亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        乘積空間上的抽象Hardy空間

        2016-02-08 10:37:20龔汝明
        關(guān)鍵詞:信息科學(xué)廣州大學(xué)乘積

        龔汝明

        (廣州大學(xué) 數(shù)學(xué)與信息科學(xué)學(xué)院, 廣東 廣州 510006)

        乘積空間上的抽象Hardy空間

        龔汝明

        (廣州大學(xué) 數(shù)學(xué)與信息科學(xué)學(xué)院, 廣東 廣州 510006)

        文章首先定義抽象Hardy空間;然后給出保證算子從抽象Hardy空間到L1空間有界的一般條件;最后,定義乘積空間上的BMO空間,并研究了其與抽象Hardy空間的關(guān)系.

        乘積空間; Hardy空間; BMO

        0 Introduction

        The development of the theory of Hardy spaces inRnwas initiated by STEIN, et al[1], and was originally tied to the theory of harmonic functions. Realvariable methods were introduced into this subject by FEFFERMAN, et al[2]; the evolution of their ideas led eventually to characterizations of Hardy spaces via the atomic or molecular decomposition. See for instance[3]and references therein.

        In order to establish Calderón-Zygmund theory with multiparameter, fourier analysis on product spaces was introduced later in the ’70 s and studied extensively in the ’80 s by a number of well known mathematicians, including CHANG, FEFFERMAN, JOURNé[4-8]. For recent works, see also Refs[9-13]. In this paper, we study the Hardy spaces defined on domains inRn×Rm. Note that domains inRn×Rmmay not be homogeneous type.

        LetΩbe an open set inRn×Rmwith finite measure. Denote bym(Ω) the maximal dyadic subrectangles ofΩ. Letm1(Ω) denote those dyadic subrectanglesR?Ω,R=I×Jthat are maximal in thex1direction. In other words ifS=I′×J?Ris a dyadic subrectangle ofΩ, thenI=I′. Definem2(Ω) similarly in thex2direction. For anyR=I×J?Ω, letlbe the biggest dyadic cube containingI, so thatl×J?, where={x∈Rn×Rm:Ms(χ)(x)>1/2}. Next, letSbe the biggest dyadic cube containingJ, so thatl×S?}.??lsothatl×J?.Defineγ2(R)similarly.ThenJourne′slemma, (inoneofitsforms)says,foranyδ>0,

        (1)

        forsomecδdependingonlyonδ,notonΩ.

        LetusdenotebyQnthecollectionofalldyadiccubesinRn:

        Qn={I:IisdyadiccubeinRn}

        (2)

        LetAn={AI}I∈Qnbe a collection ofL2-bounded linear operator, indexed by the collectionQn. We assume that these operatorsAIare uniformly bounded onL2(Rn). Similarly we can defineQmandBmby replacingnbym.

        Now, we define atoms by using the collectionAnandBm.

        αcan be decomposed into

        (3)

        whereR?Ω(say,R=IR×JRin the sum) is maximal dyadic subrectangle ofΩand there exists a functionbRsuch that

        (i)αR=AIRBJRbR;

        (ii) suppbR?R;

        Now we are able to define our abstract Hardy spaces:

        (4)

        We define the norm:

        (5)

        1 Continuity theorem on the Hardy space

        In this section, we propose some general conditions which guarantee the continuity from our Hardy space intoL1. We have the following result.

        Theorem 1 LetTbe anL2(Rn×Rm)-bounded sublinear operator satisfying the following estimates: for all open setΩwith finite measure and all maximal dyadic subrectangleR=I×JofΩ, for allji≥7,i=1,2, there existsβ>nsuch that for allL2-functionsfsupported inR

        (6)

        (7)

        (8)

        (9)

        (10)

        In order to prove Theorem 1, we need the following result.

        Lemma 1 Denote

        (11)

        (12)

        (13)

        Proof of Theorem 1 From Lemma 1, we only need to prove that there exists a constantCsuch that for all atomα,

        (14)

        (15)

        D+E.

        ForthetermD,weobservethat

        |T(AIBJbR)(x)|dx=D1+D2.

        LetusfirstestimatethetermD1.UsingHolder′sinequalityandEq.(6),wehave

        UsingHolder′sinequalityandEq.(7),wehave

        |T(AIBJbR)(x)|dx≤

        2 The dual space of Hardy space

        First,wegivethedefinitionoftheBMOspace.

        (16)

        wherethesuptakeoverallopensetΩwith finite measure. We define BMO as the completion of Bmo with this pseudo-norm.

        We have the following conclusion.

        Proof Letf∈ Bmo, thenf∈L2. Letα∈L2be an atom, then there exists open setΩwith finite measure andbRsuch thatα=AIBJbR. Then we get

        This completes the proof of this proposition.

        [1] STEIN E M, WEISS G. On the theory of harmonic functions of several variables. I. The theory ofHpspaces[J]. Acta Math, 1960,103(1): 25-62.

        [2] FEFFERMAN C, STEIN E M.Hpspaces of several variables[J]. Acta Math, 1972, 129(1): 137-195.

        [3] HOGMANN S, LU G Z, MITREA D, et al. Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates[J]. Mem Am Math Soc, 2011, 214: 78.

        [4] CHANG S Y, FEFFERMAN R. A continuous version of the duality of H1 and BMO on the bidisc[J]. Ann Math, 1980, 112(1): 179-201.

        [5] FEFFERMAN R, STEIN E M. Singular integrals on product spaces[J]. Adv Math, 1982, 45(2): 117-143.

        [6] FEFFERMAN R. Harmonic analysis on product spaces[J]. Ann Math, 1987, 126(1): 109-130.

        [7] JOURNE J L. Calderon-Zygmund operators on product space[J]. Rev Mat Iberoam, 1985, 1(3): 55-92.

        [8] JOURNE J L. Two problems of Calderon-Zygmund theory on product spaces[J]. Ann Inst Fourier, 1988, 38(1): 111-132.

        [9] NAGEL A, STEIN E M. On the product theory of singular integrals[J]. Rev Mat Iberoam, 2004, 20(2): 531-561.

        [10]HAN Y S, LI J, LU G Z. Duality of multiparameter Hardy space Hp on product spaces of homogeneous type[J]. Ann Scuola Norm Sup Pisa, 2010, 9(4): 645-685.

        [11]HAN Y S, LI J, LU G Z. Multiparameter Hardy space theory on arnot-Carath eodory spaces and product spaces of homogeneous type[J]. Trans Am Math Soc, 2013, 365(1): 319-360.

        [12]LI B, BOWNIK M, YANG D C. Littlewood-Paley characterization and duality of weighted anisotropic product Hardy spaces[J]. J Funct Anal, 2014, 266(5): 2611-2661.

        [13]CHEN P, DUONG X T, LI J, et al. Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type[J]. Math Z, 2016, 282 (3): 1033-1065.

        【責(zé)任編輯: 周 全】

        Hardy spaces on product domainsGONG Ru-ming(School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China)

        L1. At last, we give the definition of the BMO space and study the relationship between abstract Hardy spaces and BMO space.

        product domains; Hardy spaces; BMO

        O 174 Document code: A

        Foundation items: Supported by NNSF of China (11301100); Specialized Research Fund for the Doctoral Program of Higher Education (20124410120002); Foundation for Distinguished Young Teachers in Higher Education of Guangdong Province (YQ2015126); Foundation for Young Innovative Talents in Higher Education of Guangdong (2014KQNCX111) and Innovation Program of Higher Education of Guangdong (2015KTSCX105).

        1671- 4229(2016)06-0030-05

        O 174

        Received date: 2016-04-03; Revised date: 2016-06-12

        Biography: GONG Ru-ming(1983- ), male, associate professor. Email: gongruming@163.com.

        猜你喜歡
        信息科學(xué)廣州大學(xué)乘積
        廣州大學(xué)作品選登
        山西大同大學(xué)量子信息科學(xué)研究所簡介
        乘積最大
        三元重要不等式的推廣及應(yīng)用
        A Tale of Two Cities:Creating city images through “Shanghai Police Real Stories” and“Guard the Liberation West”
        Dirichlet級數(shù)及其Dirichlet-Hadamard乘積的增長性
        光電信息科學(xué)與工程專業(yè)模塊化課程設(shè)計探究
        基于文獻類型矯正影響因子在信息科學(xué)與圖書館學(xué)期刊中的實證分析
        《廣州大學(xué)學(xué)報( 社會科學(xué)版) 》2016 年( 第15 卷) 總目次
        復(fù)變?nèi)呛瘮?shù)無窮乘積的若干應(yīng)用
        国产成人a在线观看视频免费| 色老板在线免费观看视频日麻批| 日韩美腿丝袜三区四区| 中国少妇×xxxx性裸交| 国产人妖网站在线视频| 熟女人妻在线中文字幕| 亚洲第一最快av网站| 天码av无码一区二区三区四区 | 男女射精视频在线观看网站| 国产福利永久在线视频无毒不卡| 久久久精品久久日韩一区综合| 91老司机精品视频| 国产成人夜色在线视频观看| 人妻一区二区三区av| 欧美日韩精品一区二区三区高清视频| 久久久久成人亚洲综合精品| 一区二区三区四区日韩亚洲| 人妻少妇哀求别拔出来| 男男受被攻做哭娇喘声视频| 亚洲一级电影在线观看| 五月激情狠狠开心五月| 青青草视频网站在线观看| 久久婷婷人人澡人人喊人人爽| 老男人久久青草AV高清| 大屁股流白浆一区二区| 精品人妻少妇av中文字幕| 国产成人午夜精华液| 亚洲精品自拍视频在线观看| 亚洲国产精品自拍成人| 啦啦啦中文在线观看日本 | 国产成人精品日本亚洲直播| 日日麻批免费高清视频| 成人毛片av免费| av一区无码不卡毛片| 国产白浆大屁股精品视频拍| 在线观看免费无码专区| 波多野结衣aⅴ在线| 日韩高清av一区二区| 无遮挡激情视频国产在线观看| 欧美人与动人物姣配xxxx| 日韩人妻无码精品二专区|