別模擬沙塵含鐵礦物在雨水和大氣酸作用下的溶解。結果顯示:在pH 4.7醋酸銨溶液中沙塵鐵的溶解性介于2.30%—5.74%,平均值為4.17%;在pH 2硫酸溶液中沙塵鐵的溶解性為4.72%—7.27%,平均值為6.13%。兩種溶液中溶解性鐵的價態(tài)組成存在明顯差異,在pH 4.7醋酸銨中,溶解性鐵主要以三價鐵(FeⅢ)形式存在,占全部溶解性鐵的76.7%—98.3%,二價鐵(FeⅡ)僅占溶解性鐵的1.7%—23.3%;在pH 2硫酸溶液中FeⅡ的相對比例明顯增加,占全部溶解性鐵的17.3%—50.0%。推測在酸作用下富含二價鐵的礦物(如碳酸鹽礦物)發(fā)生迅速溶解,改變了溶解性鐵的組成。忽視這一機制可能不利于準確理解沙塵鐵溶解性增強機理。
騰格里沙漠;二價鐵;三價鐵;含鐵礦物
沙塵攜帶的鐵是海洋,尤其是高氮低葉綠素(HNLC)區(qū)域,表面海水鐵的主要來源(Duce and Tindale,1991;Jickells et al,2005;Mahowald et al,2009)。沙塵鐵的輸送可以緩解這些區(qū)域生物可利用鐵的不足,促進海洋浮游生物的生長,提高海洋的初級生產(chǎn)力,進而影響海洋和大氣之間的CO2的交換,最終影響全球氣候變化(Martin and Fitzwater,1988;Martin et al,1994;Jickells et al,2005;高會旺等,2009;孫佩敬等,2009)。冰心記錄顯示在冰期-間冰期旋回中粉塵鐵通量與大氣CO2濃度呈明顯的負相關變化(Martin,1990;Shi et al,2012)。
沙塵鐵元素的生物可利用性或溶解性是理解和評價沙塵全球生物地球化學效應最大的不確定性因素之一,有關其溶解性增強機制一直是大氣化學研究領域的熱點問題。過去20年,關于沙塵鐵溶解性開展了很多研究,提出了多種鐵溶解性增強機制,如重力-粒徑分異作用(Baker and Jickells,2006)、大氣酸(有機酸、無機酸)作用(Desboeufs et al,1999;Kieber et al,2005;Luo and Gao,2010;Paris and Desboeufs,2013)、大氣光化學作用等(Zhu et al,1997;Chen and Siefert,2003;Fu et al,2010),但這些機制一方面并不能完全解釋沙塵鐵溶解性的巨大變異(0.1%—80%),另一方面尚缺乏統(tǒng)一的外場觀測證據(jù)的支持(Baker and Croot,2010)。
研究沙塵溶解性鐵的特征(溶解過程和價態(tài)特征)是認識鐵溶解性增強機制的重要手段。例如,Zhuang et al(1992)發(fā)現(xiàn)北太平洋上氣溶膠中的溶解性二價鐵顯著高于中國黃土或城市氣溶膠中的溶解性二價鐵,因而提出了沙塵氣溶膠鐵溶解性增強機制是光催化還原作用;Zhu et al(1997)對大西洋巴巴多斯島上沙塵氣溶膠研究發(fā)現(xiàn),溶解性鐵含量沒有呈現(xiàn)明顯的晝夜變化,但溶解性二價鐵含量有明顯的晝夜變化,因而認為沙塵鐵溶解性增強不是光催化還原的結果;Trapp et al(2010)對大西洋巴巴多斯島上氣溶膠研究發(fā)現(xiàn),氣溶膠鐵溶解性增加的同時溶解性二價鐵的比例也會相應增加,認為這可能與含二價鐵較高的生物質燃燒產(chǎn)生的氣溶膠有關。
為了理解不同大氣過程下沙塵鐵溶解性的差異,用pH 4.7醋酸銨溶液和pH 2硫酸溶液對在亞洲沙塵源區(qū)(騰格里沙漠)采集的四個沙塵樣品進行溶解性鐵提取,結果發(fā)現(xiàn)盡管排除了溶液中氧化還原反應和光化學反應的影響,兩種溶液中溶解性鐵的價態(tài)組成仍存在明顯差異。本文報道了這些結果,并討論了可能的原因及實驗結果對理解沙塵鐵溶解性增強機制的意義。
1.1 樣品采集
2015年4月,在內蒙古騰格里沙漠開展春季沙塵采樣工作。采樣站點位于騰格里沙漠東南緣一個自然村落(38°79′N,105°38′E;1235 m a.s.l.),該村落常住人口不足30人,阿拉善左旗縣城距離站點東邊約30 km。每年春季來自中國北部及西北部沙漠地區(qū)的沙塵頻繁經(jīng)過采樣地區(qū),然后被傳輸?shù)饺藶槲廴久芗狞S土高原、華北平原等地區(qū)(Fu et al,2014;李貴玲等,2014;Wang et al,2014;黃耀等,2015)。
采樣儀器為意大利Zambelli Easy Pluse1 恒流量顆粒物采樣器,儀器架設于村民民房屋頂,儀器進樣口距地面約4 m;采樣濾膜為酸洗過的直徑為47 mm的whatman 41纖維素濾膜,這種濾膜元素背景值低,對沙塵顆粒物采集效率可達99%以上(Zhu et al,1997;Trapp et al,2010);采樣流量固定為15 L·min-1,采樣時長根據(jù)天氣條件變化作相應的調整。利用便攜式粒子計數(shù)器(Lighthouse 3016)記錄采樣期間空氣顆粒物數(shù)濃度信息,同時利用便攜式氣象站(Kestrel NK4500)同步連續(xù)記錄采樣期間的氣象條件。采樣信息及采樣期間氣象記錄見表1。
此次觀測期間共采集四個沙塵樣品,其中2015-04-22的樣品采集于典型的局地揚沙天氣,采樣期間空氣中粗粒子(粒徑>1 μm)數(shù)濃度很高,是該地區(qū)正常天氣的5倍(正常天氣粗粒子數(shù)約1.5×105個/m3),風向為南風,最大風速約9.3 m·s-1;其余三個樣品均采集于沙塵天氣,采樣期間粗粒子數(shù)濃度均很高,是正常天氣的5—10倍,風向為北風或西北風,平均風速為3—9 m·s-1。
1.2 溶解性鐵與全鐵分析
選用pH 4.7醋酸銨溶液和pH 2硫酸溶液分別提取沙塵樣品中的溶解性鐵,這兩種溶液常分別用來模擬沙塵含鐵礦物在雨水和大氣酸作用下的溶解。在進行溶解性鐵提取之前,對提取溶液充分通入氮氣以去除溶液中的溶解氧(通氮氣約30 min)。溶解性鐵提取的具體操作為:裁剪1/4濾膜樣品,加入20 mL去氧提取溶液,隨后用鋁箔包裹樣品以避免光照,然后超聲1 h,脫色搖床再振蕩1 h,之后經(jīng)0.45 μm過濾器過濾提取溶液。
利用菲啰嗪-分光光度法測定提取溶液中溶解性鐵的含量及價態(tài)組成。該方法基本原理是:在pH 4—9條件下,F(xiàn)e2+與Ferrozine反應生成紫色絡合物,該絡合物在波長562 nm處有最大吸收。相對于其他溶解性鐵的分析方法而言,該方法不僅能夠測定總溶解性鐵的含量,而且能夠測定Fe3+(FeⅢ)和Fe2+(FeⅡ)各自的含量(Viollier et al,2000;Majestic et al,2006)。實驗使用的分析試劑均選用分析純級別,分光光度計使用紫外可見光分光光度計(Mapada UV6100S)并配備10 cm比色皿,該方法對溶解性鐵(FeS)的檢測限在5—10 nL·L-1。
表1 樣品信息及采樣期間氣象條件Tab.1 Sampling information and meteorology
采用中國科學院氣溶膠化學與物理重點實驗室X射線熒光光譜(Epsilon 5 ED-XRF)測定濾膜樣品的全鐵含量(FeT),鐵元素的儀器分析誤差小于10%(Cao et al,2008;Cheng et al,2010)。
表2總結了沙塵樣品在兩種提取溶液中的鐵溶解性(FeS/FeT)及價態(tài)組成。在醋酸銨溶液中沙塵鐵的溶解性介于2.30%—5.74%,平均值為4.17%,與前人類似的研究相比,本研究中沙塵鐵溶解性結果處于較高值水平。例如Baker et al(2006a)利用pH 4.7溶液提取非洲沙塵氣溶膠溶解性鐵,鐵溶解性在介于1.4%—4.1%,Desboeufs et al(2005)利用類似的提取方法獲得亞利桑那沙塵(ATZD)鐵溶解性為1.5%。沙塵鐵溶解性差異可能與沙塵的來源不同有關(Shi et al,2011)。
表2 pH 4.7醋酸銨溶液和pH 2硫酸溶液中鐵溶解性(單位:%)Tab.2 Fe solubility ( Unit: %) in the two extraction solutions
在稀硫酸溶液中沙塵鐵的溶解性明顯的增強,鐵溶解性介于4.72%—7.27%,平均值為6.13%,較醋酸銨溶液平均增加了近47%,這與前人的研究結果相當。如Fu et al(2012)利用pH 2硫酸溶液提取中國黃土中溶解性鐵,鐵溶解性約4.3%,Cwiertny et al(2008)利用pH 1的硫酸溶液提取中國黃土中溶解性鐵,鐵的溶解性約為7.5%;Spokes and Jickells(1995)利用pH 2—5.3硫酸溶液長時間提取非洲沙塵氣溶膠樣品,獲得非洲沙塵鐵溶解性平均為5.5%,Shi et al(2011)利用相同的方法提取非洲沙塵源區(qū)表土樣品,鐵溶解性平均為8.2%。
兩種提取溶液中溶解性鐵的價態(tài)組成存在明顯差異。在pH 4.7醋酸銨中,F(xiàn)eⅢ是溶解性鐵主要存在形式,占全部溶解性鐵的76.7%—98.3%,F(xiàn)eⅡ僅占溶解性鐵的1.7%—23.3%,這符合傳統(tǒng)的認識即在近環(huán)境中性條件下溶解性鐵主要以FeⅢ形式存在或來自鐵氧化物(主要含F(xiàn)eⅢ)的溶解。在pH 2硫酸溶液中FeⅡ和FeⅢ溶解性(FeⅡ/FeT和FeⅢ/FeT)都有所增強,其中FeⅡ溶解性增加的幅度更大,由pH 4.7醋酸銨溶液中的0.56%增加到pH 2硫酸溶液中的2.19%,平均增加了3倍;FeⅢ溶解性增加較小,由pH 4.7醋酸銨溶液中的3.60%增加到pH 2硫酸溶液中的3.94%,平均僅增加了9.4%。在硫酸溶液中溶解性FeⅡ占到全部溶解性鐵的17.3%—50.0%,平均值為35.7%,明顯高于醋酸銨溶液。FeⅡ與FeⅢ相對比例改變更為明顯(圖1),四個沙塵樣品FeⅡ/FeⅢ的值均在硫酸溶液中大幅度的增加,在pH 4.7醋酸銨溶液中FeⅡ/FeⅢ均值為0.14,而在pH 2硫酸溶液中FeⅡ/FeⅢ均值為0.63,F(xiàn)eⅡ與FeⅢ的相對比例平均增加了3.5倍。
圖1 pH 4.7醋酸銨溶液和pH 2硫酸溶液中溶解性鐵價態(tài)組成Fig.1 Fe2+/ Fe3+in the two extraction solutions
兩種溶液中鐵溶解性和溶解性鐵價態(tài)組成的差異表明溶液酸性的增強不僅會增加鐵的溶解性,也會顯著改變溶解性鐵的價態(tài)組成。含鐵礦物在酸介質中溶解的本質是溶液中H+與礦物晶體表面發(fā)生相互作用,這種相互作用會減弱晶體表面元素之間的化學鍵,破壞晶體表面的結構,使晶體表面的元素進入到溶液中,而溶液中H+濃度越高,這種相互作用就越強,晶體表面的元素就越容易進入到溶液中去(Desboeufs et al,1999)。這解釋了pH 2的硫酸溶液中鐵溶解性顯著高于pH 4.7醋酸銨溶液中鐵的溶解性的現(xiàn)象。
不同提取溶液中溶解性鐵價態(tài)組成變化的原因較為復雜,主要包括提取溶液中的氧化還原作用,如溶解氧,試劑本身的氧化還原性質(Cwiertny et al,2008),光催化還原作用(Zhu et al,1993;Fu et al,2010)以及含不同價態(tài)鐵的礦物的選擇性溶解(Cwiertny et al,2008)。本研究在進行溶解性鐵提取實驗時選擇的是醋酸銨和硫酸兩種提取試劑。在以往的研究中pH 4.7醋酸銨溶液經(jīng)常被用來模擬沙塵在雨水或云水中溶解(Desboeufs et al,2005;Baker et al,2006b),而硫酸溶液經(jīng)常被用來模擬沙塵在大氣酸作用下的溶解(Shi et al,2015),這兩種試劑本身不會與溶解性鐵發(fā)生氧化還原反應。此外,在進行溶解性鐵提取之前,對提取溶液進行充分通氮氣(約30 min)去氧。因而溶液中的氧化還原作用并不是造成兩種溶液中溶解性鐵價態(tài)組成巨大差異的原因。以往研究表明即使不去除溶液中溶解氧氣,F(xiàn)eⅡ標樣也可以在常規(guī)條件下(4℃)保存數(shù)天(Majestic et al,2006)。光照,尤其是紫外光輻射,會將溶液中的溶解性FeⅢ催化還原成FeⅡ,改變溶液中溶解性鐵的價態(tài)組成,這種作用的強弱與光的波長和強度以及溶液的pH都有關(Zuo and Zhan,2005;Zuo et al,2005)。本次研究在進行溶解性鐵實驗過程中,對所有樣品進行嚴格避光處理(鋁箔包裹),并在提取實驗完成后2小時內完成對樣品的溶解性鐵價態(tài)分析。數(shù)據(jù)質量控制實驗表明,利用提取溶液配制的100 nL·L-1的FeⅡ、FeⅢ標樣在常規(guī)實驗室條件下(光照、24℃)可以穩(wěn)定保存5—8 h。因而光催化還原作用也不是造成兩種溶液中溶解性鐵價態(tài)組成巨大差異的原因。
沙塵是地表巖石風化的產(chǎn)物,含鐵礦物包括鐵氧化物、含鐵硅鋁酸鹽、碳酸鹽礦物等由于礦物的成因不同,這些礦物中FeⅡ和FeⅢ含量存在著差異(Heron et al,1994)。其中鐵氧化物中主要含F(xiàn)eⅢ(Zhu et al,1993),硅鋁酸鹽礦物中既含F(xiàn)eⅡ又含F(xiàn)eⅢ(Cwiertny et al,2008),碳酸鹽礦物中主要含F(xiàn)eⅡ(Tessier et al,1979;Heron et al,1994)。這些含鐵礦物的溶解速率受溶液pH的控制,溶液酸性的增強會引起這些含鐵礦物溶解速率不同幅度的增加,這可能會導致不同提取溶液中溶解性鐵的價態(tài)組成存在差異(Chou et al,1989;K?hler et al,2003;Golubev et al,2009)。以往研究發(fā)現(xiàn)黑暗條件下利用強酸溶液(pH 1—3)提取沙塵樣品,溶液中有相當大比例(10%—40%)的二價鐵存在,認為這些溶解性FeⅡ主要來自含F(xiàn)eⅡ礦物的溶解(Cwiertny et al,2008)。亞洲沙塵形成于干旱-半干旱地區(qū),含有較高含量(約10%)的原生和次生碳酸鹽礦物如方解石、白云石等(Cao et al,2005;Wang et al,2005),這些碳酸鹽礦物在沉積過程中會混入微量的鐵元素,鐵元素主要以FeⅡ的形式賦存在這些礦物的晶格中(Tessier et al,1979;Heron et al,1994)。此外,這些碳酸鹽礦物溶解速率對溶液pH的變化較其他含鐵礦物更加敏感,溶液酸性的增強會引起其溶解速率發(fā)生大幅度的改變。例如,在pH 5溶液中白云石溶解速率約為10-11mol·cm-2·s-1,而在pH 2溶液中其溶解速率為10-8mol·cm-2·s-1,pH每降低1個單位其溶解性速率增加近1個數(shù)量級(Chou et al,1989);而鐵氧化物如赤鐵礦在pH 5溶液中溶解速率約為10-17mol·cm-2·s-1,在pH 2溶液中其溶解速率約為10-15—10-16mol·cm-2·s-1,pH降低2—3個單位其溶解性速率才能增加1個數(shù)量級(Meskhidze et al,2003)。因此推測在兩種提取溶液中溶解性鐵價態(tài)組成的巨大差異,是沙塵中含F(xiàn)eⅡ的碳酸鹽礦物在溶液酸性增強后發(fā)生快速溶解的結果。
利用pH 4.7醋酸銨溶液和pH 2硫酸溶液提取了亞洲沙塵源區(qū)沙塵TSP樣品溶解性鐵。研究發(fā)現(xiàn),pH 2硫酸溶液中鐵溶解性顯著高于pH 4.7醋酸銨溶液,說明酸性的增強可明顯增加沙塵鐵溶解性。兩種提取溶液中溶解性鐵的價態(tài)組成存在顯著的差異,在弱酸性或近環(huán)境中性(pH 4.7)溶液中,溶解性鐵主要以FeⅢ形式存在,溶解性FeⅡ僅占溶解性鐵的很小部分;在強酸性溶液中,F(xiàn)eⅡ含量大幅度增加。綜合分析后,推測在兩種提取溶液中溶解性鐵價態(tài)組成的巨大差異,是由于沙塵中含F(xiàn)eⅡ的礦物(如碳鹽酸)在溶液酸性增強后發(fā)生了快速的溶解。
沙塵在傳輸過程中,尤其是在大洋上傳輸過程中,往往會與人為污染氣團或海鹽氣溶膠發(fā)生強烈的混合,這些人為污染氣團中的酸性物質如H2SO4、SO2、HNO3、HCl等會與沙塵顆粒物發(fā)生反應,并在顆粒物表面形成酸性很強的吸濕層,例如Zhu et al(1997)利用化學模式估算出大西洋巴巴多斯島上沙塵顆粒物表面吸濕層的pH能低至1;與之類似,Meskhidze et al(2003)對中國黃海上采集的沙塵氣溶膠的研究發(fā)現(xiàn),這些沙塵顆粒物與人為污染氣團強烈混合,沙塵顆粒物表面吸濕層的pH在1左右。本研究的結果表明,在這種強酸性的吸濕層里,含二價鐵的礦物如碳酸鹽礦物會發(fā)生快速的溶解,即使不發(fā)生大氣光還原反應或不與含較多二價鐵的生物質燃燒產(chǎn)生的氣溶膠發(fā)生混合,沙塵氣溶膠溶解性二價鐵比例也會升高。這種酸作用導致的溶解性鐵價態(tài)組成的改變,在以后通過溶解性鐵價態(tài)組成的變化來理解鐵溶解性增強機制時是不應該被忽視的。
致謝:感謝海南熱帶海洋學院實習生郭冰橋幫助開展沙塵樣品的采樣工作。
高會旺, 祁建華, 石金輝, 等. 2009. 亞洲沙塵的遠距離輸送及對海洋生態(tài)系統(tǒng)的影響[J].地球科學進展, 24(1): 1 – 10. [Gao H W, Qi J H, Shi J H, et al. 2009. Lang-range transport of Asian dust and its effects on ocean ecosystem [J].Advances in Earth Science, 24(1): 1 – 10.]
黃 耀, 王格慧, 韓艷妮, 等. 2015. 沙塵暴期西安大氣顆粒物化學組成及吸濕性能小時變化特征[J].地球環(huán)境學報, 6(1): 44 – 53. [Huang Y, Wang G H, Han Y N, et al. 2015. Hourly characteristics of chemical composition and hygroscopic property of TSP in Xi'an during dust storm [J].Journal of Earth Environment, 6(1): 44 – 53.]
李貴玲, 周 敏, 陳長虹,等. 2014. 2011年春季沙塵天氣影響下上海大氣顆粒物及其化學組分的變化特征[J].
環(huán)境科學, 35(5): 1644 – 1653. [Li G L, Zhou M, Chen C H, et al. 2014. Characteristics of particulate matters and its chemical compositions during the dust episodes in Shanghai in spring, 2011 [J].Environment Science, 35(5):1644 – 1653.]
孫佩敬, 李瑞香, 徐宗軍, 等. 2009. 亞洲沙塵對三種海洋微藻生長的影響[J].海洋科學進展, 27(1): 59 – 65. [Sun P J, Li R X, Xu Z J, et al. 2009. Effects of Asian dust on the growth of three species of micro algae [J].Advances inMarine Science, 27(1): 59 – 65.]
Baker A R, Croot P L. 2010. Atmospheric and marine controls on aerosol iron solubility in seawater [J].Marine Chemistry, 120(1 / 2 / 3 / 4): 4 – 13.
Baker A R, French M, Linge K L. 2006a. Trends in aerosol nutrient solubility along a west-east transect of the Saharan dust plume [J].Geophysical Research Letters, 33(7),doi:10.1029/2005GL024764.
Baker A R, Jickells T D. 2006. Mineral particle size as a control on aerosol iron solubility [J].Geophysical Research Letters, 33(17),doi:10.1029/2006GL026557.
Baker A R, Jickells T D, Witt M, et al. 2006b. Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean [J].Marine Chemistry, 98(1): 43 – 58.
Cao J J, Chow J C, Watson J G, et al. 2008. Size-differentiated source profiles for fugitive dust in the Chinese Loess Plateau [J].Atmospheric Environment, 42(10): 2261 – 2275.
Cao J J, Lee S C, Zhang X Y, et al. 2005. Characterization of airborne carbonate over a site near Asian dust source regions during spring 2002 and its climatic and environmental significance [J].Journal of Geophysical Research-Atmospheres, 110(D3),doi:10.1029/2004JD005244.
Chen Y, Siefert R L. 2003. Determination of various types of labile atmospheric iron over remote oceans [J].Journal of Geophysical Research-Atmospheres, 108(D24),doi:10.1029/2003JD003515.
Cheng Y, Lee S C, Ho K F, et al. 2010. Chemically-speciated on-road PM2.5motor vehicle emission factors in Hong Kong [J].Science of the Total Environment, 408(7): 1621 – 1627.
Chou L, Garrels R M, Wollast R. 1989. Comparative-study of the kinetics and mechanisms of dissolution of carbonate minerals [J].Chemical Geology, 78(3 / 4): 269 – 282.
Cwiertny D M, Baltrusaitis J, Hunter G J, et al. 2008. Characterization and acid-mobilization study of ironcontaining mineral dust source materials [J].Journalof Geophysical Research-Atmospheres, 113(D5),doi:10.1029/2007JD009332.
Desboeufs K V, Losno R, Vimeux F, et al. 1999. The pH-dependent dissolution of wind-transported Saharan dust [J].Journal of Geophysical Research-Atmospheres, 104(D17): 21287 – 21299.
Desboeufs K V, So fi kitis A, Losno R, et al. 2005. Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter [J].Chemosphere, 58(2): 195 – 203.
Duce R A, Tindale N W. 1991. Atmospheric transport of iron and its deposition in the ocean [J].Limnology and Oceanography, 36(8): 1715 – 1726.
Fu H B, Cwiertny D M, Carmichael G R, et al. 2010. Photoreductive dissolution of Fe-containing mineral dust particles in acidic media [J].Journal of Geophysical Research-Atmospheres, 115(D11),doi:10.1029/2009JD012702.
Fu H B, Lin J, Shang G F, et al. 2012. Solubility of iron from combustion source particles in acidic media linked to iron speciation [J].Environmental Science & Technology, 46(20): 11119 – 11127.
Fu H B, Shang G F, Lin J, et al. 2014. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China [J].Science of the Total Environment, 481: 377 – 391.
Golubev S V, Bénézeth P, Schott J, et al. 2009. Siderite dissolution kinetics in acidic aqueous solutions from 25 to 100℃ and 0 to 50 atmpCO2[J].Chemical Geology, 265(1 / 2): 13 – 19.
Heron G, Crouzet C, Bourg A C M, et al. 1994. Speciation of Fe(Ⅱ) and Fe(Ⅲ) in contaminated aquifer sediments using chemical-extraction techniques [J].Environmental Science & Technology, 28(9): 1698 – 1705.
Jickells T D, An Z S, Andersen K K, et al. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate [J].Science, 308(5718): 67 – 71.
K?hler S J, Dufaud F, Oelkers E H. 2003. An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50℃ [J].Geochimica et Cosmochimica Acta, 67(19): 3583 – 3594.
Kieber R J, Skrabal S A, Smith B J, et al. 2005. Organic complexation of Fe(Ⅱ) and its impact on the redox cycling of iron in rain [J].Environmental Science &Technology, 39(6): 1576 – 1583.
Luo C, Gao Y. 2010. Aeolian iron mobilisation by dustacid interactions and their implications for soluble iron deposition to the ocean: A test involving potential anthropogenic organic acidic species [J].Environmental Chemistry, 7(2): 153 – 161.
Mahowald N M, Engelstaedter S, Luo C, et al. 2009. Atmospheric iron deposition: Global distribution, variability, and human perturbations [J].Annual Review ofMarine Science, 1: 245 – 278.
Majestic B J, Schauer J J, Shafer M M, et al. 2006. Development of a wet-chemical method for the speciation of iron in atmospheric aerosols [J].Environmental Science & Technology, 40(7): 2346 – 2351.
Martin J H. 1990. Glacial-interglacial CO2change: The iron hypothesis [J].Paleoceanography, 5(1): 1 – 13.
Martin J H, Coale K H, Johnson K S, et al. 1994. Testing the iron hypothesis in ecosystems of the equatorial pacificocean [J].Nature, 371(6493): 123 – 129.
Martin J H, Fitzwater S E. 1988. Iron-deficiency limits phytoplankton growth in the northeast paci fi c subarctic [J].Nature, 331(6154): 341 – 343.
Meskhidze N, Chameides W L, Nenes A, et al. 2003. Iron mobilization in mineral dust: Can anthropogenic SO2emissions affect ocean productivity? [J].Geophysical Research Letters, 30(21),doi:10.1029/2003GL018035.
Paris R, Desboeufs K V. 2013. Effect of atmospheric organic complexation on iron-bearing dust solubility [J].Atmospheric Chemistry and Physics, 13(9): 4895 – 4905.
Shi Z B, Krom M D, Bonneville S, et al. 2011. Influence of chemical weathering and aging of iron oxides on the potential iron solubility of Saharan dust during simulated atmospheric processing [J].Global Biogeochemical Cycles, 25(2),doi:10.1029/2010GB003837.
Shi Z B, Krom M D, Bonneville S, et al. 2015. Atmospheric processing outside clouds increases soluble iron in mineral dust [J].Environmental Science & Technology, 49(3): 1472 – 1477.
Shi Z B, Krom M D, Jickells T D, et al. 2012. Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: A review [J].Aeolian Research, 5: 21 – 42.
Spokes L J, Jickells T D. 1995. Factors controlling the solubility of aerosol trace metals in the atmosphere and on mixing into seawater [J].Aquatic Geochemistry, 1(4): 355 – 374.
Tessier A, Campbell P G C, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate tracemetals [J].Analytical Chemistry, 51(7): 844 – 851.
Trapp J M, Millero F J, Prospero J M. 2010. Trends in the solubility of iron in dust-dominated aerosols in the equatorial Atlantic trade winds: Importance of iron speciation and sources [J].Geochemistry Geophysics Geosystems, 11(3),doi:10.1029/2009GC002651.
Viollier E, Inglett P W, Hunter K, et al. 2000. The ferrozine method revisited: Fe(Ⅱ)/Fe(Ⅲ) determination in natural waters [J].Applied Geochemistry, 15(6): 785 – 790.
Wang G H, Cheng C L, Huang Y, et al. 2014. Evolution of aerosol chemistry in Xi'an, inland China, during the dust storm period of 2013: Part 1: Sources, chemical forms and formation mechanisms of nitrate and sulfate [J].Atmospheric Chemistry and Physics, 14(21): 11571 – 11585.
Wang Y, Zhang X, Arimoto R, et al. 2005. Characteristics of carbonate content and carbon and oxygen isotopic composition of northern China soil and dust aerosol and its application to tracing dust sources [J].Atmospheric Environment, 39(14): 2631 – 2642.
Zhu X R, Prospero J M, Millero F J. 1997. Diel variability of soluble Fe(Ⅱ) and soluble total Fe in North African dust in the trade winds at Barbados [J].Journal of Geophysical Research, 102(D17): 21297 – 21305.
Zhu X R, Prospero J M, Savoie D L, et al. 1993. Photoreduction of iron(Ⅲ) in marine mineral aerosol solutions [J].Journal of Geophysical Research-Atmospheres, 98(D5): 9039 – 9046.
Zhuang G S, Yi Z, Duce R A, et al. 1992. Link between iron and sulfur cycles suggested by detection of Fe(Ⅱ) in remote marine aerosols [J].Nature, 355(6360): 537 – 539.
Zuo Y, Zhan J. 2005. Effects of oxalate on Fe-catalyzed photooxidation of dissolved sulfur dioxide in atmospheric water [J].Atmospheric Environment, 39(1): 27 – 37.
Zuo Y G, Zhan J, Wu T X. 2005. Effects of monochromatic UVVisible light and sunlight on Fe(Ⅲ)-catalyzed oxidation of dissolved sulfur dioxide [J].Journal of Atmospheric Chemistry, 50(2): 195 – 210.
pH-dependent dissolved iron speciation of dust collected in dust source region
LUO Yunhan1,2, WU Feng1, CAO Junji1,3, GUO Xiao1,4
(1. Key Laboratory of Aerosol Chemistry and Physics (KLACP), Chinese Academy of Sciences, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China; 4. College of Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China)
Background, aim, and scopeAbout 30% of the world oceans like the Equatorial Pacific and the Southern Oceans are comprised of high-nutrient low-chlorophyll (HNLC) regions where phytoplankton growth is limited by bioavailable iron(Fe) supply. It is believed that increased bioavailable Fe supply to these regions will stimulate phytoplankton growth, leading to enhanced atmospheric CO2sequestration and nitrogen fi xation by the ocean, which can have profound impacts on climate. Mineral dust originated from the world semi-arid and arid regions is the dominant source of Fe to the remote oceans. Direct fi eld measurements reported Fe solubility of mineral dust ranging from less than 0.1% to as much as 80% with higher solubility values generally observed over remote parts of the oceans, implying that atmospheric processing can increase the Fe solubility during dust transport. To understand how atmospheric process will influence Fe dissolution behavior of mineral dust, Fesolubility and dissolved Fe speciation of mineral dust in typical atmospheric solutions were investigated.Materials and methodsIn April 2015, four dust Total Suspended Particle (TSP) samples were collected at the Tengger Desert, a well-known Asian dust source region. A quarter of the dust fi lter sample was extracted with ammonium acetate (pH 4.7) and sulfuric acid (pH 2) to simulate Fe dissolution in the rainwater and acidic aerosol water, respectively. Dissolved Fe and Fe2+in the extraction solution were measured colorimetrically using the Ferrozine method. Total Fe on the fi lter was determined with X-Ray Fluorescence.ResultsFe solubility was 4.17% (2.30%—5.74%) in the ammonium acetate and 6.13% (4.72%—7.27%) in the sulfuric acid. Large difference in soluble iron speciation was observed in the two solutions. In the ammonium acetate, Fe3+was the dominant species accounting for 76.7%—98.3% of the total dissolved iron and Fe2+only constituted a minor part (1.73%—23.3%). In the sulfuric acid, Fe2+was significantly mobilized and accounted for a much higher fraction of total dissolved iron (17.3%—50.0%) than that in the ammonium acetate.DiscussionThe results show that both Fe solubility and dissolved Fe speciation were strongly dependent on the pH of the extraction solution. Since mineral dissolution in the acidic solution is a proton-promoted process, it is reasonable that Fe solubility was significantly enhanced when the solution become more acidic. However, there exists many factors that may lead to a difference in dissolved Fe speciation in the two extraction solutions. These factors include (1) redox reaction between dissolved Fe and the extractant, (2) Photo-reduction of dissolved Fe, (3) Selective dissolution of Fe-bearing mineral in different extraction solution. On one hand, no redox reaction between dissolved Fe and ammonium acetate or between dissolved Fe and sulfuric acid is expected to occur in the extraction solution. On the other hand, all of the extraction experiments were conducted under dark condition. The only possible reason for the difference in dissolved Fe speciation in the two solutions lies in the selective dissolution of Fe-bearing minerals. Asian dust has a very high content of carbonate minerals and some Fe was trapped in the crystal lattice these carbonate minerals in the form of Fe2+. Moreover, dissolution rate of carbonate minerals is much more sensitive to pH than other Fe-bearing minerals. We proposed the large difference in soluble iron speciation was caused by fast dissolution of Fe2+-bearing minerals like carbonate when the pH of the extraction was lowered.ConclusionsWe found that both that Fe solubility and dissolved Fe speciation of mineral dust were strongly pH-dependent. Lowered pH of atmospheric solution not only leads to enhanced Fe solubility but also results in significant change in dissolved Fe speciation. This large change in the dissolved Fe speciation was possibly caused by fast dissolution of Fe2+-bearing minerals like carbonate under more acidic solution. When dust is transported in the atmosphere, the atmospheric solution around dust particle may become extremely acidic, leading to mobilization of Fe2+-bearing minerals as well as change in the dissolved Fe speciation. A lack of awareness of this pH-initiated change in dissolved Fe speciation may hamper an accurate understanding of factors that control dust iron solubility.Recommendations and perspectivesThis study reveals a new mechanism that may lead to a change in dissolved Fe speciation of mineral dust when dust is subject to atmospheric processing. This pH-initiated change in dissolved Fe speciation should not be ignored when we explain the factors that control dust iron solubility.
Tengger Desert; Fe2+; Fe3+; Fe-bearing minerals
LUO Yunhan, E-mail: luoyh@ieecas.cn
10.7515/JEE201602009
2015-12-21;錄用日期:2016-02-02
Received Date:2015-12-21;Accepted Date:2016-02-02
中國科學院戰(zhàn)略性先導科技專項(XDB05000000);國家自然科學基金項目(40872211)
Foundation Item:Strategic Priority Research Program of Chinese Academy of Sciences (XDB05000000); National Natural Science Foundation of China (40872211)
羅云漢,E-mail: luoyh@ieecas.cn