崔孟穎,柳 潔,楊 蕾,Cathie Martin,2,陳曉亞,3,趙 清**
(1. 中國科學(xué)院上海辰山植物科學(xué)研究中心/上海市資源植物功能基因組學(xué)重點(diǎn)實(shí)驗(yàn)室/上海辰山植物園上海 201602;2. 約翰因納斯中心 諾維奇 NR4 7UH;3. 中科院上海生命科學(xué)研究院植物生理生態(tài)研究所 上海 200032)
黃芩,由古籍里走進(jìn)現(xiàn)代生活的藥用植物*
崔孟穎1,柳 潔1,楊 蕾1,Cathie Martin1,2,陳曉亞1,3,趙 清1**
(1. 中國科學(xué)院上海辰山植物科學(xué)研究中心/上海市資源植物功能基因組學(xué)重點(diǎn)實(shí)驗(yàn)室/上海辰山植物園上海 201602;2. 約翰因納斯中心 諾維奇 NR4 7UH;3. 中科院上海生命科學(xué)研究院植物生理生態(tài)研究所 上海 200032)
黃芩作為傳統(tǒng)的藥用植物,以其根部入藥,主治呼吸道感染、腹瀉、痢疾、肝臟疾病等,在中國已有數(shù)千年的使用歷史。本文綜述了藥用植物黃芩的古代文獻(xiàn)記載及使用歷史、活性成分及其藥理作用現(xiàn)代研究。黃芩的活性成分主要為黃酮類,如黃芩苷、漢黃芩苷及其苷配基黃芩素、漢黃芩素,這些化合物具有抗癌、護(hù)肝、抗病毒等多種藥理作用。本文也介紹了黃芩相關(guān)生物技術(shù)及黃芩黃酮的代謝生物學(xué)研究進(jìn)展,探討了黃芩生物學(xué)研究方面的發(fā)展趨勢(shì),以期為相關(guān)研究的未來發(fā)展方向提供一定的參考。
黃芩 黃酮 抗癌 代謝生物學(xué)
黃芩,又名山茶根,是唇形科植物黃芩Scutellaria baicalensis Georgi的干燥根,其基源植物披針形葉片對(duì)生,莖四棱,花紫色,根肉質(zhì)且因含有大量黃酮類物質(zhì)而顯黃色(圖1)。黃芩主產(chǎn)于中國,在蒙古、朝鮮、日本及俄羅斯東部均有分布,是寶貴的藥用植物,我們的祖先對(duì)它的使用已有數(shù)千年歷史[1,2]。黃芩以根入藥,現(xiàn)已被列入國家藥典,常用于煎劑或酊劑[3]。關(guān)于“芩”字,早在西周時(shí)期的《詩經(jīng)·小雅》里便有記載,例如其開篇《鹿鳴》就有 “呦呦鹿鳴,食野之芩”的詩句。東漢時(shí)期,許慎《說文解字》有言“芩,作菳,從艸,今聲”;明·李時(shí)珍進(jìn)一步解釋:“芩,說文作菳,謂其色黃也”[4,5]。大約在兩漢時(shí)期成書的《神農(nóng)本草經(jīng)》最早記載了黃芩的藥物應(yīng)用:其性苦、寒,可治療肺和肝臟方面的疾病[6]。東漢末年,張仲景的《傷寒論》將黃芩作為重要成分組成復(fù)方湯劑(例如小柴胡湯、黃芩湯等)來治療各種疾病[7]。明代萬歷年間的《本草綱目》記載了黃芩用于治療腹瀉、痢疾、高血壓、出血、失眠、炎癥和呼吸道感染,作者李時(shí)珍花了較大篇幅描述黃芩,并提到在他20歲時(shí)用黃芩成功治療了自己嚴(yán)重的肺部感染:“余年二十時(shí),感冒發(fā)燒即久,遂病骨蒸發(fā)熱,膚如火燎,每日吐痰碗許,暑月煩渴,寢食幾廢”,在服用了一些常規(guī)的清熱消炎藥物以后,并無緩解,后來卻發(fā)展到“月余益劇,皆以為必死矣”。后來,李時(shí)珍的父親受“金元四大家”之一李東垣治療肺病使用黃芩的啟發(fā),給他服用一味黃芩湯,不久后便感覺“身熱盡退,而痰嗽皆愈”,并感嘆道“藥中肯綮,如鼓應(yīng)桴,醫(yī)中之妙,有如是哉”[4]。
在黃芩的應(yīng)用歷史中,祖先留給我們諸多寶貴的經(jīng)驗(yàn)。然而,在科學(xué)技術(shù)日益發(fā)達(dá)的今天,傳統(tǒng)醫(yī)學(xué)對(duì)黃芩的闡釋卻難以滿足現(xiàn)代社會(huì)對(duì)它的新要求。因此,如何運(yùn)用現(xiàn)代生物學(xué)手段去研究、開發(fā)和使用黃芩,使之滿足現(xiàn)代人的健康需求,成為黃芩藥用植物研究和新藥研發(fā)需要面對(duì)的一個(gè)重要課題。
黃芩,作為藥用植物,在東亞國家已有悠久的應(yīng)用歷史。在中國,黃芩通常作為復(fù)方藥的一部分[7]?,F(xiàn)代臨床數(shù)據(jù)證實(shí),黃芩能夠有效地治療發(fā)熱和細(xì)菌性肺炎[8,9]。2003年,Xue T H等的研究證實(shí),含有黃芩的小柴胡湯能夠有效治療西醫(yī)療法難以有效緩解的疾病[10]。后來,小柴胡湯被美國的替代醫(yī)學(xué)社區(qū)接受并引進(jìn)[11]。1994年,一項(xiàng)日本的研究顯示,在接受小柴胡湯治療5年的98例肝炎患者中,78%的乙型肝炎患者和67%的非甲非乙型肝炎患者的肝功能均得到改善[12]。小柴胡湯對(duì)丙型肝炎同樣有效。對(duì)80名具有干擾素抗性的丙型肝炎患者進(jìn)行服用小柴胡湯的治療和跟蹤,與對(duì)照組(僅接受普通藥物治療)比較,發(fā)現(xiàn)在完全恢復(fù)肝臟酶功能的6名患者中有5名進(jìn)行了小柴胡湯治療,而在6名發(fā)展為肝癌的患者中僅有1例進(jìn)行小柴胡湯治療[13]。肺復(fù)方為另一種含有黃芩的傳統(tǒng)復(fù)方藥劑,它能夠提高原發(fā)性支氣管肺鱗狀細(xì)胞癌患者的生存率[14]。同時(shí),它對(duì)非小細(xì)胞肺癌(Non-Small Cell Lung Cancer,NSCLC)患者具有相同的效果。與接受常規(guī)化療加中藥安慰劑治療的對(duì)照組相比,使用肺復(fù)方治療能明顯改善NSCLC老年患者的臨床表現(xiàn)[15],能減輕臨床癥狀、提高生活質(zhì)量、增加體重,并能穩(wěn)定瘤體、延緩疾病進(jìn)展、延長生存期[16]。將肺復(fù)方配合化療藥物康萊特注射液治療局部晚期非小細(xì)胞肺癌,也能夠得到比單獨(dú)使用該化療藥物更好的臨床效果[17]。同時(shí),黃芩也是扶正抗癌方的主要成分,將其結(jié)合化療使用與單獨(dú)使用常規(guī)化療方法相比,扶正抗癌方對(duì)中晚期NSCLC患者有更好的效果[18,19]。將扶正抗癌方聯(lián)合吉非替尼使用,能增強(qiáng)后者的效果,并減弱毒副作用,能有效地提高NSCLC患者的存活時(shí)間[20]。
圖1 黃芩植物(A)及作為傳統(tǒng)中藥的干燥根(B)
黃芩植物體內(nèi)含有多種多樣的天然產(chǎn)物,包括氨基酸、精油、黃酮及類黃酮、苯乙醇和甾醇。黃芩根中有超過30種黃酮化合物,其中包括黃芩苷、黃芩素、白楊素、木蝴蝶素A、木蝴蝶素A -7-O-葡萄糖苷酸、漢黃芩素和漢黃芩苷[21,22]。其中,黃芩苷、黃芩素、漢黃芩苷和漢黃芩素是黃芩的主要活性成分[23-25]。
2.1 抗腫瘤活性
相關(guān)研究表明,黃芩對(duì)多數(shù)人源癌細(xì)胞系具有抑制作用[26-28]。黃芩根的水溶性提取物可以誘導(dǎo)細(xì)胞凋亡,從而抑制淋巴瘤和骨髓瘤細(xì)胞系的生長[29]。同樣,黃芩提取物對(duì)幾種人類的肺癌細(xì)胞系有選擇性毒性,對(duì)正常的人體肺成纖維細(xì)胞則無毒性,這種作用可能是由于抑癌基因p53和Bax蛋白活性的增加而引起的[30]。黃芩根部的黃酮類物質(zhì)如黃芩苷、漢黃芩苷、黃芩素和漢黃芩素是黃芩抗癌的主要活性物質(zhì)[31-33]。黃芩苷可以抑制淋巴癌和骨髓癌的生長[29],漢黃芩苷對(duì)急性骨髓性白血?。ˋcute Myelogenous Leukemia,AML)細(xì)胞具有抑制作用,并且能顯著提高調(diào)節(jié)細(xì)胞周期和分化相關(guān)基因的磷脂混雜酶1(Phospholipid Scramblase 1,PLSCR1)的轉(zhuǎn)錄[34]。黃芩苷、黃芩素和漢黃芩素對(duì)肺癌細(xì)胞的作用與黃芩提取物的作用相似[30]。黃芩黃酮的抗癌活性主要?dú)w因于其清除活性氧(Reactive Oxygen Species,ROS)能力,減弱NF-κB活性,降低細(xì)胞周期基因和COX-2基因的表達(dá)以及抗病毒作用[31,35,36]。2012年,F(xiàn)ox等[37]利用細(xì)胞定量的檢測(cè)方法對(duì)超過4 000種化合物進(jìn)行高通量的毒性篩選,最終確定22種有效的抗氧化劑,其中有3種具有良好效果,它們可以殺死癌細(xì)胞且不引起基因突變,其中就包括黃芩素,另外兩種為白藜蘆醇、染料木黃酮。
2.2 肝臟保護(hù)作用
黃芩還具有良好的肝臟保護(hù)活性,以黃芩為主要成分的漢方藥小柴胡湯可以用于治療肝炎、肝纖維化和肝癌等肝臟疾病[11,38,39]。養(yǎng)肝丸為一種含有黃芩苷的復(fù)方藥劑,因具有對(duì)肝臟的保護(hù)作用而被大家熟知[40,41]。2012年,Yang的一項(xiàng)研究證實(shí),養(yǎng)肝丸的主要活性物質(zhì)黃芩苷,通過激活Wnt信號(hào)途徑,從而阻斷或逆轉(zhuǎn)導(dǎo)致肝纖維化的肝星狀細(xì)胞(Hepatic Stellate Cell,HSC)的活性[42]。黃芩還可以有效抑制大鼠肝臟的纖維化和脂質(zhì)過氧化[43-45]。黃芩根部和嫩枝能夠抑制由黃曲霉毒素B1導(dǎo)致的大鼠肝臟誘變[44]。Tan[46]等推測(cè)黃芩根提取物的抗纖維化活性可能是由于其可以增強(qiáng)cAMP應(yīng)答元件結(jié)合蛋白的磷酸化。黃芩提取物也能阻斷細(xì)胞周期,激活導(dǎo)致HSC-T6細(xì)胞凋亡的蛋白酶系統(tǒng)和ERK-p53通路,從而預(yù)防肝臟纖維化[47]。
2.3 抗菌和抗病毒活性
黃芩提取物具有良好的抑制多種細(xì)菌、真菌和病毒的作用[48,49]。黃芩苷在自制蛋黃醬中,可被用作食源性病原體(如沙門氏菌和葡萄球菌)的天然抗菌劑[50]。黃芩提取物能夠提高抗生素如環(huán)丙沙星、頭孢曲松、慶大霉素和青霉素G對(duì)金黃色葡萄球菌的抗菌活性[51]。小柴胡湯可以有效治療肝炎,有研究觀察到使用小柴胡湯的患者體內(nèi)病毒量明顯降低[11],說明黃芩提取物具有抗病毒的功效[52]。黃芩根提取物能夠顯著抑制HCV-RNA的復(fù)制[53]。黃芩苷作為非核苷酸反轉(zhuǎn)錄抑制劑對(duì)HIV-1有很強(qiáng)的抑制作用[54]。而且,黃芩苷可以通過擾亂細(xì)胞表面的HIV-1Env與HIV-1供受體的互作的方式來阻止HIV-1進(jìn)入動(dòng)物細(xì)胞[55]。黃芩苷已經(jīng)成為廣泛運(yùn)用的預(yù)防艾滋病病毒感染的天然化合物之一[56-58]。黃芩素可以有效的抑制HIV的反轉(zhuǎn)錄活性及整合酶的活性[59,60]。黃芩素和黃芩苷對(duì)HIV的這些作用引起了人們的廣泛關(guān)注[61]。
除了上述效應(yīng)之外,黃芩的制劑還可以作為抗氧化劑、ROS清除劑[62,63]和抗驚厥劑[64]。最近,已經(jīng)有課題組在神經(jīng)退行性疾病的體內(nèi)和體外模型研究黃芩及其黃酮類化合物的神經(jīng)保護(hù)作用,結(jié)果表明:黃芩可能有希望應(yīng)用于神經(jīng)保護(hù)領(lǐng)域[65,66]。
由于黃芩黃酮具有多種有益的生物活性,如何增加它們?cè)谥参镏械暮炕蛘咴谄胀ǖ氖卟怂挟愒春铣伤鼈?,成為生物技術(shù)領(lǐng)域一個(gè)較有價(jià)值的研究方向[67,68]。然而在做到此工作之前,我們首先需要了解黃芩中黃酮類化合物的合成途徑及調(diào)節(jié)機(jī)制。
目前,有多個(gè)團(tuán)隊(duì)報(bào)道了黃芩的組織培養(yǎng)及再生體系[69-71],但尚未見穩(wěn)定遺傳轉(zhuǎn)化體系的文獻(xiàn)。發(fā)根農(nóng)桿菌介導(dǎo)毛狀根培養(yǎng)系統(tǒng)成為在研究中生產(chǎn)及提高黃芩黃酮產(chǎn)量的有效方式[72,73]。用發(fā)根農(nóng)桿菌進(jìn)行侵染葉片或子葉外植體,均可以得到毛狀根[74]。通過對(duì)4種發(fā)根農(nóng)桿菌菌株A4GUS、R1000、LBA9402及ATCC11325的比較研究,發(fā)現(xiàn)A4農(nóng)桿菌菌株誘導(dǎo)黃芩毛狀根的效率最高,可達(dá)42.6%[72]。外植體與發(fā)根農(nóng)桿菌共培期間補(bǔ)充乙酰丁香酮進(jìn)一步提高誘導(dǎo)效率[75]。黃芩毛狀根具有與天然根相似的代謝模式,并且以茉莉酸甲酯處理毛狀根可以提高主要黃酮類化合物的產(chǎn)量[76-78]。過表達(dá)PAL或CHI基因可以提高黃芩發(fā)根中黃酮的含量[74,79]。利用二代測(cè)序技術(shù),研究人員篩選到可能參與黃酮生物合成的候選基因,并且確定了合成途徑中的幾個(gè)與結(jié)構(gòu)相關(guān)的基因,其中包括6-羥化酶、8-O-甲基轉(zhuǎn)移酶和7-O-葡糖醛酸基轉(zhuǎn)移酶[80]。Yuan等也篩選了RNA測(cè)序數(shù)據(jù)庫,發(fā)現(xiàn)幾個(gè)MYB基因可能負(fù)責(zé)調(diào)控黃酮的產(chǎn)量,在用黃芩來源的MYB轉(zhuǎn)錄因子MYB8轉(zhuǎn)化煙草后,研究者發(fā)現(xiàn)轉(zhuǎn)基因煙草黃酮類成分的含量顯著提高[81,82]。
4.1 黃酮及其合成代謝途徑
黃酮物質(zhì)存在于大多數(shù)高等植物中,在植物的花中起到共色素和防止UV輻射的作用[83,84]。它們是通過類黃酮途徑合成的[85,86],柚皮素是經(jīng)典黃酮類化合物合成中間物[87]。黃芩地上部分積累的野黃芩素和野黃芩苷便是通過這條經(jīng)典的黃酮途徑來合成。該途徑以苯丙氨酸為起始物質(zhì),經(jīng)過苯丙氨酸解氨酶(Phenylalnine Ammonialyase,PAL)、肉桂酰4羥化酶(Cinnamoyl 4 Hydroxylase,C4H)、對(duì)香豆酰輔酶A連接酶(4-Coumarate:coenzyme A Ligase,4CL),然后是查耳酮合酶(Chalcone Synthase,CHS)和查耳酮異構(gòu)酶(Chalcone Isomerase,CHI)的作用形成柚皮素[88]。隨后,柚皮素在黃酮合成酶(Flavone synthetase II-1,F(xiàn)NSII-1)的作用下氧化生成芹菜素,芹菜素進(jìn)一步被羥基化、甲基化和糖基化最終生成野黃芩素和野黃芩苷。
4.2 黃芩中的根特異黃酮及合成
根特異黃酮是黃芩根部大量積累一種特殊的黃酮,其苯環(huán)上缺少4'-OH,而6位或8位含有羥基或甲氧基[89,90],主要成員包括黃芩素、漢黃芩素以及它們的糖苷。根特異黃酮不是以柚皮素為中間物,而是通過新的途徑合成的。肉桂酸在根特異表達(dá)的酶SbCLL-7的作用下形成肉桂酰CoA,肉桂酰輔酶A和丙二酰輔酶A通過一個(gè)查耳酮合酶(SbCHS-2)的作用下縮合生成查爾酮,然后經(jīng)野黃芩素合成途徑相同的查爾酮異構(gòu)酶(SbCHI)作用形成一個(gè)缺少4'-OH基團(tuán)的黃烷酮即松屬素。松屬素在根特異表達(dá)的黃酮合成酶(SbFNSII-2)的催化下生成白楊素,白楊素作為4'位脫氧黃酮,再在6/8-黃酮羥化酶,8-O-甲基轉(zhuǎn)移酶進(jìn)一步修飾下最終生成黃芩根特異的黃酮化合物[75,91]。
根特異的4'位脫氧黃酮合成途徑是隨著唇形科的進(jìn)化新近演化出來的[75],并且可能是由存在于脂肪酸代謝途徑中的輔酶A連接酶所促成的,即肉桂酸的特異性。由于C4H在黃芩根部的表達(dá)促進(jìn)了對(duì)肉桂酸的有效競(jìng)爭從而為4'位脫氧黃酮合成提供條件。使用茉莉酮酸甲酯處理可誘導(dǎo)黃芩根特異黃酮的產(chǎn)生,表明根特異黃酮可能作為防御機(jī)制或植物微生物信號(hào)傳導(dǎo)的一部分[92,93]。了解這種新進(jìn)化的代謝調(diào)節(jié)途徑可以為工業(yè)化合成這些重要的生物活性代謝物提供依據(jù)。根特異黃酮在黃芩的防御中的作用可以支持它們?cè)趥鹘y(tǒng)醫(yī)學(xué)中的用途,例如作為抗微生物劑。
黃芩素、漢黃芩素及它們的糖苷可在除黃芩以外的黃芩屬的許多物種中發(fā)現(xiàn)[94]。與傳統(tǒng)中藥一樣,滇黃芩S. amoena和麗江黃芩S. likiangensis的根部被廣泛用作黃芩的替代品。迄今為止,4'脫氧黃酮僅在唇形目黃芩屬外的木蝴蝶Oroxylumindicum[95]和大車前Plantago major中檢測(cè)到[96]。同時(shí),4'脫氧黃酮也在唇形目以外的植物鱔藤Anodendron affine和翁柱Cephalocereussenilis中被報(bào)道過[97,98]。研究確定這些4'-脫氧黃酮在不同植物種群中的演化史是十分有趣的,并且我們懷疑趨同進(jìn)化很可能是其原因[99]。
4.3 根特異黃酮合成途徑中未解決的問題
根特異黃酮的合成,尚需要6位羥化酶、8位羥化酶及8位甲氧基轉(zhuǎn)移酶[75]。能催化類黃酮6位羥化的酶,最先在大豆中分離到,該酶為細(xì)胞色素P450家族蛋白CYP71D9,主要將黃烷酮甘草素轉(zhuǎn)化為6,7,4'-三羥基黃烷酮,該酶對(duì)黃酮活性較低[100]。最近,Berim和Gang從羅勒Ocimum basilicum中分離到黃酮6位羥化酶CYP82D33,該酶負(fù)責(zé)將羅勒葉片中的芫花黃素轉(zhuǎn)化為7-甲基野黃芩素,然而,該酶只能轉(zhuǎn)化含7位甲氧基的芫花黃素,對(duì)于沒有7位甲氧基的黃酮活性較低[101]。黃芩素合成不涉及7位甲氧基結(jié)構(gòu),因此尚不清楚黃芩的同源基因是否可以負(fù)責(zé)合成黃芩素。在羅勒中,最近還分離到一個(gè)8位羥化酶及8位甲氧基轉(zhuǎn)移酶,這兩個(gè)酶在羅勒葉毛高表達(dá),負(fù)責(zé)將鼠尾草素轉(zhuǎn)化為8-羥基鼠尾草素[102]。然而,根據(jù)目前的黃芩轉(zhuǎn)錄組數(shù)據(jù),羅勒8位羥化酶同源基因在黃芩根中表達(dá)量極低,在花中高表達(dá),而且預(yù)測(cè)為質(zhì)體定位蛋白,這與黃芩根中高積累漢黃芩素的現(xiàn)象有所矛盾。因此,該基因是否為該同源基因或是還有別的相關(guān)基因負(fù)責(zé)漢黃芩素的合成,還有待進(jìn)一步研究。
在現(xiàn)代社會(huì),黃芩已走入我們的生活,許多治療上呼吸道感染、肝病乃至皮膚病的藥物均含有黃芩成分,例如清開靈口服液、銀黃顆粒、小柴胡顆粒、養(yǎng)肝丸和黃芩軟膏等。另外,日常使用的牙膏、化妝品及部分抗菌劑里也會(huì)添加黃芩苷或黃芩素。目前,已有大量數(shù)據(jù)顯示,黃芩及其活性成分具有抑制癌細(xì)胞、抗腫瘤生長、保肝、抗菌、抗病毒及神經(jīng)保護(hù)作用[37,42,90]。所以,對(duì)黃芩乃至黃芩屬其他物種的生物學(xué)、生物技術(shù)、分子及代謝生物學(xué)研究應(yīng)該投入更多關(guān)注。
黃芩中的活性物質(zhì)為其根中積累的黃芩素、漢黃芩素及其糖苷等黃酮物質(zhì),這是一類A環(huán)多修飾而B環(huán)沒有修飾的特異的黃酮,關(guān)于此類黃酮的生物合成關(guān)鍵酶基因的尋找及調(diào)控成為近年黃芩植物生物學(xué)領(lǐng)域研究熱點(diǎn)[79,103]。目前,已有研究表明黃芩素,漢黃芩素的合成通過一個(gè)新進(jìn)化出來的黃酮途徑完成,并闡述了該途徑到白楊素的過程[75]。而且,白楊素下游途徑及整個(gè)根的特異黃酮在植物中的調(diào)控機(jī)制也將成為新的研究熱點(diǎn)。
參考文獻(xiàn)
1 Shang X F, He X R, He X Y, et al. The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol, 2010,128 (2):279-313.
2 Bochoráková H, Paulová H, Slanina J, et al. Main flavonoids in the root of Scutellaria baicalensis cultivated in Europe and their comparative antiradical properties. Phytother Res, 2003,17(6):640-644.
3 Han J, Ye M, Xu M, et al. Characterization of flavonoids in the traditional Chinese herbal medicine-Huang Qin by liquid chromatography coupled with electrospray ionization mass spectrometery. J Chromatogr B Analyt Technol Biomed Life Sci, 2007, 848(2):355-362.
4 李時(shí)珍. 本草綱目. 北京: 華夏出版社, 2012:543-546.
5 許慎. 說文解字. 北京:中華書局. 1978:19.
6 馬繼興. 神農(nóng)本草經(jīng)輯注. 人民衛(wèi)生出版社2013:140.
7 張仲景. 傷寒論. 人民衛(wèi)生出版社, 1974:27.
8 Huang Z H, Xu Z Q. Single huang-qin for treatment of bacterial pneumonia. Shizhen Trad Med Res, 1992, 3(4):106-107.
9 褚為民. 單味黃芩治療妊娠期感冒的體會(huì). 內(nèi)蒙古中醫(yī)藥,2010, 29(16):15.
10 Xue T H, Roy R. Studying traditional Chinese medicine. Science, 2003, 300(5620):740-741.
11 Wen J D. Sho-saiko-to, A Clinically Documented Herbal Preperation for Treating Chronic Liver Disease. Herbal Gram, 2007, 59(73):34-43.
12 Yamamoto H, Miki S, Deguchi H. Five year follow up study of shosaiko-to (Xiao-Chai-Hu-Tang) administration in patients with chronic hepatitis. J Nissei Hospital,1994, 23:144-149.
13 Gibo Y, Nakamura Y, Takahashi N. Clinical study of sho saiko to therapy for Japanese patients with chronic hepatitis C. Prog Med, 1994,14:217-219.
14 Pan M Q, Li Y H, Liu J A, et al. Reports for 80 patients with bronchial lung squamous carcinoma (Mid or Late Stage) treated Lung FuFang and chemotherapy. J Trad Chin Med Pharm, 1990, 5:19-21.
15 Pan M Q, Li Y H, Jiang Y L. Clinical observation of old people NSCLC (mid or late stage) treated by Lung Fu Fang combined with chemotherapy. Shanxi Trad Chin Med, 2000,31:389-390.
16 蔣益蘭, 潘敏求, 蔡美, 等. 肺復(fù)方治療中晚期老年非小細(xì)胞肺癌多中心臨床研究. 北京中醫(yī)藥大學(xué)學(xué)報(bào), 2012, 35(10):712-715.
17 彭巍, 蔣益蘭. 肺復(fù)方聯(lián)合康萊特治療局部晚期非小細(xì)胞肺癌27例臨床研究. 國醫(yī)論壇, 2014(3):34-35.
18 Duan X, Jia C F, Duan M. Treatmenf of non-small-cell lung cancer by FuZheng Anti-cancer Prescription combined with chemotherapy. Shanxi Trad Chin Med, 2014, 35:311-312.
19 何敏, 周浴, 鄺軍, 等. 扶正抗癌方聯(lián)合化療治療非小細(xì)胞肺癌療效研究. 環(huán)球中醫(yī)藥, 2014(4):278-281.
20 柴小姝, 吳萬垠, 李柳寧, 等. 扶正抗癌方聯(lián)合吉非替尼治療PS≤2 分晚期 NSCLC 的療效與安全性研究. 現(xiàn)代中西醫(yī)結(jié)合雜志, 2014, 23(3):229-231.
21 Li H B, Jiang Y, Chen F. Separation methods used for Scutellaria baicalensis active components. J Chromatogr B Analyt Technol Biomed Life Sci, 2005, 812(1-2):277-290.
22 Zhou Y, Hirotani M, Yoshikawa T, et al. Flavonoids and phenylethanoids from hairy root cultures of Scutellaria baicalensis. Phytochemistry, 1997,44(1):83-87.
23 Makino T, Hishida A, Goda Y, et al. Comparison of the major flavonoid content of S. baicalensis, S. lateriflora, and their commercial products. J Nat Med, 2008, 62(3):294-299.
24 Choi J, Conrad C C, Malakowsky C A, et al. Flavones from Scutellaria baicalensis Georgi attenuate apoptosis and protein oxidation in neuronal cell lines. Biochimica Et Biophysica Acta, 2002,1571(3):201-210.
25 Dong H K, Su J J, Son K H, et al. The ameliorating effect of oroxylin A on scopolamine-induced memory impairment in mice. Neurobiol Learn Mem, 2007,87(4):536-546.
26 Scheck A C, Perry K, Hank N C, et al. Anticancer activity of extracts derived from the mature roots of Scutellaria baicalensis on human malignant brain tumor cells. BMC Complement Altern Med, 2006, 6:27.
27 Ye F, Jiang S Q, Volshonok H, et al. Molecular mechanism of antiprostate cancer activity of Scutellaria baicalensis extract. Nutr Cancer, 2007, 57(1):100-110.
28 Zhang D Y, Wu J, Ye F, et al. Inhibition of cancer cell proliferation and prostaglandin E2 synthesis by Scutellaria baicalensis. Cancer Res, 2003, 63(14):4037-4043.
29 Kumagai T, Muller C I, Desmond J C, et al. Scutellaria baicalensis, a herbal medicine: anti-proliferative and apoptotic activity against acute lymphocytic leukemia, lymphoma and myeloma cell lines. Leuk Res, 2007, 31(4):523-530.
30 Gao J, Morgan W A, Sanchez-Medina A, et al. The ethanol extract of Scutellaria baicalensis and the active compounds induce cell cycle arrest and apoptosis including upregulation of p53 and Bax in human lung cancer cells. Toxicol Appl Pharmacol, 2011, 254(3):221-228.
31 Li-Weber M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev, 2009, 35(1):57-68.
32 Wo?niak D, Lamer-Zarawska E, Matkowski A. Antimutagenic and antiradical properties of flavones from the roots of Scutellaria baicalensis Georgi. Nahrung, 2004, 48(1):9-12.
33 Chou C C, Pan S L, Teng C M, et al. Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells. Eur J Pharm Sci, 2003, 19(5):403-412.
34 Chen Y, Hui H, Yang H, et al. Wogonoside induces cell cycle arrest and differentiation by affecting expression and subcellular localization of PLSCR1 in AML cells. Blood, 2013,121(18):3682-3691.
35 Kim D H, Kim H K, Park S, et al. Short-term feeding of baicalin inhibits age-associated NF-κB activation. Mech Ageing Dev, 2006,127(9):719-725.
36 Krakauer T, Li B Q, Young H A. The flavonoid baicalin inhibits superantigen-induced inflammatory cytokines and chemokines. FEBS Lett, 2001, 500(1-2):52-55.
37 Fox J T, Sakamuru S, Huang R L, et al. High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death. Proc Natl Acad Sci U S A, 2012,109(14):5423-5428.
38 Shimizu I, Ma Y R, Mizobuchi Y, et al. Effects of sho-saiko-to, a japanese herbal medicine, on hepatic fibrosis in rats. Hepatology, 1999, 29(1):149-160.
39 Ohta Y, Nishida K, Sasaki E, et al. Comparative Study of Oral and Parenteral Administration of Sho-saiko-to (Xiao-Chaihu-Tang) Extract on D-galactosamine-induced Liver Injury in Rats. Am J Chin Med, 2012, 25(3-4):333-342.
40 Yang M D, Deng Q G, Chen S, et al. Hepatoprotective mechanisms of Yan-gan-wan. Hepatol Res, 2005, 32(4):202-212.
41 Yang M, Chen K, Shih J C. Yang-Gan-Wan protects mice against experimental liver damage. Am J Chin Med, 2000, 28(2):155-162.
42 Yang M D, Chiang Y M, Higashiyama R, et al. Rosmarinic acid and baicalin epigenetically derepress peroxisomal proliferator-activated receptor gamma in hepatic stellate cells for their antifibrotic effect. Hepatology, 2012, 55(4):1271-1281.
43 Chen H J, Liang T M, Lee I J, et al. Effect of Scutellaria baicalensis on hepatic stellate cells. Planta Med, 2014, 80(10):817.
44 de Boer J G, Quiney B, Walter P B, et al. Protection against aflatoxin-B1-induced liver mutagenesis by Scutellaria baicalensis. Mutation Research, 2005,578(1-2):15-22.
45 Kim S J, Moon Y J, Lee S M. Protective effects of baicalin against ischemia/reperfusion injury in rat liver. J Nat Prod, 2010,73(12):2003-2008.
46 Tan Y, Lv Z P, Bai X C, et al. Traditional Chinese medicine Bao Gan Ning increase phosphorylation of CREB in liver fibrosis in vivo and in vitro. J Ethnopharmacol, 2006,105(1-2):69-75.
47 Pan T L, Wang P W, Leu Y L, et al. Inhibitory effects of Scutellaria baicalensis extract on hepatic stellate cells through inducing G2/M cell cycle arrest and activating ERK-dependent apoptosis via Bax and caspase pathway. J Ethnopharmacol, 139(3):829-837.
48 Shan B, Cai Y Z, Brooks J D, et al. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int J Food Microbiol, 2007,117(1):112-119.
49 Blaszczyk T, Krzyzanowska J, Lamer-Zarawska E. Screening for antimycotic properties of 56 traditional Chinese drugs. Phytother Res, 2000,14(3):210-212.
50. Bruzewicz S, Malicki A, Oszmianski J, et al. Baicalin, added as the only preservative, improves the microbiological quality of homemade mayonnaise. Pakistan J Nutr, 2006,15(1):30-33.
51 Yang Z C, Wang B C, Yang X S, et al. The synergistic activity of antibiotics combined with eight traditional Chinese medicines against two different strains of Staphylococcus aureus. Colloids Surf B Biointerfaces, 2005,41(2-3):79-81.
52 Guo Q, Zhao L, You Q, et al. Anti-hepatitis B virus activity of wogonin in vitro and in vivo. Antiviral Res, 2007,74(1):16-24.
53 Tang Z M, Peng M, Zhan C J, et al. Screening 20 Chinese Herbs often Used for Clearing Heat and Dissipating Toxin with Nude Mice Model of Hepatitis C Viral Infection. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2003,23(6):447-448.
54 Kitamura K, Honda M, Yoshizaki H, et al. Baicalin, an inhibitor of HIV-1 production in vitro. Antiviral Res, 1998,37(2):131-140.
55 Li B Q, Fu T, Yao D Y, et al. Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem Biophys Res Commun, 2000, 276(2):534-538.
56 De Clercq E. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med Res Rev, 2000,20(5):323-349.
57 Zhao J, Zhang Z, Chen H, et al. Synthesis of baicalin derivatives and evaluation of their anti-human immunodeficiency virus (HIV-1) activity. Yao Xue Xue Bao,1998,33(1):22-27.
58 Lam T L, Lam M L, Au T K, et al. A comparison of human immunodeficiency virus type-1 protease inhibition activities by the aqueous and methanol extracts of Chinese medicinal herbs. Life Sci, 2000,67(23):2889-2896.
59 Ono K, Nakane H, Fukushima M, et al. Inhibition of reverse transcriptase activity by a flavonoid compound, 5,6,7-trihydroxyflavone. Biochem Biophys Res Commun, 1989,160(3):982-987.
60 Ahn H C, Lee S Y, Kim J W, et al. Binding aspects of baicalein to HIV-1 integrase. Mol Cells, 2001,12(1):127-130.
61 Wu J A, Attele A S, Zhang L, et al. Anti-HIV activity of medicinal herbs: usage and potential development. Am J Chin Med, 2012,29(1):69-81.
62 Schinella G R, Tournier H A, Prieto J M, et al. Antioxidant activity of anti-inflammatory plant extracts. Life Sci, 2002,70(9):1023-1033.
63 Gao Z, Huang K, Yang X, et al. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Et Biophys Acta, 1999,1472(3):643-650.
64 Wang H H, Liao J F, Chen C F. Anticonvulsant effect of water extract of Scutellariae radix in mice. J Ethnopharmacol, 2000,73(1-2):185-190.
65 Gaire B P, Moon S K, Kim H. Scutellaria baicalensis in Stroke Management: Nature’s Blessing in Traditional Eastern Medicine. Chin J Integr Med, 2014,20(9):712-720.
66 Shang Y, Cheng J, Qi J, et al. Scutellaria flavonoid reduced memory dysfunction and neuronal injury caused by permanent global ischemia in rats. Pharmacol Biochem Behav, 2005,82(1):67-73.
67 Zhang Y, Butelli E, Alseekh S, et al. Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat commun, 2015,6:8635.
68 Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol, 2014,19:81-90.
69 王丹. 黃芩組織培養(yǎng)與快速繁殖研究. 現(xiàn)代化農(nóng)業(yè). 2009,1:18-20.
70 高山林, 陳柏君. 黃芩組織培養(yǎng)快速繁殖技術(shù)的優(yōu)化. 中草藥. 2004,35(3):312-315.
71 王蕊, 張東向, 張磊. 黃芩的組織培養(yǎng)及遺傳轉(zhuǎn)化研究. 高師理科學(xué)刊. 2007,27(6):56-59.
72 Tiwari R K, Trivedi M, Guang Z C, et al. Agrobacterium rhizogenes mediated transformation of Scutellaria baicalensis and production of flavonoids in hairy roots. Biol Plant, 2008,52(1):26-35.
73 Joshee N, Parajuli P, Medina-Bolivar F, et al. Scutellaria Biotechnology: Achievements and Future Prospects. Bulletin of the University of Agricultural Sciences & Veterinary, 2010,1:1843-5394.
74 Park N I, Xu H, Li X H, et al. Enhancement of flavone levels through overexpression of chalcone isomerase in hairy root cultures of Scutellaria baicalensis. Funct Integr Genomics, 2011,11(3):491-496.
75 Zhao Q, Zhang Y, Wang G, et al. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Sci Adv, 2016,2(4):e1501780.
76 Kuzovkina I N, Guseva A V, Alterman I E, et al. Flavonoid Production in Transformed Scutellaria baicalensis Roots and Ways of Its Regulation. Russ J Plant Physl, 2001,48(4):448-452.
77 Kuzovkina I N, Guseva A V, Kovacs D, et al. Flavones in genetically transformed Scutellaria baicalensis roots and induction of their synthesis by elicitation with methyl jasmonate. Russ J Plant Physl, 2005,52(1):77-82.
78 Howie J A, Avendano S, Tolkamp B J, et al. Flavonoid Production in Transformed Root Cultures of Scutellaria baicalensis. Russ J Plant Physl, 2000,156(1):121-125.
79 Park N I, Xu H, Li X, et al. Overexpression of phenylalanine ammonialyase improves flavones production in transgenic hairy root cultures of Scutellaria baicalensis. Process Biochem, 2012,47(12):2575-2580.
80 Liu J, Hou J, Jiang C, et al. Deep Sequencing of the Scutellaria baicalensis Georgi Transcriptome Reveals Flavonoid Biosynthetic Profiling and Organ-Specific Gene Expression. PloS one, 2015,10(8):e0136397.
81 Qi L, Jian Y, Yuan Y, et al. Overexpression of two R2R3-MYB genes from Scutellaria baicalensis induces phenylpropanoid accumulation and enhances oxidative stress resistance in transgenic tobacco. Plant Physiol Biochem, 2015,94:235-243.
82 Yuan Y, Qi L, Yang J, et al. A Scutellaria baicalensis R2R3-MYB gene, SbMYB8, regulates flavonoid biosynthesis and improves drought stress tolerance in transgenic tobacco. Plant Cell Tiss Org, 2014,120(3):1-12.
83 Koes R, Verweij W F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci, 2005,10(5):236-242.
84 Williams C A, Grayer R J. Anthocyanins and other flavonoids. Nat Prod Rep, 2004,21(4):539-573.
85 Noel J P, Austin M B, Bomati E K. Structure-function relationships in plant phenylpropanoid biosynthesis. Curr Opin Plant Biol, 2005,8(3):249-253.
86 Yang L, Yang C, Li C, et al. Recent advances in biosynthesis of bioactive compounds in traditional Chinese medicinal plants. Science Bull(Beijing), 2016,61:3-17.
87 Martens S, Mithofer A. Flavones and flavone synthases. Phytochemistry, 2005,66(20):2399-2407.
88 Lepiniec L, Debeaujon I, Routaboul J M, et al. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol, 2006,57(1):405-430.
89 Islam M N, Downey F, Ng CKY. Comparative analysis of bioactive phytochemicals from Scutellaria baicalensis, Scutellaria lateriflora, Scutellaria racemosa, Scutellaria tomentosa and Scutellaria wrightii by LC-DAD-MS. Metabolomics, 2011,7(3):446-453.
90 Zhao Q, Chen X Y, Martin C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Science Bull(Beijing), 2016,61(18):1391-1398.
91 Hirotani M, Kuroda R, Suzuki H, et al. Cloning and expression of UDP-glucose: flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis. Planta, 2000,210(6):1006-1013.
92 楊光,郭蘭萍,郭曉恒,等. 藥用植物與叢枝根真菌的選擇性侵染研究. 中國中醫(yī)藥信息雜志,2012,19(1):53- 55.
93 Guo H J, Wang W, He X L. Effects of Host Plants on Growth and Development of Arbuscular Mycorrhizal Fungi in Rhizospere of Scutellaria baicalensis. Journal of Henan Agricultural Sciences, 2011,40(12):98-2439.
94 Parajuli P, Joshee N, Rimando A M, et al. In vitro Antitumor Mechanisms of Various Scutellaria Extracts and Constituent Flavonoids. Planta Med, 2009,75(1):41-48.
95 Chen L J, Games D E, Jones J. Isolation and identification of four flavonoid constituents from the seeds of Oroxylum indicum by highspeed counter-current chromatography. J Chromatogr A, 2003,988(1):95-105.
96 Samuelsen A B. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J Ethnopharmacol, 2000,71(1-2):1-21.
97 Tai M C, Tsang S Y, Chang L Y, et al. Therapeutic potential of wogonin:A naturally occurring flavonoid. CNS Drug Rev, 2005,11(2):141-150.
98 Liu Q, Markham K R, Pare P W, et al. Flavonoids from elicitor-treated cell-suspension cultures of Cephalocereus senilis. Phytochemistry, 1993,32(4):925-8.
99 Pichersky E, Lewinsohn E. Convergent Evolution in Plant Specialized Metabolism. Annu Rev Plant Biol, 62:549-566.
100 Latunde-Dada A O, Cabello-Hurtado F, Czittrich N, et al. Flavonoid 6- hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase. J Biol Chem, 2001,276(3):1688-1695.
101 Berim A, Gang D R. The Roles of a Flavone-6-Hydroxylase and 7-ODemethylation in the Flavone Biosynthetic Network of Sweet Basil. J Biol Chem,2013,288(3):1795-1805.
102 Berim A, Park J J, Gang D R. Unexpected roles for ancient proteins:flavone 8-hydroxylase in sweet basil trichomes is a Rieske-type,
PAO-family oxygenase. Plant J, 2014,80(3):385-395.
103 Park N I, Xu H, Li X, et al. Enhancement of flavone levels through overexpression of chalcone isomerase in hairy root cultures of Scutellaria baicalensis. Funct Integr Genomics, 2011,11(3):491-496.
Huang Qin, an Medicinal Plant Recorded in Ancient Books and Used in Modern Times
Cui Mengying1, Liu Jie1, Yang Lei1, Cathie Martin1,2, Chen Xiaoya1,3, Zhao Qing1
(1. Plant Science Research Center / Key Laboratory of Plant Functional Genomics and Resources / Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China; 2. John Innes Centre, Norwich, NR4 7UH, UK; 3. Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China)
Scutellaria baicalensis Georgi, or Huang qin, has been widely used in China during its long history as a kind of herb. Its dried root has been used in the treatment of respiratory infections, diarrhea, dysentery and liver problems, etc. In this paper, we reviewed the history of the utilization of Huang qin and its active components and their pharmacological properties in the treatment of diseases. The bioactive compounds in Huang qin were baicalin, wogonoside and baicaleinand wogonin. These favones performed various pharmacological activities, including anti-cancer, hepatoprotection, antibacterial and antiviral, antioxidant, anticonvulsant and neuroprotective effects. We also made the recent progresses on the investigations of biosynthesis of flavones in the plant and the biotechnologies involved, and discussed the developing trends in this area in hopes of providing references for related studies.
Scutellaria baicalensis Georgi, flavones, anti-cancer, metabolic biology
10.11842/wst.2016.11.014
R282.71
A
(責(zé)任編輯:馬雅靜,責(zé)任譯審:朱黎婷)
2016-10-25
修回日期:2016-11-02
* 上海市綠化和市容管理局2017年辰山專項(xiàng)(G172402):黃芩屬植物類黃酮代謝產(chǎn)物分析及代謝途徑解析,負(fù)責(zé)人:Cathie Marin、趙清。
** 通訊作者:趙清,助理研究員,主要研究方向:藥用植物次生代謝。
世界科學(xué)技術(shù)-中醫(yī)藥現(xiàn)代化2016年11期