劉 妍,梁輝煌,劉玉蘭,唐中林,汪文俊,張 晶*
(1.武漢輕工大學(xué)動(dòng)物營(yíng)養(yǎng)與飼料科學(xué)湖北省重點(diǎn)實(shí)驗(yàn)室,武漢 430023;2.中南民族大學(xué)生命科學(xué)學(xué)院,武漢 430074;3.中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,北京 100193)
?
LPS通過(guò)AKT/FOXO1信號(hào)通路誘導(dǎo)C2C12肌管細(xì)胞MuRF1基因轉(zhuǎn)錄
劉妍1,2,梁輝煌1,劉玉蘭1,唐中林3,汪文俊2,張晶1*
(1.武漢輕工大學(xué)動(dòng)物營(yíng)養(yǎng)與飼料科學(xué)湖北省重點(diǎn)實(shí)驗(yàn)室,武漢 430023;2.中南民族大學(xué)生命科學(xué)學(xué)院,武漢 430074;3.中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,北京 100193)
摘要:以C2C12肌管細(xì)胞為試驗(yàn)材料,探討脂多糖(LPS)誘導(dǎo)的炎癥反應(yīng)對(duì)肌管蛋白降解相關(guān)基因及信號(hào)通路的影響。選取不同質(zhì)量濃度(10、100、1 000 ng·mL-1)的LPS分別刺激C2C12肌管細(xì)胞30 min和3 h,通過(guò)RT-qPCR 檢測(cè)炎癥因子TNF-α和IL-6的基因轉(zhuǎn)錄,確定LPS最佳刺激濃度以建立細(xì)胞炎癥模型。用最佳濃度LPS分別刺激C2C12肌管細(xì)胞0 min、30 min、1 h、3 h、6 h、12 h、24 h,RT-qPCR檢測(cè)MAFbx基因和MuRF基因在不同時(shí)間點(diǎn)的轉(zhuǎn)錄量變化。此外,1 000 ng·mL-1LPS刺激C2C12肌管細(xì)胞12 h后,Western blot檢測(cè)AKT/FOXO1、mTOR和P38信號(hào)通路相關(guān)蛋白質(zhì)的表達(dá)情況。結(jié)果表明:LPS刺激C2C12肌管細(xì)胞的最佳濃度為1 000 ng·mL-1,在作用30 min和3 h時(shí)均能顯著上調(diào)TNF-α、IL-6的基因轉(zhuǎn)錄,而在刺激12和24 h時(shí)MuRF1、IL-1β、IL-6和TLR4的基因轉(zhuǎn)錄顯著上調(diào)。此外,1 000 ng·mL-1LPS刺激C2C12肌管細(xì)胞12 h時(shí),僅AKT和FOXO1蛋白磷酸化水平明顯降低?;谝陨辖Y(jié)果,推測(cè)LPS通過(guò)調(diào)控AKT/FOXO1信號(hào)通路誘導(dǎo)C2C12肌管細(xì)胞MuRF1轉(zhuǎn)錄。
關(guān)鍵詞:脂多糖;C2C12肌管細(xì)胞;肌肉蛋白降解;MuRF1基因;MAFbx基因
骨骼肌作為機(jī)體內(nèi)主要的代謝活動(dòng)中心,是氨基酸和能量的最大儲(chǔ)備庫(kù)[1]。肌肉蛋白質(zhì)合成和降解之間的平衡是維持肌肉總量和功能的基礎(chǔ)。骨骼肌萎縮是肌肉蛋白質(zhì)合成減少和(或)分解代謝加快的結(jié)果,可發(fā)生于多種疾病狀態(tài)下,如嚴(yán)重感染、創(chuàng)傷、膿毒癥等[2]。
目前研究表明炎癥反應(yīng)在肌肉蛋白質(zhì)降解過(guò)程中扮演重要角色。脂多糖(LPS)是革蘭陰性菌細(xì)胞壁的主要成分,通過(guò)識(shí)別Toll樣受體4(TLR4)激活天然免疫系統(tǒng)[3-4]。R.A.Orellana等[5]利用LPS注射新生仔豬導(dǎo)致仔豬背最長(zhǎng)肌和腓腸肌中蛋白質(zhì)合成分別降低了11%和15%。此外,細(xì)胞水平的研究證實(shí)了LPS刺激C2C12肌管細(xì)胞導(dǎo)致細(xì)胞蛋白質(zhì)合成率顯著降低[6-7]。研究發(fā)現(xiàn),兩個(gè)E3泛素連接酶肌肉環(huán)狀指基因1 (MuRF1) 和肌肉萎縮盒F基因 (MAFbx) 是導(dǎo)致肌肉萎縮的關(guān)鍵因子。文獻(xiàn)報(bào)道,炎性細(xì)胞因子(TNF-α、IL-1、IL-6)可通過(guò)上調(diào)MAFbx和MuRF1的表達(dá)從而加快肌肉蛋白質(zhì)降解[7-9]。LPS也可通過(guò)激活P38 MAPK和NF-κB信號(hào)通路直接誘導(dǎo)MAFbx和MuRF1表達(dá)上調(diào)[10-11]。 相反,激活PI3K/AKT信號(hào)通路導(dǎo)致轉(zhuǎn)錄因子FOXOs磷酸化無(wú)法進(jìn)入細(xì)胞核,從而抑制MAFbx和MuRF1的表達(dá)[12]。此外,激活PI3K/AKT/mTOR途徑在促進(jìn)肌肉蛋白質(zhì)合成中起重要作用[13]。
炎癥介導(dǎo)的肌肉蛋白質(zhì)降解,其具體機(jī)制仍存有爭(zhēng)論。本試驗(yàn)以C2C12肌管細(xì)胞為材料,用不同質(zhì)量濃度梯度的LPS刺激建立細(xì)胞炎癥模型。利用RT-qPCR檢測(cè)LPS刺激C2C12肌管細(xì)胞0~24 h的MAFbx和MuRF1轉(zhuǎn)錄量;以及Western blot檢測(cè)LPS刺激12 h后AKT/FOXO1、mTOR和P38信號(hào)通路相關(guān)蛋白質(zhì)的磷酸化水平,從而研究LPS對(duì)MAFbx和MuRF1基因轉(zhuǎn)錄的影響及其調(diào)控機(jī)制,為進(jìn)一步闡明炎癥介導(dǎo)肌肉蛋白降解的具體機(jī)制奠定基礎(chǔ)。
1材料與方法
1.1試驗(yàn)材料、主要試劑及儀器
C2C12細(xì)胞(小鼠成肌細(xì)胞,華中農(nóng)業(yè)大學(xué)趙書(shū)紅教授惠贈(zèng));胎牛血清(Gibco);馬血清(Gibco);DMEM高糖培養(yǎng)基(Hyclone);胰酶(Gibco);LPS(026:B6脂多糖,Sigma);TRIzol試劑(Invitrogen);PrimeScript?RT reagent Kit With gDNA Eraser反轉(zhuǎn)錄試劑盒(TaKaRa);SYBR?Premix ExTaqTMRT-PCR試劑盒(TaKaRa);凱基全蛋白質(zhì)提取試劑盒KGP2100(購(gòu)自南京凱基生物發(fā)展有限公司);ECL試劑(Pierce)、FOXO1(Cell Signaling)、pFOXO1(Cell Signaling)、AKT(Cell Signaling)、pAKT(Cell Signaling)、HRP-Goat Anti-Mouse IgG(AntGene Biotech)、HRP-Goat Anti-Rabbit IgG(AntGene Biotech)。RT-PCR儀(7500 Real-time PCR System,ABI公司);Nanodrop2000超微量分光光度計(jì)(Thermo);電泳儀及電泳槽(BIO);紫外分光光度計(jì)。
1.2C2C12成肌細(xì)胞培養(yǎng)及誘導(dǎo)分化
小鼠 C2C12 細(xì)胞株常規(guī)復(fù)蘇后,用DMEM高糖培養(yǎng)基(含10%的胎牛血清,1%谷氨酰胺,1%雙抗),在體積分?jǐn)?shù)5% CO2,37 ℃的培養(yǎng)箱中培養(yǎng)。細(xì)胞傳至第2代時(shí),用含0.25%的胰酶消化約2 min,加入培養(yǎng)基終止消化,用吸管反復(fù)吹打制成C2C12 單細(xì)胞懸液,用DMEM高糖培養(yǎng)基調(diào)節(jié)細(xì)胞濃度為5×104·mL-1,接入6孔培養(yǎng)板。當(dāng)細(xì)胞增殖融合至 90%~100% 時(shí),更換為含2%馬血清的DMEM分化培養(yǎng)基繼續(xù)培養(yǎng)。每24 h換液,持續(xù)6天誘導(dǎo)分化為肌管細(xì)胞。
1.3細(xì)胞總RNA的提取
按照TRIzol試劑(Invitrogen)說(shuō)明書(shū)提取細(xì)胞總RNA,用Nanodrop2000檢測(cè)總RNA濃度和純度,并用1%的瓊脂糖凝膠對(duì)RNA進(jìn)行電泳檢測(cè),無(wú)明顯降解且A260 nm/A280 nm為1.8~2.1的RNA置于-80 ℃冷凍備用。
1.4RT-PCR檢測(cè)基因轉(zhuǎn)錄及分析
Real-time PCR引物(表1),以β-actin為內(nèi)參基因進(jìn)行Real-time PCR進(jìn)行檢測(cè)。按照TaKaRa公司提供的SYBR?Premix ExTaqTM試劑盒說(shuō)明書(shū),采用10 μL反應(yīng)體系,在冰上配制,體系包括:SYBR?Premix ExTaqTM(2×)5 μL,PCR Forward(Reverse)Primer(10 μmol·L-1)各0.2 μL,ROX Reference Dye(50×)0.2 μL,DNA模板1 μL,dH2O 3.4 μL;反應(yīng)條件為95 ℃預(yù)變性30 s,而后進(jìn)行40個(gè)循環(huán)(95 ℃ 5 s,60 ℃ 34 s)。mRNA相對(duì)轉(zhuǎn)錄量計(jì)算采用K.J.Livak等的2-ΔΔCt法[14]。采用SPSS17.0統(tǒng)計(jì)軟件進(jìn)行t檢驗(yàn),以P<0.05表示差異顯著,以P<0.01表示差異極顯著。
表1Real-time PCR
引物序列Table 1Information of primer sequences for Real-time PCR
1.5Western blot
待細(xì)胞培養(yǎng)至預(yù)定時(shí)間,棄培養(yǎng)基,冰上用PBS清洗細(xì)胞。然后用凱基全蛋白質(zhì)提取試劑盒KGP2100裂解細(xì)胞,離心(4 ℃,12 000 r·min-1×15 min),收集上清,采用考馬斯亮藍(lán)法測(cè)定蛋白質(zhì)濃度。加等體積凝膠上樣緩沖液混合,100 ℃加熱8 min使蛋白質(zhì)變性。制備好的蛋白質(zhì)樣品置4 ℃冰箱保存?zhèn)溆?。采用BIO-RAD的Mini-PROTEAN3電泳系統(tǒng)進(jìn)行常規(guī)SDS-PAGE電泳。電泳后,采用BIO-RAD的Mini Trans-Blot將樣品轉(zhuǎn)移至PVDF膜,將膜置于封閉液(5%脫脂乳的PBST)室溫封閉3 h,加一抗,4 ℃冰箱過(guò)夜。洗膜后將膜孵育在含二抗的PBST溶液中,室溫下孵育3 h,用ECL試劑進(jìn)行熒光顯色,于Alpha Innotech成像系統(tǒng)中檢測(cè)及分析條帶強(qiáng)度。
2結(jié)果
2.1LPS刺激C2C12肌管細(xì)胞最佳濃度的確定
利用q-PCR檢測(cè)不同質(zhì)量濃度(10、100和1 000 ng·mL-1)LPS刺激C2C12肌管細(xì)胞30 min和3 h時(shí),TLR4、TNF-α、Myd88和IL-6基因的轉(zhuǎn)錄情況。結(jié)果顯示,LPS質(zhì)量濃度為1 000 ng·mL-1時(shí),刺激C2C12肌管細(xì)胞30 min后顯著提高了細(xì)胞中TNF-α、Myd88和IL-6的mRNA轉(zhuǎn)錄量(P<0.05或P<0.01,圖1A);并且刺激C2C12肌管細(xì)胞3 h后極顯著提高了細(xì)胞中TNF-α和IL-6的mRNA轉(zhuǎn)錄量(P<0.01,圖1B)。因此,LPS刺激C2C12肌管細(xì)胞的最佳質(zhì)量濃度為1 000 ng·mL-1。
2.21 000 ng·mL-1LPS刺激C2C12肌管細(xì)胞對(duì)MAFbx和MuRF1基因轉(zhuǎn)錄的影響
利用RT-qPCR方法分析1 000 ng·mL-1LPS刺激C2C12肌管細(xì)胞不同時(shí)間點(diǎn)時(shí)(0 min、30 min、1 h、3 h、6 h、12 h和24 h)對(duì)TNF-α、IL-1β、IL-6、TLR4、MAFbx和MuRF1基因轉(zhuǎn)錄的影響。結(jié)果顯示,1 000 ng·mL-1的LPS刺激C2C12肌管細(xì)胞3 h時(shí)極顯著提高細(xì)胞中TNF-α和IL-6的mRNA轉(zhuǎn)錄(P<0.01,圖2),IL-1β和TLR4的mRNA轉(zhuǎn)錄量在刺激C2C12肌管細(xì)胞12 h后也出現(xiàn)顯著上調(diào)(P<0.05或P<0.01,圖2),說(shuō)明LPS刺激C2C12肌管細(xì)胞引起了細(xì)胞炎癥反應(yīng)。同時(shí),1 000 ng·mL-1的LPS刺激C2C12肌管細(xì)胞12 h后,MuRF1的mRNA轉(zhuǎn)錄量則出現(xiàn)極顯著上調(diào)(P<0.01,圖3),但MAFbxmRNA轉(zhuǎn)錄量無(wú)顯著性差異。
2.31 000 ng·mL-1LPS刺激C2C12肌管細(xì)胞對(duì)AKT/FOXO1、mTOR和P38信號(hào)通路的影響
本試驗(yàn)為了進(jìn)一步探究LPS刺激C2C12肌管細(xì)胞引起MuRF1上調(diào)的機(jī)制,采用Western blot方法檢測(cè)1 000 ng·mL-1LPS刺激C2C12肌管細(xì)胞12 h后對(duì)AKT/FOXO1、P38和mTOR信號(hào)通路相關(guān)蛋白磷酸化的影響。結(jié)果顯示,LPS刺激C2C12肌管細(xì)胞12 h后,AKT和FOXO1蛋白的磷酸化水平均顯著低于對(duì)照組(圖4A)。然而,P38蛋白和mTOR通路相關(guān)蛋白(mTOR、4E-BP1、p70S6K)磷酸化水平與對(duì)照組相比無(wú)明顯差異(圖4B和C)。
3討論
肌肉降解主要是肌肉蛋白質(zhì)含量的減少,主要涉及到泛素-蛋白酶體途徑、自噬溶酶體降解途徑,以及PI3K/AKT、P38/MAPK、NF-κB等多條信號(hào)通路。目前有研究表明,LPS可通過(guò)識(shí)別TLR4介導(dǎo)激活炎性細(xì)胞因子從而導(dǎo)致肌肉蛋白的降解。R.A.Frost等[6]用LPS與IFN-γ同時(shí)處理C2C12小鼠成肌細(xì)胞,導(dǎo)致細(xì)胞蛋白質(zhì)的合成率顯著降低了80%。而S.T.Russell等[7]的研究證實(shí)僅用LPS刺激C2C12肌管細(xì)胞可使蛋白質(zhì)合成率降低60%。同時(shí),A.Doyle等通過(guò)試驗(yàn)發(fā)現(xiàn)LPS刺激C2C12肌管細(xì)胞導(dǎo)致肌管直徑減小了20%并引起了結(jié)構(gòu)蛋白質(zhì)表達(dá)量明顯降低[15]。
本試驗(yàn)首先成功誘導(dǎo)C2C12成肌細(xì)胞分化為肌管細(xì)胞,之后用不同質(zhì)量濃度(10、100和1 000 ng·mL-1)的LPS刺激C2C12肌管細(xì)胞建立細(xì)胞炎癥模型。通過(guò)利用q-PCR檢測(cè)TLR4、TNF-α、Myd88和IL-6的基因轉(zhuǎn)錄量,確定LPS最佳刺激濃度為1 000 ng·mL-1。隨后,1 000 ng·mL-1的LPS刺激C2C12肌管細(xì)胞,TNF-α、IL-1、IL-6和MuRF1 mRNA轉(zhuǎn)錄均呈現(xiàn)極顯著上調(diào),提示LPS成功誘導(dǎo)細(xì)胞炎癥反應(yīng)并加快肌管細(xì)胞的蛋白質(zhì)降解。然而,MAFbxmRNA轉(zhuǎn)錄只有升高趨勢(shì),但沒(méi)有顯著性差異。Y.P.Li等[11]研究發(fā)現(xiàn)TNF-α通過(guò)激活P38 MAPK信號(hào)通路上調(diào)MAFbx基因表達(dá)。因此,作者進(jìn)一步檢測(cè)了LPS對(duì)P38蛋白磷酸化水平的影響,但未發(fā)現(xiàn)顯著性差異。這一結(jié)果表明MAFbx基因表達(dá)主要受P38 MAPK信號(hào)通路的調(diào)控。
PI3K/AKT信號(hào)通路在肌肉蛋白質(zhì)代謝過(guò)程中起重要作用,通過(guò)調(diào)控下游mTOR、p70S6K和4E結(jié)合蛋白1(4E-BP1)控制蛋白質(zhì)的合成[16]。同時(shí),在饑餓或缺乏生長(zhǎng)因子條件下,AKT失活會(huì)導(dǎo)致FOXO去磷酸化而被激活釋放,使其靶基因MAFbx和MuRF1上調(diào)表達(dá)從而促進(jìn)蛋白質(zhì)的降解[12,17]。為了進(jìn)一步探究LPS引起C2C12肌管細(xì)胞中MuRF1上調(diào)表達(dá)的機(jī)制,作者檢測(cè)了AKT/mTOR和AKT/FOXO1信號(hào)通路相關(guān)蛋白質(zhì)的變化。結(jié)果表明LPS刺激后mTOR、4E-BP1 和p70S6K蛋白磷酸化水平與對(duì)照組相比無(wú)明顯差異,提示LPS對(duì)PI3K/AKT/mTOR信號(hào)通路無(wú)影響。 但AKT和FOXO1磷酸化水平與對(duì)照組相比顯著降低。因此,推測(cè)在C2C12肌管細(xì)胞中LPS是通過(guò)直接抑制PI3K/AKT/FOXO1信號(hào)通路,導(dǎo)致FOXO去磷酸化激活釋放,引起其下游基因MuRF1的轉(zhuǎn)錄上調(diào),從而促進(jìn)了肌管蛋白的降解。與我們的前期研究結(jié)果相一致,仔豬注射LPS后AKT和FOXO1磷酸化水平均明顯降低,導(dǎo)致MAFbx和MuRF1表達(dá)上調(diào),從而促進(jìn)蛋白質(zhì)的降解[18]。此外,H.Crossland等[19]研究發(fā)現(xiàn)炎性細(xì)胞因子TNF-α、IL-6和IL-1β可以通過(guò)調(diào)節(jié)AKT/FOXO/泛素-蛋白酶體蛋白水解途徑,誘導(dǎo)肌肉蛋白質(zhì)降解。
綜上所述,本研究結(jié)果顯示LPS刺激C212肌管細(xì)胞顯著提高炎性細(xì)胞因子(TNF-α、IL-6和IL-1β)和MuRF1基因轉(zhuǎn)錄,同時(shí)LPS刺激C2C12肌管細(xì)胞12 h后AKT和FOXO1磷酸化水平明顯降低。因此,結(jié)合文獻(xiàn)與試驗(yàn)結(jié)果,推測(cè)LPS刺激C2C12肌管細(xì)胞導(dǎo)致大量炎性細(xì)胞因子(如TNF-α、IL-6和IL-1β)的產(chǎn)生,可通過(guò)抑制AKT/FOXO1信號(hào)通路,導(dǎo)致MuRF1轉(zhuǎn)錄上調(diào),從而促進(jìn)了肌管蛋白的降解。
4結(jié)論
在C2C12肌管細(xì)胞中進(jìn)行炎癥反應(yīng)對(duì)肌管蛋白降解基因MAFbx和MuRF1轉(zhuǎn)錄量的影響及其調(diào)控機(jī)制的研究,發(fā)現(xiàn)采用1 000 ng·mL-1的LPS刺激C2C12肌管細(xì)胞引起了炎性因子顯著上調(diào),且MuRF1基因的轉(zhuǎn)錄量極顯著上調(diào),同時(shí)LPS刺激C2C12肌管細(xì)胞12 h后,導(dǎo)致AKT和FOXO1蛋白的磷酸化水平轉(zhuǎn)錄量顯著降低。本研究的結(jié)果表明LPS刺激C2C12肌管細(xì)胞通過(guò)抑制AKT/FOXO1信號(hào)通路上調(diào)MuRF1表達(dá),從而加快蛋白質(zhì)的降解,為進(jìn)一步研究炎癥反應(yīng)介導(dǎo)肌肉蛋白質(zhì)降解的機(jī)制提供了有益參考。
參考文獻(xiàn)(References):
[1]LECKER S H,GOLDBERG A L,MITCH W E.Protein degradation by the ubiquitin-proteasome pathway in normal and disease states[J].JAmSocNephrol,2006,17(7):1807-1819.
[2]PALUS S,VON HAEHLING S,SPRINGER J.Muscle wasting:an overview of recent developments in basic research[J].IntJCardiol,2014,176(3):640-644.
[3]FRISARD M I,MCMILLAN R P,MARCHAND J,et al.Toll-like receptor 4 modulates skeletal muscle substrate metabolism[J].AmJPhysiolEndocrinolMetab,2010,298(5):988-998.
[4]FROST R A,LANG C H.Regulation of muscle growth by pathogen-associated molecules[J].JAnimSci,2008,86(14 Suppl):E84-E93.
[5]ORELLANA R A,O’CONNOR P M,NGUYEN H V,et al.Endotoxemia reduces skeletal muscle protein synthesis in neonates[J].AmJPhysiolEndocrinolMetab,2002,283(5):E909-E916.
[6]FROST R A,NYSTROM G J,LANG C H.Endotoxin and interferon-gamma inhibit translation in skeletal muscle cells by stimulating nitric oxide synthase activity[J].Shock,2009,32(4):416-426.
[7]RUSSELL S T,SIREN P M,SIREN M J,et al.Mechanism of attenuation of protein loss in murine C2C12 myotubes by D-myo-inositol 1,2,6-triphosphate[J].ExpCellRes,2010,316(2):286-295.
[8]PHILIPPOU A,MARIDAKI M,THEOS A,et al.Cytokines in muscle damage[J].AdvClinChem,2012,58:49-87.
[9]ZOICO E,ROUBENOFF R.The role of cytokines in regulating protein metabolism and muscle function[J].NutrRev,2002,60(2):39-51.
[10]MOYLAN J S,REID M B.Oxidative stress,chronic disease,and muscle wasting[J].MuscleNerve,2007,35(4):411-429.
[11]LI Y P,CHEN Y,JOHN J,et al.TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle[J].FASEBJ,2005,19(3):362-370.
[12]STITT T N,DRUJAN D,CLARKE B A,et al.The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors[J].MolCell,2004,14(3):395-403.
[13]DUAN C,REN H,GAO S.Insulin-like growth factors (IGFs),IGF receptors,and IGF-binding proteins:roles in skeletal muscle growth and differentiation[J].GenCompEndocrinol,2010,167(3):344-351.
[14]LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and 2-ΔΔCtmethod[J].Methods,2001,25(4):402-408.
[15]DOYLE A,ZHANG G,ABDEL FATTAH E A,et al.Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways[J].FASEBJ,2011,25(1):99-110.
[16]GLASS D J.Skeletal muscle hypertrophy and atrophy signaling pathways[J].IntJBiochemCellBiol,2005,37(10):1974-1984.
[17]SACHECK J M,OHTSUKA A,MCLARY S C,et al.IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases,atrogin-1 and MuRF1[J].AmJPhysiolEndocrinolMetab,2004,287(4):E591-E601.
[18]陳逢.魚(yú)油通過(guò)TLR4和NOD信號(hào)通路對(duì)脂多糖誘導(dǎo)的仔豬腸道、肝臟損傷和肌肉蛋白質(zhì)降解的調(diào)控作用[D].武漢:武漢輕工大學(xué),2013.
CHEN F.Regulative role of fish oil on intestinal and liver injury,and muscle protein degradation of piglets after lipopolysaccharide challenge through TLR4 and NOD signaling pathway[D].Wuhan:Wuhan Polytechnic University,2013.(in Chinese)
[19]CROSSLAND H,CONSTANTIN-TEODOSIU D,GARDINER S M,et al.A potential role for Akt/FOXO signalling in both protein loss and the impairment of muscle carbohydrate oxidation during sepsis in rodent skeletal muscle[J].JPhysiol,2008,586(Pt 22):5589-5600.
(編輯白永平)
LPS InducesMuRF1 Transcription through AKT/FOXO1 Mediating Pathway in C2C12 Myotubes
LIU Yan1,2,LIANG Hui-huang1,LIU Yu-lan1,TANG Zhong-lin3,WANG Wen-jun2,ZHANG Jing1*
(1.HubeiKeyLaboratoryofAnimalNutritionandFeedScience,WuhanPolytechnicUniversity,Wuhan430023,China;2.CollegeofLifeSciences,South-CentralUniversityforNationalities,Wuhan430074,China;3.InstituteofAnimalScience,ChineseAcademyofAgriculturalSciences,Beijing100193,China)
Key words:LPS;C2C12 myotubes;skeletal muscle protein degradation;MuRF1;MAFbx
Abstract:This study was designed to investigate the effects of the inflammatory induced by lipopolysaccharide (LPS) on the genes and pathways controlling the protein degradation in C2C12 myotubes.In order to establish an inflammatory cell mode,the C2C12 myotubes were treated with graded concentrations of LPS (10,100 and 1 000 ng·mL-1) for 30 min and 3 h,and then the mRNA transcription of TNF-α and IL-6 were determined by qPCR method.The results showed that 1 000 ng·mL-1LPS was the optimal concentration.After the C2C12 myotubes were treated with 1 000 ng·mL-1LPS for 0 min,30 min,1 h,3 h,6 h,12 h and 24 h,the mRNA transcription ofMAFbxandMuRF1 were determined by qPCR.And the activation of AKT/FOXO1,mTOR and p38MAPK signaling pathway was detected by western blot at 12 h after LPS treatment.The results showed that 1 000 ng·mL-1LPS significantly induced the mRNA transcription ofTNF-α andIL-6 at 30 min and 3 h.The transcription ofMuRF1,IL-1β,IL-6 andTLR4 were significantly up-regulated at 12 h and 24 h after LPS treatment.In addition,the phosphorylation of AKT and FOXO1 in C2C12 myotubes was significantly suppressed at 12 h after LPS treatment.Therefore,our results suggest that LPS can induceMuRF1 expression in C2C12 myotubes through the regulation of AKT/FOXO1 signaling pathway.
doi:10.11843/j.issn.0366-6964.2016.02.022
收稿日期:2015-07-13
基金項(xiàng)目:湖北省自然科學(xué)基金(2013CFA029;2015CFB514)
作者簡(jiǎn)介:劉妍(1990-),女,河南安陽(yáng)人,碩士生,主要從事動(dòng)物營(yíng)養(yǎng)與飼料科學(xué)研究,E-mail:sharonliuyan@126.com *通信作者:張晶,講師,E-mail:judyzhang1103@163.com
中圖分類(lèi)號(hào):S852.2
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0366-6964(2016)02-0374-07