亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        腫瘤干細(xì)胞的分子機(jī)制和調(diào)控通路

        2016-02-16 01:01:24涂艷陽(yáng)張永生第四軍醫(yī)大學(xué)唐都醫(yī)院實(shí)驗(yàn)外科唐都醫(yī)院唐都醫(yī)院腦外科陜西西安7008
        關(guān)鍵詞:干細(xì)胞標(biāo)志物分化

        涂艷陽(yáng),王 震,張永生,王 樑(第四軍醫(yī)大學(xué):唐都醫(yī)院實(shí)驗(yàn)外科,唐都醫(yī)院,唐都醫(yī)院腦外科,陜西西安7008)

        腫瘤干細(xì)胞的分子機(jī)制和調(diào)控通路

        涂艷陽(yáng)1,王 震1,張永生2,王 樑3(第四軍醫(yī)大學(xué):1唐都醫(yī)院實(shí)驗(yàn)外科,2唐都醫(yī)院,3唐都醫(yī)院腦外科,陜西西安710038)

        惡性腫瘤是人類健康和生命最嚴(yán)重的威脅之一,腫瘤治療仍然是今天人類面臨的一個(gè)大問(wèn)題.傳統(tǒng)的腫瘤治療方法包括手術(shù)、化療、放療等方法,但是很多腫瘤仍然會(huì)復(fù)發(fā),無(wú)法做到根治,最根本的原因是腫瘤轉(zhuǎn)移和復(fù)發(fā)的機(jī)制不清楚.近年來(lái),腫瘤細(xì)胞表面標(biāo)記、腫瘤細(xì)胞增殖和腫瘤發(fā)生能力的研究讓人們提出腫瘤干細(xì)胞(CSC)的理論.腫瘤干細(xì)胞屬于腫瘤細(xì)胞中一類具有無(wú)限自我更新能力和異質(zhì)免疫缺陷動(dòng)物致瘤能力的干細(xì)胞.腫瘤干細(xì)胞在腫瘤的發(fā)生、發(fā)展和轉(zhuǎn)移過(guò)程中扮演重要角色.腫瘤干細(xì)胞理論的提出為腫瘤治療提供了新思路.本文中,我們將總結(jié)腫瘤干細(xì)胞理論形成和發(fā)展的過(guò)程,討論腫瘤干細(xì)胞的生成,表面標(biāo)志物,自我更新和調(diào)控途徑.這些腫瘤干細(xì)胞的理論機(jī)制可能為未來(lái)惡性腫瘤靶向治療提供幫助.

        惡性腫瘤;干細(xì)胞;調(diào)控通路;靶向治療

        0 引言

        惡性腫瘤是當(dāng)今人類面臨的主要威脅之一.傳統(tǒng)的消除腫瘤細(xì)胞治療腫瘤的方法包括手術(shù)、化療、放療等.但惡性腫瘤的復(fù)發(fā)和轉(zhuǎn)移是腫瘤難治愈的主要原因之一,并且惡性腫瘤患者死亡率高,使得腫瘤治療成為人們面臨的最大挑戰(zhàn)之一.盡管腫瘤相關(guān)的生物學(xué)理論研究越來(lái)越深,生物學(xué)技術(shù)越來(lái)越進(jìn)步,但至今腫瘤發(fā)生發(fā)展、復(fù)發(fā)和轉(zhuǎn)移的根本原因還不清楚.因?yàn)槟[瘤細(xì)胞就像干細(xì)胞一樣具有自我更新和分化的能力,這導(dǎo)致研究人員提出了腫瘤干細(xì)胞理論.腫瘤干細(xì)胞理論認(rèn)為一部分腫瘤細(xì)胞具有干細(xì)胞的特性,具有自我更新和分化的能力,這是腫瘤干細(xì)胞的存在是腫瘤復(fù)發(fā)和轉(zhuǎn)移的主要原因.

        腫瘤干細(xì)胞樣的細(xì)胞也稱為腫瘤起源細(xì)胞,是腫瘤細(xì)胞中一類像正常干細(xì)胞一樣具有自我更新能力并能夠誘導(dǎo)腫瘤發(fā)生的細(xì)胞[1].腫瘤干細(xì)胞最先在白血病中被發(fā)現(xiàn).人們將急性髓細(xì)胞性白血病細(xì)胞(acute myelogenous leukemia,AML)移植到嚴(yán)格聯(lián)合免疫缺陷(severe cembined immunodeficient,SCID)老鼠身上.AML細(xì)胞根據(jù)細(xì)胞表面標(biāo)志物分選得到,注射到SCID小鼠體內(nèi)的白血病起始細(xì)胞能夠產(chǎn)生大量克隆狀的CD34+CD38-祖細(xì)胞,這種體內(nèi)模型很類似于AML祖細(xì)胞,并且定義了一種新的相比克隆形成細(xì)胞不太成熟的白血病起始細(xì)胞[2].從此之后,腫瘤干細(xì)胞在多種實(shí)體腫瘤中被發(fā)現(xiàn),如乳腺癌[3]、腦腫瘤[4]、結(jié)腸癌[5]、肺癌[6]和其他腫瘤組織[7].很多研究也報(bào)道了腦腫瘤干細(xì)胞的發(fā)現(xiàn)和鑒定過(guò)程[5,8-11].腫瘤干細(xì)胞被認(rèn)為是腫瘤化療和放療抵抗的主要原因,并且缺氧條件下可以誘導(dǎo)腫瘤血管生成和腫瘤發(fā)生[12-15].因此,在多種腫瘤中,腫瘤干細(xì)胞被視為潛在治療靶點(diǎn),但腫瘤干細(xì)胞干性維持的關(guān)鍵分子機(jī)制至今仍未明確.目前的研究成果表明腫瘤干細(xì)胞收到一些信號(hào)通路的調(diào)控,其他的調(diào)控方式還有microRNA,腫瘤微環(huán)境和許多其他多種因素.

        1 腫瘤干細(xì)胞分子標(biāo)志物

        幾乎所有類型的腫瘤干細(xì)胞都有自己的特定的表面標(biāo)志物.根據(jù)特定的腫瘤干細(xì)胞的表面標(biāo)志物可以對(duì)特定類型的腫瘤進(jìn)行精準(zhǔn)治療.很長(zhǎng)一段時(shí)間,許多研究人員都致力于尋找腫瘤干細(xì)胞的表面標(biāo)志物.腫瘤干細(xì)胞表面標(biāo)志物的研究最開(kāi)始是在血液瘤中進(jìn)行的.Lapido等人首次報(bào)道了CD34+CD38-表型的急性髓系白血病(AML)細(xì)胞[2].分離得到的CD34+CD38-表型的細(xì)胞可以在小鼠體內(nèi)誘發(fā)類似于人類的白血病的,但是CD34CD38+表型的細(xì)胞就沒(méi)有這種致腫瘤能力.另外CD96+也是急性髓系白血病AML干細(xì)胞的特異性標(biāo)記,因?yàn)樵贑D96+細(xì)胞內(nèi)發(fā)現(xiàn)了人類CD45+細(xì)胞,而CD96-細(xì)胞內(nèi)則沒(méi)有[16].其他的干細(xì)胞標(biāo)志物還包括,CD133+和nestin被證實(shí)是腦腫瘤干細(xì)胞特異性標(biāo)記[17],而CD44+被驗(yàn)證為胃癌干細(xì)胞標(biāo)記.CD44、CD133 CD166和EpCAM被證實(shí)是結(jié)腸癌腫瘤干細(xì)胞表面標(biāo)志物[18].報(bào)告Lin-ESZ+CD44+CD24-/low和ALDH1+是乳腺癌干細(xì)胞表面標(biāo)記[19].周等認(rèn)為CD133+喉腫瘤干細(xì)胞的標(biāo)志之一,而最新研究表明ALDH1也是特定的頭部和頸部腫瘤干細(xì)胞的標(biāo)志物[20-21].ABCG2、ALDH1、MCM2、SCA-1和p63已經(jīng)被證實(shí)是視網(wǎng)膜母細(xì)胞瘤細(xì)胞的干細(xì)胞表面標(biāo)記物[22-23].Levina等用化療藥物處理后,發(fā)現(xiàn)高表達(dá)CD133、CD117和OCT4的肺癌細(xì)胞能存活下來(lái),這些分子被認(rèn)為是肺癌干細(xì)胞標(biāo)志物[24].此外,CD44、CD24、ESA和CD133+可以用于標(biāo)記胰腺癌干細(xì)胞[25-26].CD44+/CD133+/α-2β1hi是前列腺癌干細(xì)胞表面標(biāo)記,CD133、CD90用于標(biāo)記肝癌干細(xì)胞[27-28].其他腫瘤干細(xì)胞標(biāo)志物如表1所示.

        表1 不同類型腫瘤及其干細(xì)胞標(biāo)志物列表

        2 腫瘤干細(xì)胞的調(diào)控機(jī)制

        目前為止,腫瘤干細(xì)胞的分子調(diào)控機(jī)制尚不完全清楚.如今關(guān)于腫瘤干細(xì)胞調(diào)控機(jī)制的研究主要集中在信號(hào)通路調(diào)控、轉(zhuǎn)錄因子表達(dá)異常、腫瘤微環(huán)境和microRNA和其他表觀遺傳調(diào)控方面.

        2.1 信號(hào)通路調(diào)節(jié)異常

        2.1.1 Wnt通路 Wnt信號(hào)通路負(fù)責(zé)調(diào)控脊椎動(dòng)物和無(wú)脊椎動(dòng)物的胚胎發(fā)育,視網(wǎng)膜干細(xì)胞、腸道、乳腺

        癌、胚胎干細(xì)胞和其他各種干細(xì)胞的自我更新都非常重要[29-33].Wnt/β-catenin信號(hào)通路對(duì)正常干細(xì)胞的增殖和分化也非常重要[34-35].近年來(lái)在結(jié)腸直腸癌、肝癌、胰腺癌、子宮內(nèi)膜癌、卵巢癌、甲狀腺癌、前列腺癌、腎腫瘤和一些其他類型的腫瘤中均發(fā)現(xiàn)wnt信號(hào)通路是突變或激活的狀態(tài),表明wnt信號(hào)通路在腫瘤發(fā)生過(guò)程中起到調(diào)控的作用.同時(shí)一些研究也證實(shí)了wnt通路中的分子在腫瘤干細(xì)胞中的重要作用.例如wnt-1和β-catenin老鼠4T1乳腺癌細(xì)胞系和NXS2神經(jīng)母細(xì)胞瘤細(xì)胞系中高表達(dá)[36-37].wnt信號(hào)的過(guò)度激活導(dǎo)致干細(xì)胞過(guò)度增殖,進(jìn)而轉(zhuǎn)化成腫瘤干細(xì)胞.但wnt信號(hào)在分化細(xì)胞中沒(méi)有功能.原因可能是高表達(dá)分化細(xì)胞中含有wnt信號(hào)抑制分子,抑制wnt信號(hào)通路分子的活性,導(dǎo)致下游分子β-catenin不能激活[38].這些研究表明wnt信號(hào)通路中腫瘤干細(xì)胞的發(fā)生和命運(yùn)都至關(guān)重要.

        2.1.2 Notch通路 Notch信號(hào)通路主要調(diào)控正常干細(xì)胞的增殖、分化、細(xì)胞凋亡和細(xì)胞間通訊.Notch信號(hào)通路在果蠅的遺傳研究中首次被發(fā)現(xiàn),因?yàn)橐恍㎞otch的等位基因的誘導(dǎo)產(chǎn)生切口翅膀而得名(notched wings).Notch信號(hào)通路對(duì)脊椎動(dòng)物和無(wú)脊椎動(dòng)物的細(xì)胞增殖、細(xì)胞凋亡、神經(jīng)系統(tǒng)發(fā)育和器官的形成都非常重要.此外,Notch通路在腫瘤發(fā)生過(guò)程中也很關(guān)鍵.一些Notch信號(hào)通路分子在正常干細(xì)胞中高表達(dá)[39-40],說(shuō)明Notch信號(hào)通路與干細(xì)胞的自我更新密切相關(guān).研究表明,Notch信號(hào)通路的激活會(huì)促進(jìn)促進(jìn)神經(jīng)干細(xì)胞、腦垂體干細(xì)胞和乳腺癌干細(xì)胞的增殖[39-41],同時(shí)能促進(jìn)乳腺癌微球的形成[42].然而也有研究表明Notch信號(hào)可以防止干細(xì)胞的過(guò)度增殖導(dǎo)致的干細(xì)胞惡性增加[43-44].研究表明,的MCF-7乳腺癌細(xì)胞系中notch1高表達(dá).然而過(guò)表達(dá)Notch2細(xì)胞內(nèi)結(jié)構(gòu)域(NICD2)會(huì)導(dǎo)致測(cè)亞群增加.抑制Notch信號(hào)能增加腫瘤干細(xì)胞的凋亡率,但分化細(xì)胞不受影響.動(dòng)物實(shí)驗(yàn)表明,抑制Notch信號(hào)能降低細(xì)胞的致瘤能力[45].Notch信號(hào)能夠促進(jìn)一些惡性腫瘤的轉(zhuǎn)移,另一方面Notch信號(hào)在其他腫瘤組織又能抑制其轉(zhuǎn)移[46-48],說(shuō)明Notch信號(hào)通路對(duì)腫瘤干細(xì)胞的調(diào)控具有組織特異性,其分子機(jī)制需要進(jìn)一步研究.

        2.1.3 Hedgehog通路 Hedgehog基因編碼的分泌蛋白Hh主要調(diào)控細(xì)胞增殖、分化和形態(tài)學(xué)自分泌或旁分泌的方式.已知的Hedgehog通路分子包括Desert、Indian和Sonic.Sonic Hedgehog信號(hào)分子Gli能夠通過(guò)Bmi1抑制p14和p16,進(jìn)而保護(hù)cyclinD/CDK4并抑制p53.Hedgehog信號(hào)在乳腺癌、胰腺癌、前列腺癌等腫瘤組織中異常表達(dá)[49].Hedgehog信號(hào)是一個(gè)比較經(jīng)典的干細(xì)胞調(diào)控途徑,Hedgehog信號(hào)通路參與果蠅卵巢干細(xì)胞、原始造血干細(xì)胞、腸道祖細(xì)胞和乳腺干細(xì)胞等干細(xì)胞的調(diào)控.此外,Hedgehog信號(hào)對(duì)各種干細(xì)胞的自我更新也非常重要.Shh受體的激活能夠促進(jìn)人類表皮干細(xì)胞的增殖,而Shh抑制劑能夠抑制干細(xì)胞增殖[50].在神經(jīng)系統(tǒng)中,敲除Shh能夠引起神經(jīng)微球損傷[51],而組成性激活Shh和c-myc能夠促進(jìn)神經(jīng)祖細(xì)胞的增殖,進(jìn)而導(dǎo)致成神經(jīng)管細(xì)胞瘤的形成[52].因此,Hedgehog信號(hào)通路對(duì)腫瘤干細(xì)胞的調(diào)控十分重要.

        2.2 轉(zhuǎn)錄因子表達(dá)異常轉(zhuǎn)錄因子的異常表達(dá)對(duì)腫瘤干細(xì)胞增殖和自我更新至關(guān)重要,許多轉(zhuǎn)錄因子與腫瘤干細(xì)胞的形成和維持密切相關(guān).轉(zhuǎn)錄因子SOX2、c-myc、Klf4、Oct4和Lin28的表達(dá)水平都被證明與腫瘤干細(xì)胞的自我更新和多向分化能力相關(guān).研究發(fā)現(xiàn)這些轉(zhuǎn)錄因子在許多人類腫瘤組織中高表達(dá),其表達(dá)水平與腫瘤的發(fā)展及預(yù)后密切相關(guān)[53].肺癌干細(xì)胞的自我更新和上皮間充質(zhì)轉(zhuǎn)變(EMT)被證明與Oct4和Nanog的異常表達(dá)有關(guān)[54].轉(zhuǎn)錄因子Twist和Zeb也參與乳腺癌上皮間充質(zhì)轉(zhuǎn)變(EMT)過(guò)程,導(dǎo)致腫瘤細(xì)胞具有干細(xì)胞的特性[55].轉(zhuǎn)錄因子對(duì)腫瘤干細(xì)胞的調(diào)控不是獨(dú)立的,而是多種轉(zhuǎn)錄因子的異常表達(dá)共同調(diào)控相關(guān)腫瘤干細(xì)胞的維持.

        2.3 MicroRNAmicroRNA通常在轉(zhuǎn)錄后水平上調(diào)節(jié)基因的表達(dá).microRNA對(duì)細(xì)胞的增殖、分化、發(fā)育、衰老和凋亡都非常重要,而且microRNA在腫瘤形成、生長(zhǎng)、分化和發(fā)展過(guò)程中都扮演重要的調(diào)控角色[56-58].同一種MicroRNA可以調(diào)控多個(gè)基因,同時(shí)多種microRNA也可以共同調(diào)控同一種基因,microRNA通過(guò)排列和組合可以對(duì)基因表達(dá)實(shí)現(xiàn)精確調(diào)控[59-60].研究表明,EMT相關(guān)的轉(zhuǎn)錄因子像Twist1、Snail1、Zeb1、microRNA和Zeb2都可以被microRNA調(diào)控,所以microRNA是EMT過(guò)程的重要參與因素[61].例如,microRNA中的mir-200家族[62-65]像mir-200a/b/c、mir-141和mir-200家族的其他成員通過(guò)抑制Zeb1的表達(dá)調(diào)控EMT過(guò)程,這種調(diào)控使得細(xì)胞維持上皮樣表型并減少EMT的發(fā)生[63].其他很多microRNA也參與調(diào)控EMT,例如過(guò)表達(dá)miR-29b可以逆轉(zhuǎn)EMT過(guò)程,抑制細(xì)胞侵入性表型的出現(xiàn)[66].MiR-30可以調(diào)控Snail1的表達(dá)水平抑制TGF-β的表達(dá)進(jìn)而誘導(dǎo)EMT的發(fā)生[67].mir-661和mir-491-5p則通過(guò)減弱細(xì)胞連接抑制EMT的發(fā)生[68-69].因此microRNA對(duì)于腫瘤中的EMT過(guò)程至關(guān)重要.

        在干細(xì)胞方面,microRNA很早就被已經(jīng)被證實(shí)參與調(diào)控胚胎干細(xì)胞、成體干細(xì)胞和腫瘤干細(xì)胞.microRNA對(duì)正常胚胎干細(xì)胞自我更新和細(xì)胞分化能力有很重要的調(diào)控作用[70].mir-290簇可以調(diào)控干細(xì)胞的細(xì)胞周期,包括mir-291-3p、mir-294和mir-295能增強(qiáng)KLF4、OCT4、SOX2的表達(dá)并誘導(dǎo)細(xì)胞多能效率[71].研究表明mir-145在自我更新的胚胎干細(xì)胞中低表達(dá),而在分化細(xì)胞中高表達(dá).mir-145與它的靶基因包括OCT4、SOX2和KLF4共同抑制人類胚胎干細(xì)胞并誘導(dǎo)分化[72].研究還表明,過(guò)表達(dá)let-7抑制小鼠體內(nèi)腫瘤的形成和轉(zhuǎn)移[73].這些發(fā)現(xiàn)表明,microRNA對(duì)干腫瘤干細(xì)胞的維持和細(xì)胞分化的調(diào)控至關(guān)重要,研究microRNA腫瘤干細(xì)胞理論的完善很有意義.

        2.4 表觀遺傳調(diào)控MicroRNA屬于表觀遺傳調(diào)控的方式之一,除此之外,表觀遺傳的調(diào)控的分子機(jī)制還包括DNA甲基化與去甲基化、組蛋白修飾和染色質(zhì)重塑[74-76].腫瘤干細(xì)胞可能起源于正常干細(xì)胞/祖細(xì)胞,也可能來(lái)自分化細(xì)胞的重編程.表觀遺傳學(xué)在體細(xì)胞重編程過(guò)程中扮演重要角色,預(yù)示著其在干細(xì)胞形成發(fā)展中的重要地位[77-79].腫瘤干細(xì)胞中常常出現(xiàn)信號(hào)轉(zhuǎn)導(dǎo)通路異常和轉(zhuǎn)錄因子的表達(dá)異常引起的表觀遺傳變化,這些表觀遺傳變化進(jìn)而導(dǎo)致一系列的基因變化.Pellacani發(fā)現(xiàn)CD133陽(yáng)性的前列腺癌腫瘤干細(xì)胞受到濃縮染色質(zhì)的動(dòng)態(tài)調(diào)控[80].DNA甲基化劑5-Aza-Dc和組蛋白乙酰化抑制劑SAHA可以通過(guò)miR-34抑制胰腺癌干細(xì)胞的Notch信號(hào)通路,降低胰腺癌腫瘤細(xì)胞的自我更新和增殖能力,降低EMT和侵襲能力[81].表觀遺傳學(xué)的機(jī)制和方法已被應(yīng)用于腫瘤的預(yù)防、診斷和治療中.甲基化特異性PCR被應(yīng)用于患者的體液和活細(xì)胞甲基化表達(dá)的檢測(cè),將成為腫瘤診斷的有力工具.如果能進(jìn)一步明確腫瘤干細(xì)胞表觀遺傳學(xué)的調(diào)控機(jī)制及其在腫瘤發(fā)生及發(fā)展中的作用,將為未來(lái)的腫瘤治療提供有益參考.

        2.5 腫瘤干細(xì)胞微環(huán)境腫瘤干細(xì)胞微環(huán)境對(duì)腫瘤發(fā)生、侵襲及轉(zhuǎn)移過(guò)程都有很重要的意義.腫瘤干細(xì)胞微環(huán)境主要包括細(xì)胞因子、間充質(zhì)細(xì)胞、免疫細(xì)胞、血管和細(xì)胞外基質(zhì)等.不同的腫瘤干細(xì)胞微環(huán)境特征主要包括缺氧、鄰血管、炎癥反應(yīng)和上皮間充質(zhì)轉(zhuǎn)變等.這些微環(huán)境之間相互關(guān)聯(lián),共同調(diào)控相關(guān)的腫瘤干細(xì)胞[82].

        腫瘤干細(xì)胞微環(huán)境的特征之一就是缺氧狀態(tài).研究表明,腫瘤干細(xì)胞的適應(yīng)性反應(yīng)是受低氧誘導(dǎo)因子(HIF)的調(diào)控,Oct4、c-myc和Notch都是低氧誘導(dǎo)因子(HIF)的直接或間接的靶標(biāo).此外,低氧誘導(dǎo)因子還調(diào)節(jié)腫瘤干細(xì)胞表型的形成過(guò)程[83].調(diào)節(jié)干細(xì)胞的氧化應(yīng)激微環(huán)境被證明對(duì)慢性粒細(xì)胞性白血病具有一定的治療效果[84].鄰血管在位置和功能上都與腫瘤干細(xì)胞密切相關(guān)[53].鄰血管微環(huán)境的很多特征都可以調(diào)控腫瘤干細(xì)胞并產(chǎn)生抗腫瘤功能,例如抑制腫瘤血管生成,破壞腫瘤血管,抑制一氧化氮分子作用和改變腫瘤干細(xì)胞鄰近血管微環(huán)境等[53],這些因素表明鄰近血管微環(huán)境是腫瘤干細(xì)胞的重要調(diào)控方式[85].炎性反應(yīng)腫瘤干細(xì)胞微環(huán)境包括各種各樣的間充質(zhì)細(xì)胞和免疫細(xì)胞分泌的炎癥因子的,如IL-6、IL-8、TNF-α、和MFG等.這些炎癥因子可以通過(guò)激活NFκB、Stat3、Hedgehog和Notch信號(hào)通路的方式調(diào)控腫瘤干細(xì)胞[86-87].這些炎癥因子可以作為調(diào)節(jié)腫瘤干細(xì)胞微環(huán)境靶標(biāo),最終達(dá)到治療腫瘤的目的.

        3 展望

        腫瘤干細(xì)胞理論為惡性腫瘤的治療提供了新的思路.腫瘤干細(xì)胞與分化的腫瘤細(xì)胞最大的不同在于腫瘤干細(xì)胞通常具有放療和化療抵抗性.這意味著雖然放療和化療可以殺死大多數(shù)腫瘤細(xì)胞,但是關(guān)鍵致瘤性的腫瘤干細(xì)胞依然能夠存活下來(lái).這部分細(xì)胞是腫瘤復(fù)發(fā)和轉(zhuǎn)移的根源,所以明確腫瘤干細(xì)胞的發(fā)生機(jī)制和調(diào)控途徑對(duì)腫瘤治療具有非常重要的意義.本文論述了腫瘤干細(xì)胞的生成機(jī)制,總結(jié)了腫瘤干細(xì)胞的表面標(biāo)志物和腫瘤干細(xì)胞的主要調(diào)控途徑.然而,目前關(guān)于腫瘤干細(xì)胞的研究仍處于起步階段,仍有許多問(wèn)題有待解決.例如,只有部分特定腫瘤干細(xì)胞的標(biāo)記物被發(fā)現(xiàn)并驗(yàn)證,仍有更多的腫瘤干細(xì)胞特異性標(biāo)志物有待發(fā)現(xiàn).腫瘤干細(xì)胞的放療和化療抵抗性的具體分子機(jī)制需要進(jìn)一步的研究.腫瘤干細(xì)胞各種信號(hào)轉(zhuǎn)導(dǎo)途徑和調(diào)控通路的核心機(jī)理尚不清楚.即使關(guān)于腫瘤干細(xì)胞仍有如此多的問(wèn)題等待解決,我們相信隨著腫瘤干細(xì)胞發(fā)生機(jī)制和調(diào)控通路研究的不斷深入,腫瘤干細(xì)胞理論在惡性腫瘤靶向治療中的一定會(huì)發(fā)揮更加重要的作用.

        [1]Yoon CH,Kim MJ,Kim RK,et al.c-Jun N-terminal kinase has a pivotal role in the maintenance of self-renewal and tumorigenicity in glioma stem-like cells[J].Oncogene,2012,31(44):4655-4666.

        [2]Lapidot T,Sirard C,Vormoor J,et al.A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J].Nature,1994,367(6464):645-648.

        [3]Al-Hajj M,Wicha MS,Benito-Hernandez A,et al.Prospective identification of tumorigenic breast cancer cells[J].Proc Natl Acad Sci USA,2003,100(7):3983-3988.

        [4]Singh SK,Hawkins C,Clarke ID,et al.Identification of human brain tumour initiating cells[J].Nature,2004,432(7015):396-401.

        [5]Ricci-Vitiani L,Lombardi DG,Pilozzi E,et al.Identification and expansion of human colon-cancer-initiating cells[J].Nature,2007,445(7123):111-115.

        [6]Eramo A,Lotti F,Sette G,et al.Identification and expansion of the tumorigenic lung cancer stem cell population[J].Cell Death Differ,2008,15(3):504-514.

        [7]Visvader JE,Lindeman GJ.Cancer stem cells in solid tumours:accumulating evidence and unresolved questions[J].Nat Rev Cancer,2008,8(10):755-768.

        [8]Galli R,Binda E,Orfanelli U,et al.Isolation and characterization of tumorigenic,stem-like neural precursors from human glioblastoma[J].Cancer Res,2004,64(19):7011-7021.

        [9]Houman D,Hemmati IN,Jorge A,et al.Cancerous stem cells can arise from pediatric brain tumors[J].PNAS,2003,100(25):5.

        [10]Salmaggi A,Boiardi A,Gelati M,et al.Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype[J].Glia,2006,54(8):850-860.

        [11]Yi L,Zhou ZH,Ping YF,et al.Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma[J].Mod Pathol,2007,20(10):1061-1068.

        [12]Murat A,Migliavacca E,Gorlia T,et al.Stem Cell-Related“Self-Renewal”Signature and High Epidermal Growth Factor Receptor Expression Associated With Resistance to Concomitant Chemoradiotherapy in Glioblastoma[J].J Clin Oncol,2008,26(18):3015-3024.

        [13]Bao S,Wu Q,Mclendon RE,et al.Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J].Nature,2006,444:756-760.

        [14]Li Z,Bao S,Wu Q,et al.Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells[J].Cancer Cell,2009,15(6):501-513.

        [15]Bao S,Wu Q,Sathornsumetee S,et al.Stem Cell-like Glioma Cells Promote Tumor Angiogenesis through Vascular Endothelial Growth Factor[J].Cancer Res,2006,66:7843-7848.

        [16]Hosen N,Weissman IL,et al.CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia[J].Proc Natl Acad Sci USA,2007,104(26):11008-11013.

        [17]Jordan CT.Cancer stem cell biology:from leukemia to solid tumors[J].Curr Opin Cell Biol,2004,16(6):708-712.

        [18]Dalerba P,Dylla SJ,Park IK,et al.Phenotypic characterization of human colorectal cancer stem cells[J].Proc Natl Acad Sci USA,2007,104(24):10158-10163.

        [19]Himuro T,Horimoto Y,Arakawa A,et al.Activated Caspase 3 Expression in Remnant Disease After Neoadjuvant Chemotherapy May Predict Outcomes of Breast Cancer Patients[J].Ann Surg Oncol,2016,23(7):2235-2241.

        [20]Ginestier C,Min HH,Charafe-Jauffret E,et al.ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J].Cell Stem Cell,2007,1(5):555-567.

        [21]Zhou L,Wei X,Cheng L,et al.CD133,one of the markers of cancer stem cells in Hep-2 cell line[J].Laryngoscope,2007,117(3):455-460.

        [22]Fang D,Nguyen TK,Leishear K,et al.A tumorigenic subpopulation with stem cell properties in melanomas[J].Cancer Res,2005,65(20):9328-9337.

        [23]Seigel GM,Campbell LM,Narayan M,et al.Cancer stem cell characteristics in retinoblastoma[J].Mol Vis,2005,11:729-737.

        [24]Levina V,Marrangoni AM,Demarco R,et al.Drug-selected human lung cancer stem cells:cytokine network,tumorigenic and metastatic properties[J].PLoS One,2008,3(8):e3077.

        [25]Heidt DG,Li C,Mollenberg N,et al.Identification of pancreatic cancer stem cells[J].Cancer Res,2007,67(3):1030-1037.

        [26]Hermann PC,Huber SL,Herrler T,et al.Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J].Cell Stem Cell,2007,1(3):313-323.

        [27]Nagaki A,Tsukada M,Osawa Y,et al.CD133 as a putative marker of cancer stem/progenitor cells in hepatocellular carcinoma[J].J Gastroen Hepatol,2007(22):A192.

        [28]Ma S,Chan KW,Hu L,et al.Identification and characterization of tumorigenic liver cancer stem/progenitor cells[J].Gastroenterology,2007,132(7):57-60.

        [29]He B,Barg RN,You L,et al.Wnt signaling in stem cells and nonsmall-cell lung cancer[J].Clin Lung Cancer,2005,7(1):54-60.

        [30]Schepers A,Clevers H.Wnt signaling,stem cells,and cancer of the gastrointestinal tract[J].Cold Spring Harb Perspect Biol,2012,4(4):a007989.

        [31]He B,Jablons DM.Wnt signaling in stem cells and lung cancer[J].Ernst Schering Found Symp Proc,2006(5):27-58.

        [32]Bisson I,Prowse DM.WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics[J].Cell Res,2009,19(6):683-697.

        [33]Basu S,Haase G,Ben-Ze'ev A.Wnt signaling in cancer stem cells and colon cancer metastasis[J].F1000 Res,2016:5.

        [34]Nayak L,Bhattacharyya NP,De RK.Wnt signal transduction pathways:modules,development and evolution[J].BMC Syst Biol,2016,10(Suppl 2):44.

        [35]Yang J,F(xiàn)ang Z,Wu J,et al.Construction and application of a lung cancer stem cell model:antitumor drug screening and molecular mechanism of the inhibitory effects of sanguinarine[J].Tumour Biol,2016:1-13.

        [36]Patrawala L,Calhoun T,Schneiderbroussard R,et al.Side population is enriched in tumorigenic,stem-like cancer cells,whereas ABCG2+and ABCG2-cancer cells are similarly tumorigenic[J].Cancer Res,2005,65(14):6207-6219.

        [37]Kruger JA,Kaplan CD,Luo Y,et al.Characterization of stem celllike cancer cells in immune-competent mice[J].Blood,2006,108(12):3906-3912.

        [38]Yang Y,Cheng Z,Tang H,et al.Neonatal Maternal Separation Impairs Prefrontal Cortical Myelination and Cognitive Functions in Rats Through Activation of Wnt Signaling[J].Cereb Cortex,2016.

        [39]Chen J,Crabbe A,Van DV,et al.The notch signaling system ispresent in the postnatal pituitary:marked expression and regulatory activity in the newly discovered side population[J].Mol Endocrinol,2006,20(12):3293-3307.

        [40]Challen GA,Bertoncello I,Deane JA,et al.Kidney side population reveals multilineage potential and renal functional capacity but also cellular heterogeneity[J].J Am Soc Nephrol,2006,17(7):1896-1912.

        [41]Androutsellis-Theotokis A,Hoeppner DJ,Rueger MA,et al.Notch signalling regulates stem cell numbers in vitro and in vivo[J].Nature,2006,442(7104):823-826.

        [42]Dontu G,Jackson KW,Mcnicholas E,et al.Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells[J].Breast Cancer Res,2004,6(6):1-11.

        [43]Wang XD,Leow CC,Zha J,et al.Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation[J].Dev Biol,2006,290(1):66-80.

        [44]Thelu J,Rossio P,F(xiàn)avier B.Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma,psoriasis and wound healing[J].BMC Dermatol,2002,2:7.

        [45]Fan X,Matsui W,Khaki L,et al.Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors[J].Cancer Res,2006,66(15):7445-7452.

        [46]Braune EB,Lendahl U.Notch-a goldilocks signaling pathway in disease and cancer therapy[J].Discov Med,2016,21(115):189-196.

        [47]Allenspach EJ,Maillard I,Aster JC,et al.Notch signaling in cancer[J].Cancer Biol Ther,2006,6(8):905-918.

        [48]Alketbi A,Attoub S.Notch Signaling in Cancer:Rationale and Strategies for Targeting[J].Curr Cancer Drug Targets,2015,15(5):364-374.

        [49]Merchant AA,Matsui W.Targeting Hedgehog-a cancer stem cell pathway[J].Clini Cancer Res,2010,16(12):3130-3140.

        [50]Zhou JX,Jia LW,Liu WM,et al.Role of sonic hedgehog in maintaining a pool of proliferating stem cells in the human fetal epidermis[J].Hum Reprod,2006,21(7):1698-1704.

        [51]Palma V,Ruiz IAA.Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex[J].Development,2004,131(2):2252-2259.

        [52]Rao G,Pedone CA,Coffin CM,et al.c-myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice[J].Neoplasia,2003,5(3):198-204.

        [53]Li Y,Laterra J.Cancer stem cells:distinct entities or dynamically regulated phenotypes?[J].Cancer Res,2012,72(3):576-580.

        [54]Chiou SH,Wang ML,Chou YT,et al.Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation[J].Cancer Res,2010,70(24):10433-10444.

        [55]Mani SA,Guo W,Liao MJ,et al.The epithelial-mesenchymal transition generates cells with properties of stem cells[J].Cell,2008,133(4):704-715.

        [56]De Sano JT,Xu L.MicroRNA regulation of cancer stem cells and therapeutic implications[J].AAPS J,2009,11(4):682-692.

        [57]Rybicka A,Mucha J,Majchrzak K,et al.Analysis of microRNA expression in canine mammary cancer stem-like cells indicates epigenetic regulation of transforming growth factor-beta signaling[J].J Physiol Pharmacol,2015,66(1):29-37.

        [58]Garzia L,Andolfo I,Cusanelli E,et al.MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma[J].PLoS One,2009,4(3):e4998.

        [59]Subramanyam D,Blelloch R.From microRNAs to targets:pathway discovery in cell fate transitions[J].Curr Opin Genet Dev,2011,21(4):498-503.

        [60]Liu C,Tang DG.MicroRNA regulation of cancer stem cells[J].Cancer Res,2011,71(18):5950-5954.

        [61]Ma L,Weinberg RA.Micromanagers of malignancy:role of microRNAs in regulating metastasis[J].Trends Genet,2008,24(9):448-456.

        [62]Burk U,Schubert J,Wellner U,et al.A reciprocal repression between ZEB1 and members of the mir-200 family promotes EMT and invasion in cancer cells[J].Embo Reports,2008,9(6):582-589.

        [63]Gregory PA,Bert AG,Paterson EL,et al.The mir-200 family and mir-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J].Nat Cell Biol,2008,10(5):593-601.

        [64]Korpal M,Lee ES,Hu G,et al.The mir-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2[J].J Biol Chem,2008,283(22):14910-14914.

        [65]Park SM,Gaur AB,Lengyel E,et al.The mir-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2[J].Genes&Development,2008,22(7):894-907.

        [66]Ru P,Steele R,Newhall P,et al.miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling[J].Mol Cancer Ther,2012,11(5):1166-1173.

        [67]Zhang J,Zhang H,Liu J,et al.miR-30 inhibits TGF-beta1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1[J].Biochem Biophys Res Commun,2012,417(3):1100-1105.

        [68]Vetter G,Saumet A,Moes M,et al.mir-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers[J].Oncogene,2010,29(31):4436-4448.

        [69]Zhou Q,F(xiàn)an J,Ding X,et al.TGF-{beta}-induced MiR-491-5p expression promotes Par-3 degradation in rat proximal tubular epithelial cells[J].J Biol Chem,2010,285(51):40019-40027.

        [70]Marson A,Levine SS,Cole MF,et al.Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells[J].Cell,2008,134(3):521-533.

        [71]Judson RL,Babiarz JE,Venere M,et al.Embryonic stem cell-specific microRNAs promote induced pluripotency[J].Nat Biotechnol,2009,27(5):459-461.

        [72]Xu N,Papagiannakopoulos T,Pan G,et al.MicroRNA-145 regulates OCT4,SOX2,and KLF4 and represses pluripotency in human embryonic stem cells[J].Cell,2009,137(4):647-658.

        [73]Yu F,Yao H,Zhu P,et al.let-7 regulates self renewal and tumorigenicity of breast cancer cells[J].Cell,2007,131(6):1109-1123.

        [74]Lim YY,Wright JA,Attema JL,et al.Epigenetic modulation of the mir-200 family is associated with transition to a breast cancer stemcell-like state[J].J Cell Sci,2013,126(10):2256-2266.

        [75]van Vlerken LE,Hurt EM,Hollingsworth RE.The role of epigenetic regulation in stem cell and cancer biology[J].J Mol Med-Jmm,2012,90(7):791-801.

        [76]Widschwendter M,F(xiàn)iegl H,Egle D,et al.Epigenetic stem cell signature in cancer[J].Nature Genetics,2007,39(2):157-158.

        [77]Patel S,Shah K,Mirza S,et al.Epigenetic regulators governing cancer stem cells and epithelial-mesenchymal transition in oral squamous cell carcinoma[J].Curr Stem Cell Res Ther,2015,10(2):140-152.

        [78]Marquardt JU.Epigenetic Modulation selects unique cancer stem cell population within the Sp fraction of human hcc[J].Hepatology,2008,48(4):983a.

        [79]Balch C,Nephew KP,Huang TH,et al.Epigenetic“bivalently marked”process of cancer stem cell-driven tumorigenesis[J].Bioessays,2007,29(9):842-845.

        [80]Pellacani D,Packer RJ,F(xiàn)rame FM,et al.Regulation of the stem cell marker CD133 is independent of promoter hypermethylation in human epithelial differentiation and cancer[J].Mol Cancer,2011,10(7):1-14.

        [81]Nalls D,Tang SN,Rodova M,et al.Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells[J].Plos One,2011,6(8):e24099.

        [82]Cabarcas SM,Mathews LA,F(xiàn)arrar WL.The cancer stem cell nichethere goes the neighborhood?[J].Inte J Cancer,2011,129(10):2315-2327.

        [83]Garvalov BK,Acker T.Cancer stem cells:a new framework for the design of tumor therapies[J].J Mol Med(Berl),2011,89(2):95-107.

        [84]Ito K,Bernardi R,Morotti A,et al.PML targeting eradicates quiescent leukaemia-initiating cells[J].Nature,2008,453(7198):1072-1078.

        [85]Eyler CE,Wu Q,Yan K,et al.Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2[J].Cell,2011,146(1):53-66.

        [86]Jinushi M,Chiba S,Yoshiyama H,et al.Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells[J].Proc Natl Acad Sci USA,2011,108(30):12425-12430.

        [87]Wang H,Lathia JD,Wu Q,et al.Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth[J].Stem Cells,2009,27(10):2393-2404.

        The molecular mechanism and regulatory pathway of cancer stem cell

        TU Yan-Yang1,WANG Zhen1,ZHANG Yong-Sheng2,WANG Liang3
        Fourth Military Medical University:1Department of Experimental Surgery,Tangdu Hospital;2Tangdu Hospital;3Department of Brain Surgery,Tangdu Hospital,Xi'an 710038,China

        Malignant tumor is one of the most harmful diseases that threat human health and life.Traditional methods for the cancer therapy include surgery,chemotherapy,radiotherapy and other methods to remove existing cancer cells.The treatment of tumor is still a big problem today,and the fundamental reason is that we are unclear about the mechanism of cancer metastasis and recurrence.In recent years,the researches on the tumor cell surface markers,tumor cell proliferation and tumorigenic ability make people put forward the theory of cancer stem cell(CSC).Cancer stem cell is a small population of tumor cells that has unlimited self-renewal ability and heterogeneous immunodeficiency animals tumorigenic ability of stem cells in the tumor cells.They play a key role in the tumor growth and metastasis.Cancer stem cell theory provides a new way for tumor therapy.In this paper,we will summarize the formation and development process of tumor stem cell theory,we discuss the cancer stem cell generation,surface makers,self-renewal and relative regulatory pathways.These theory mechanisms may provide help for malignant tumor targeting therapy.

        malignant tumor;cancer stem cell;regulatory pathway;targeting therapy

        R730.3

        A

        2095-6894(2016)11-01-07

        2016-10-08;接受日期:2016-10-18

        國(guó)家自然科學(xué)基金資助項(xiàng)目(81272419,81572983,81402081)

        涂艷陽(yáng).副主任醫(yī)師,副教授.E-mail:Tu.fmmu@gmail.com

        張永生.教授,主任醫(yī)師,院長(zhǎng).E-mail:zhangys@fmmu.edu.cn

        猜你喜歡
        干細(xì)胞標(biāo)志物分化
        干細(xì)胞:“小細(xì)胞”造就“大健康”
        兩次中美貨幣政策分化的比較及啟示
        分化型甲狀腺癌切除術(shù)后多發(fā)骨轉(zhuǎn)移一例
        造血干細(xì)胞移植與捐獻(xiàn)
        干細(xì)胞產(chǎn)業(yè)的春天來(lái)了?
        膿毒癥早期診斷標(biāo)志物的回顧及研究進(jìn)展
        冠狀動(dòng)脈疾病的生物學(xué)標(biāo)志物
        腫瘤標(biāo)志物在消化系統(tǒng)腫瘤早期診斷中的應(yīng)用
        MR-proANP:一種新型心力衰竭診斷標(biāo)志物
        干細(xì)胞治療有待規(guī)范
        亚洲综合av一区二区三区蜜桃| 国产一区二区三区韩国| 欧美怡春院一区二区三区| 亚洲欧洲日产国码av系列天堂 | 日出白浆视频在线播放| 99视频在线精品免费观看6| 欧洲美女熟乱av| 国产麻豆剧果冻传媒一区| a级毛片免费观看在线播放| av中文字幕潮喷人妻系列| 欧美a级毛欧美1级a大片免费播放| 开心五月激情综合婷婷色| 国产激情内射在线影院| 国产色综合天天综合网| 人人妻人人澡av天堂香蕉| 亚洲aⅴ无码日韩av无码网站| 国产一级在线现免费观看| 国产精品福利久久香蕉中文| 中文字幕一区二区网站| 亚洲国产av一区二区三| 男女啪啪免费视频网址| 日本一区二区三区激视频| 草青青在线视频免费观看| 亚洲精品久久视频网站| 在线观看免费日韩精品| 欧洲成人一区二区三区| 激情第一区仑乱| 亚洲 日韩 在线精品| 久久综合久中文字幕青草| 美女被黑人巨大入侵的的视频| 亚洲av专区国产一区| 久久综合九色欧美综合狠狠| 中文字幕欧美人妻精品一区| 国产人成无码视频在线| 久久精品av一区二区免费| 日韩va高清免费视频| 国产精品一区av在线| 国产精品久久久久久一区二区三区| 天天影视性色香欲综合网| 亚洲精品国精品久久99热一| 亚洲精品aⅴ无码精品丝袜足|