楊舒雯,馬 奔,周 力,王 宇
復(fù)旦大學(xué)附屬腫瘤醫(yī)院頭頸外科,復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系,上海200032
斯鈣素的生物學(xué)特征及其與人體腫瘤關(guān)系研究進(jìn)展
楊舒雯,馬 奔,周 力,王 宇
復(fù)旦大學(xué)附屬腫瘤醫(yī)院頭頸外科,復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系,上海200032
斯鈣素(stanniocalcin,STC)是一種糖蛋白激素,由魚類獨(dú)有的內(nèi)分泌腺斯坦尼小體所分泌。在哺乳動(dòng)物中,也存在STC樣蛋白,分別命名為STC-1和STC-2,通過(guò)腎臟和胃腸道來(lái)調(diào)節(jié)鈣和磷酸鹽的代謝,STC-1與魚類STC氨基酸序列顯示高度同源性(約50%),STC-2則較低,有35%左右的氨基酸呈同源性。一些研究已發(fā)現(xiàn)它們的細(xì)胞定位、基因結(jié)構(gòu)在不同的生理和病理情況下的表達(dá),為闡明哺乳動(dòng)物的STC功能提供線索。此外,STC-1和STC-2在眾多腫瘤細(xì)胞系中有表達(dá),提示哺乳動(dòng)物STC具有除礦物質(zhì)代謝外的多種生物學(xué)功能。
斯鈣素;腫瘤;細(xì)胞增殖;腫瘤微環(huán)境
斯鈣素(stanniocalcin,STC)是一種糖蛋白激素,最早在硬骨魚中發(fā)現(xiàn),由魚類獨(dú)有的內(nèi)分泌腺斯坦尼小體所分泌。其生理作用在于抑制腮、腸的Ca2+轉(zhuǎn)運(yùn)使血鈣降低和促進(jìn)腎臟磷酸鹽的重吸收,因而是魚類一種重要的礦物質(zhì)代謝調(diào)節(jié)因子。近年來(lái)研究發(fā)現(xiàn),在人類和其他哺乳動(dòng)物中也存在STC樣蛋白,分別命名為STC-1和STC-2。STC以旁分泌和自分泌的方式參與機(jī)體的多種生理功能,可以通過(guò)腎臟和胃腸道來(lái)調(diào)節(jié)鈣和磷酸鹽的代謝,STC-1和STC-2廣泛表達(dá)于各種組織,STC表達(dá)的上調(diào)被證明是由細(xì)胞外Ca2+通過(guò)調(diào)控膜相關(guān)的鈣敏感受體而介導(dǎo)[1],同時(shí)有研究表明,Na+和Cl-同樣可以調(diào)節(jié)STC的表達(dá)[2]。STC在心血管疾病、炎癥細(xì)胞遷移、胚泡著床和子宮的蛻膜化等多方面都起重要作用,且越來(lái)越多的研究表明,STC-1和STC-2的表達(dá)與人類腫瘤的發(fā)展過(guò)程相關(guān)。
1.1STC-1的結(jié)構(gòu)與功能
STC-1基因位于染色體8p11.2-p21上,包含4個(gè)外顯子,編碼247個(gè)氨基酸[3]。STC-1有兩個(gè)亞型,其中一個(gè)相對(duì)分子質(zhì)量為50×103的STC50,另一個(gè)為相對(duì)分子質(zhì)量更大的大STC[4]。STC-1有多重功能,包括外傷的愈合[5]、線粒體代謝[6]、血管形成[7]、巨噬細(xì)胞的趨化作用[1]、類固醇形成[8]、肌肉和骨骼的發(fā)育[9]等。同時(shí)STC-1可以抑制凋亡,在腦缺血時(shí)保護(hù)腦細(xì)胞,并能激活多潛能間質(zhì)細(xì)胞[10-12]。缺氧時(shí)神經(jīng)細(xì)胞誘導(dǎo)STC-1[11],刺激細(xì)胞通過(guò)旁分泌、自分泌機(jī)制吸收磷酸鹽,以此促進(jìn)ATP的合成;另在缺血條件下,STC-1可能抑制具有細(xì)胞毒性的Ca2+進(jìn)入細(xì)胞內(nèi)。
1.2STC-1在哺乳動(dòng)物組織中的表達(dá)
STC-1廣泛表達(dá)于哺乳動(dòng)物組織中。STC-1 mRNA在小鼠卵巢間質(zhì)細(xì)胞和卵泡內(nèi)膜細(xì)胞呈高表達(dá),妊娠期和哺乳期的表達(dá)受到促黃體激素和孕激素的調(diào)控和催乳素的刺激[13]。在成骨細(xì)胞、軟骨細(xì)胞、發(fā)育中的幼鼠骨骼與肌肉組織、大腦皮質(zhì)錐體細(xì)胞、海馬區(qū)、脈絡(luò)叢和小腦的浦肯野細(xì)胞中都能觀察到STC-1 mRNA的表達(dá)。高Ca2+可穩(wěn)定原代培養(yǎng)細(xì)胞中STC的轉(zhuǎn)錄,推測(cè)STC-1 mRNA表達(dá)增加,也可能是由于STC-1轉(zhuǎn)錄穩(wěn)定性的增強(qiáng)。在通常情況下,除懷孕期間,STC-1在循環(huán)血液中無(wú)法檢測(cè)。然而,癌癥患者的血液樣本中可測(cè)得STC-1,此外,STC-1在許多腫瘤細(xì)胞系和腫瘤組織中均有表達(dá)[14]。在人神經(jīng)嵴源性腫瘤細(xì)胞中,經(jīng)PMA(PKC激活劑)誘導(dǎo)分化后STC-1表達(dá)在mRNA和蛋白水平上均增強(qiáng),主要表達(dá)在完全分化的神經(jīng)元細(xì)胞中[15]。因此,STC-1可能用于惡性腫瘤的分子標(biāo)志檢測(cè)血液或患者組織樣品中的腫瘤細(xì)胞。
低氧條件下,在鼻咽癌、甲狀腺髓樣癌、乳腺癌、肝癌、結(jié)直腸癌和卵巢癌等多種腫瘤組織中STC-1 mRNA被證實(shí)有表達(dá)變化[16-19],可能與人類腫瘤在缺氧情況下的轉(zhuǎn)錄調(diào)控發(fā)生變化,STC-1通過(guò)促進(jìn)缺氧區(qū)域的血管生成和提高腫瘤細(xì)胞的缺氧耐受性,以維持腫瘤細(xì)胞的能量代謝有關(guān)[20]。Liu等[21]發(fā)現(xiàn)在永生化的人卵巢上皮細(xì)胞、卵巢癌組織及卵巢癌患者血清中均有過(guò)表達(dá)的STC-1,推測(cè)STC-1過(guò)表達(dá)能夠促進(jìn)腫瘤細(xì)胞增殖、遷移和克隆形成。
2.1STC-2的結(jié)構(gòu)與功能
STC-2也稱為斯鈣素相關(guān)肽。STC-2基因位于染色體5q35上,含有302個(gè)氨基酸殘基,相對(duì)分子質(zhì)量為33×103,STC-2與STC-1有30%左右的氨基酸呈同源性。STC-2為同型二聚體糖蛋白結(jié)構(gòu),可被酪蛋白激酶磷酸化,STC-2原的1~18位氨基酸殘基組成信號(hào)肽,19~44位氨基酸殘基從STC-2原上裂解后剩余的肽段即稱為成熟的STC-2[22]。與STC-1不同的是,STC-2氨基酸序列在C-末端包含一簇組氨酸殘基,這提示STC-2可能與鈷、銅、鎳及鋅等金屬離子相互作用有關(guān)[23-24]。
2.2STC-2在哺乳動(dòng)物組織中的表達(dá)
STC-2也可在哺乳動(dòng)物多種組織細(xì)胞中表達(dá)。在骨中豐富表達(dá)提示,STC-2在骨代謝中起某些作用[2,22];Ishibashi等[25]認(rèn)為,STC-2的作用在于抑制腎臟磷酸鹽的攝取,因?yàn)镾TC-2轉(zhuǎn)染CHO細(xì)胞的培養(yǎng)介質(zhì)能抑制負(fù)鼠腎臟細(xì)胞Na+/ PO43-協(xié)同轉(zhuǎn)運(yùn)體啟動(dòng)子的活性;Moore等[26]利用Northern blot和雙重免疫染色技術(shù)發(fā)現(xiàn)STC-2存在于胰島素α細(xì)胞中,推測(cè)STC-2可能與血糖穩(wěn)態(tài)調(diào)節(jié)有關(guān)。
與相應(yīng)的正常組織相比,STC-2在多種腫瘤組織中均過(guò)表達(dá),如乳腺癌[27]、成纖維細(xì)胞瘤[31]、食管鱗癌[32]、胃癌[33]、結(jié)直腸癌[34]、腎細(xì)胞癌[28,35]、前列腺癌[36]和子宮內(nèi)膜癌[37]。其中在結(jié)直腸癌[34]、胃癌[33]和腎細(xì)胞癌[35]中,STC-2高表達(dá)與患者生存率呈負(fù)相關(guān)。在人乳腺癌中,STC-2和雌激素受體(estrogen receptor,ER)水平呈正相關(guān),且雌激素可誘導(dǎo)STC-2表達(dá)[29],對(duì)雌激素敏感的人乳腺癌細(xì)胞的12 550個(gè)基因表達(dá)分析后顯示,約0.4%的基因表達(dá)上調(diào)3倍以上,其中STC-2上調(diào)10倍,STC-1水平卻沒(méi)有變化[30]。在腎細(xì)胞癌組織中,STC-2的mRNA和蛋白均上調(diào);在正常腎臟組織中,STC-2的表達(dá)僅限于末梢腎小管和腎小球,而在腫瘤組織中的細(xì)胞質(zhì)強(qiáng)染色,細(xì)胞膜也染色。STC-2在透明細(xì)胞、嫌色細(xì)胞和乳突狀腎細(xì)胞腎癌中都有表達(dá)。STC-2的細(xì)胞質(zhì)強(qiáng)染色,則患者生存期較短;在沒(méi)有轉(zhuǎn)移的腎細(xì)胞腎癌中,有無(wú)進(jìn)展的因素與患者總生存期較短相關(guān)[35]。
3.1STC與腫瘤間的關(guān)聯(lián)
目前許多研究證實(shí),STC-1和STC-2參與腫瘤的發(fā)生、發(fā)展,并且高表達(dá)水平的STC-1和STC-2與不同類型癌癥的不良預(yù)后相關(guān)。白血病患者外周血的高STC-1 mRNA表達(dá)生存率較低。在散發(fā)的腎透明細(xì)胞癌(clear cell renal cell carcinoma,ccRCC)及BRCA1和BRCA2突變的乳腺癌中均有染色體5q異常,STC-2基因正位于此[27-28]。cDNA微陣列和實(shí)時(shí)熒光定量聚合酶鏈反應(yīng)(real-time fluorescent quantitative polymerase chain reaction,RTFQ-PCR)分析發(fā)現(xiàn),STC-2在二甲基苯并蒽、輻射誘發(fā)的小鼠乳腺癌腫瘤組織中均有表達(dá),并且相對(duì)于對(duì)照組,STC-2穩(wěn)定轉(zhuǎn)染的小鼠乳腺癌細(xì)胞發(fā)生形態(tài)學(xué)變化[38]。一項(xiàng)72例乳腺癌的回顧性研究結(jié)果顯示,STC-2在復(fù)發(fā)較晚(術(shù)后5、10年)的原發(fā)灶及復(fù)發(fā)轉(zhuǎn)移灶中的表達(dá)均高于其在早期復(fù)發(fā)轉(zhuǎn)移灶中的表達(dá)(P=0.004,P=0.000 1),說(shuō)明STC-2高表達(dá)作為促生存因子,有助于乳腺腫瘤細(xì)胞的休眠[27]。
相反,Kita等[32]用激光微切割和寡核苷酸微陣列分析技術(shù)分析食管癌淋巴結(jié)特異性的轉(zhuǎn)移相關(guān)的基因,在識(shí)別的63個(gè)基因中,發(fā)現(xiàn)STC-2在食管癌組織中的表達(dá)明顯高于相應(yīng)正常組織(P<0.001),且與食管鱗癌淋巴結(jié)轉(zhuǎn)移、淋巴管浸潤(rùn)及腫瘤遠(yuǎn)處轉(zhuǎn)移密切相關(guān)(P值分別為0.005、0.007和0.038),STC-2高表達(dá)者5年生存率低于低表達(dá)患者(P=0.016),STC-2轉(zhuǎn)染的細(xì)胞增生率高于對(duì)照組細(xì)胞(P<0.001),但STC-2在腫瘤進(jìn)展中的作用和它的鈣調(diào)節(jié)能力無(wú)關(guān)。
3.2STC對(duì)腫瘤細(xì)胞增殖、凋亡和腫瘤血管形成的調(diào)控
STC-1和STC-2的細(xì)胞生長(zhǎng)相關(guān)性與細(xì)胞凋亡有關(guān)。有研究發(fā)現(xiàn),在STC-1過(guò)表達(dá)卵巢細(xì)胞系和異種移植小鼠腫瘤中,STC-1有明顯促增殖作用[21]。在共同培養(yǎng)的多能干細(xì)胞與紫外照射過(guò)的成纖維細(xì)胞、乏氧誘導(dǎo)的肺癌上皮細(xì)胞、人卵巢癌細(xì)胞中,STC-1起到抗凋亡作用[12,21]。而有研究證明,STC-1對(duì)碘乙酰胺(蛋白酶抑制劑)治療下的人類鼻咽癌細(xì)胞[20]、曲古抑菌素治療下的人結(jié)直腸癌細(xì)胞[40-41]和在氧化應(yīng)激下的鼠胚胎成纖維細(xì)胞[41]均具有促凋亡作用。以上差異性結(jié)果并不矛盾,因?yàn)镾TC-1可能不是促或抑制細(xì)胞凋亡的關(guān)鍵調(diào)節(jié)點(diǎn)。研究推測(cè),STC-1促或抑制細(xì)胞凋亡作用依賴于細(xì)胞適應(yīng)內(nèi)、外環(huán)境功能紊亂的程度。盡管STC-1促或抑制細(xì)胞凋亡作用尚未確定,但一些細(xì)胞生存相關(guān)信號(hào)分子和通路已確定調(diào)控STC-1表達(dá),如HIF-1[16]、p53[42]、Sp1[40]、NF-κB[39,42]、ERK-1/2[41]和線粒體的抗氧化通路[43]。
STC-2能夠促進(jìn)人類胃細(xì)胞和缺氧下人類卵巢細(xì)胞的增殖[44-45]。實(shí)體瘤的發(fā)生、發(fā)展通常與缺氧有關(guān)。在缺氧條件下,STC-2基因是HIF-1的下游基因,且STC-2蛋白促進(jìn)Rb和cyclinD的磷酸化,并促進(jìn)細(xì)胞增殖、抑制凋亡。STC-2基因沉默后的乏氧細(xì)胞增殖能力明顯弱于STC-2過(guò)表達(dá)的乏氧細(xì)胞[45]。有研究[36]報(bào)道,采用RTFQ-PCR和免疫組織化學(xué)檢查方法在去勢(shì)抵抗和惡性程度比較高的前列腺癌組織中發(fā)現(xiàn)STC-2呈高表達(dá),通過(guò)小干擾RNA可有效沉默STC-2基因表達(dá)、減少前列腺細(xì)胞系的增殖,提示它可能是預(yù)測(cè)前列腺癌惡性程度和治療前列腺癌的一個(gè)靶分子。Ieta等[34]將STC-2基因轉(zhuǎn)染至分化程度高且STC-2基因低表達(dá)的結(jié)、直腸癌細(xì)胞系中,結(jié)果伴隨著STC-2基因表達(dá)的增加,同時(shí)還出現(xiàn)細(xì)胞分化程度降低、細(xì)胞增殖旺盛等改變,提示STC-2可能通過(guò)參與調(diào)控細(xì)胞增殖來(lái)促進(jìn)結(jié)腸癌細(xì)胞的侵襲及轉(zhuǎn)移。在內(nèi)質(zhì)網(wǎng)功能紊亂、缺氧情況下,STC-2基因?yàn)镻ERK-ATF4通路和HIF-1下游靶基因,其抗凋亡能力增強(qiáng)[45,47],主要通過(guò)與內(nèi)質(zhì)網(wǎng)鈣離子結(jié)合器結(jié)合,抑制細(xì)胞膜對(duì)鈣離子的轉(zhuǎn)運(yùn)程序[46]。
相比之下,有研究認(rèn)為,在乳腺癌細(xì)胞、體外神經(jīng)細(xì)胞瘤中,STC-2起了細(xì)胞增殖抑制作用[31,46]。在無(wú)血清培養(yǎng)條件下,STC-2的基礎(chǔ)表達(dá)抑制細(xì)胞增殖、遷移和細(xì)胞活性,并且雌二醇、孕酮和維甲酸可調(diào)節(jié)乳腺癌細(xì)胞中的STC2的表達(dá)[46]。高水平的STC-2抑制乳腺癌細(xì)胞增殖,與乳腺癌患者較長(zhǎng)的無(wú)病生存期相關(guān),并提示較好的預(yù)后[18]。此外,有研究報(bào)道,STC-2通過(guò)增加人成纖維細(xì)胞瘤細(xì)胞的基礎(chǔ)凋亡率抑制細(xì)胞的增殖[31]。因此,關(guān)于STC-2對(duì)腫瘤增殖作用有待進(jìn)一步研究。
有進(jìn)一步研究報(bào)告顯示,STC-1和STC-2的表達(dá)與腫瘤抑制因子和血管生成因子相關(guān)。有研究已證明,BRCA1和血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)激活STC-1的表達(dá)[48-49],且STC-1基因被確定為結(jié)腸腫瘤的一種血管特異性血管生成相關(guān)基因[50]和VEGF/Wnt2下游目標(biāo)基因[50-51]。另外,血管網(wǎng)的建立和形成促進(jìn)實(shí)體瘤生長(zhǎng),Law等[45]對(duì)人臍靜脈內(nèi)皮細(xì)胞行侵襲試驗(yàn),發(fā)現(xiàn)STC-2可刺激內(nèi)皮細(xì)胞侵襲,但其機(jī)制尚未闡明。
3.3STC與腫瘤微環(huán)境
腫瘤的發(fā)生和轉(zhuǎn)移與腫瘤細(xì)胞所處的內(nèi)外環(huán)境有著密切關(guān)系。它不僅包括腫瘤所在組織的結(jié)構(gòu)、功能和代謝,而且亦與腫瘤細(xì)胞自身的(細(xì)胞核和細(xì)胞質(zhì))內(nèi)在環(huán)境有關(guān)。腫瘤細(xì)胞在微環(huán)境中的適應(yīng)性反應(yīng)導(dǎo)致細(xì)胞的致癌性轉(zhuǎn)化、凋亡抵抗和轉(zhuǎn)移等概率增加,研究發(fā)現(xiàn)STC-1和STC-2在腫瘤細(xì)胞中的表達(dá)、對(duì)腫瘤遷移和浸潤(rùn)的促進(jìn)作用與微環(huán)境中缺氧和內(nèi)質(zhì)網(wǎng)功能紊亂相關(guān)。此二者密切影響腫瘤的生長(zhǎng)特性[44,47]。事實(shí)上,腫瘤進(jìn)展中的微環(huán)境變化類似慢性炎癥的過(guò)程,開(kāi)始時(shí)缺血,而最終血管生成[49]。應(yīng)用細(xì)胞遷移實(shí)驗(yàn)和平板克隆分析不同人類卵巢癌細(xì)胞株,Liu等[21]闡明了STC-1刺激卵巢腫瘤發(fā)生的刺激效應(yīng)。
上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)是腫瘤浸潤(rùn)、轉(zhuǎn)移的重要機(jī)制。Law等[52]運(yùn)用蛋白[質(zhì)]印跡法(Western blot)和免疫細(xì)胞化學(xué)法,揭示在缺氧條件下,誘導(dǎo)活性氧生成、激活MAPK/ERK信號(hào)通路,穩(wěn)定表達(dá)的STC-2能促進(jìn)卵巢癌SKOV3細(xì)胞的EMT過(guò)程,很大程度地增強(qiáng)了細(xì)胞運(yùn)動(dòng)能力和侵襲能力,膠原蛋白降解基質(zhì)金屬蛋白酶(matrix metallo-proteinase,MMP-2)和MMP-9活性的提高可能參與了這個(gè)過(guò)程,提示STC-2在缺氧條件下為腫瘤進(jìn)展的正調(diào)節(jié)蛋白。在原發(fā)的人成纖維細(xì)胞瘤組織中,STC-2與4期和4s期轉(zhuǎn)移、MYCN表達(dá)相關(guān);轉(zhuǎn)染了STC-2的成纖維細(xì)胞瘤細(xì)胞MMP-2活性增強(qiáng),具有更高的侵襲潛能并引起出血,可能促進(jìn)轉(zhuǎn)移[31]。實(shí)驗(yàn)說(shuō)明在一定環(huán)境下,STC-2與腫瘤轉(zhuǎn)移呈正相關(guān)。
目前大量研究嘗試闡明STC的生物學(xué)特性,包括細(xì)胞與組織表達(dá)的調(diào)控機(jī)制、特定細(xì)胞的受體及這些受體的信號(hào)產(chǎn)生的生理效應(yīng)與病理生理作用。STC在人類腫瘤的發(fā)生、發(fā)展過(guò)程中發(fā)揮著比較廣泛的作用,臨床試驗(yàn)表明,STC-1、STC-2與人體腫瘤分化程度、淋巴結(jié)轉(zhuǎn)移、淋巴管浸潤(rùn)和腫瘤分期等相關(guān),預(yù)測(cè)STC可以應(yīng)用于臨床工作中,但在不同腫瘤有不同程度的表達(dá),且調(diào)控作用不盡相同,這些研究是在不同的細(xì)胞中進(jìn)行,可能存在細(xì)胞種類的依賴性,因此其生物學(xué)活性與腫瘤發(fā)生、發(fā)展及信號(hào)轉(zhuǎn)導(dǎo)途徑等具體機(jī)制需行進(jìn)一步實(shí)驗(yàn)研究。
[1] GREENWOOD M P, FLIK G, WAGNER G F, et al. The corpuscles of stannius, calcium-sensing receptor, and stanniocalcin: responses to calcimimetics and physiological challenges[J]. Endocrinology, 2009, 150(7): 3002-3010.
[2] PIERSON P M, LAMERS A, FLIK G, et al. The stress axis,stanniocalcin, and ion balance in rainbow trout[J]. Gen Comp Endocrinol, 2004, 137(3): 263-271.
[3] ELLARD J P, MCCUDDEN C R, TANEGA C, et al. The respiratory efforts of stanniocalcin (STC-1) on intactmitochondria and cells: STC-1 uncouples oxidative phosphorylation and its actions are modulated by nucleotide triphosphates[J]. Mol Cell Endocrinol, 2007, 264(3): 90-101.
[4] PACIGA M, JAMES K, GILLESPIE J R, et al. Evidence for cross-talk between stanniocalcins[J]. Can J Physiol Pharmacol, 2005, 83(11): 953-956.
[5] PACIGA M, HIRVI E R, JAMES K, et al. Characterization of big stanniocalcin variants in mammalian adipocytes and adrenocortical cells[J]. Am J Physiol Endocrinol Metab,2005, 289(2): 197-205.
[6] MCCUDDEN C R, JAMES K A, HASILO C, et a1. Characterization of mammalian stanniocalcin receptors. Mitochondrial targeting of ligand and receptor for regulation of cellular metabolism[J]. J Biol Chem, 2002, 277(47): 45249-45258.
[7] KAHN J, MEHRABAN F, INGLE G, et al. Gene expression profiling in an in vitro model of angiogenesis[J]. Am J Pathol, 2000, 156(6): 1887-1900.
[8] PACIGA M, MCCUDDEN C R, LONDOS C, et al. Targeting of big stanniocalcin and its receptor to lipid storage droplets of ovarian steroidogenic cells[J]. J Biol Chem, 2003, 278(49): 49549-49554.
[9] JOHNSTON J, RAMOS-VALDES Y, STANTON L A, et al. Human stanniocalcin-1 or -2 expressed in mice reduces bone size and severely inhibits cranial intramembranous bone growth[J]. Transgenic Res, 2010, 19(6): 1017-1039.
[10] LI L, WONG C K. Effects of dexamethasone and dibutyryl cAMP on stanniocalcin-1 mRNA expression in rat primary Sertoli and Leydig cells[J]. Mol Cell Endocrinol, 2008,283(1-2): 96-103.
[11] ZHANG K Z, LINDSBERG P J, TATLISUMAK T, et al. Stanniocalcin: a molecular guard of neurons during cerebral ischemia[J]. Proc Natl Acad Sci U S A, 2000, 97(7): 3637-3642.
[12] BLOCK G J, OHKOUCHI S, FUNG F, et al. Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1[J]. Stem Cells, 2009, 27(3): 670-681.
[13] DEOL H K, VARGHESE R, WAGNER G F, et al. Dynamic regulation of mouse ovarian stanniocalcin expression during gestation and lactation[J]. Endocrinology, 2000, 141(9): 3412-3421.
[14] FUJIWARA Y, SUGITA Y, NAKAMORI S, et al. Assessment of stanniocalcin-1 mRNA as a molecular marker for micrometastases of various human cancers[J]. Int J Oncol,2000, 16(4): 799-804.
[15] ZHANG K Z, WESTBERG J A, PAETAU A, et al. High expression of stanniocalcin in differentiated brain neurons[J]. Am J Pathol, 1998, 153(2): 439-445.
[16] YEUNG H Y, LAI K P, CHAN H Y, et al. Hypoxia inducible factor-1-mediated activation of stanniocalcin-1 in human cancer cells[J]. Endocrinology, 2005, 146(11): 4951-4960.
[17] CHANG A C, CHA J, KOENTGEN F, et al. The murine stanniocalcin 1 gene is not essential for growth and development[J]. Mol Cell Biol, 2005, 25(23): 10604-10610.
[18] ESSEGHIR S, KENNEDY A, SEEDHAR P, et al. Identification of NTN4, TRA1, and STC2 as prognostic markers in breast cancer in a screen for signal sequence encoding proteins[J]. Clin Cancer Res, 2007, 13(11): 3164-3173.
[19] CHANG A C, JELLINEK D A, REDDEL R R. Mammalian stanniocalcins and cancer[J]. Endocrinol Relat Cancer,2003, 10(3): 359-373.
[20] LAI K P, LAW A Y, YEUNG H Y, et al. Induction of stanniocalcin-1 expression in apoptotic human nasopharyngeal cancer cells by p53[J]. Biochem Biophys Res Commun,2007, 356(4): 968-975.
[21] LIU G, YANG G, CHANG B, et al. Stanniocalcin 1 and ovarian tumorigenesis[J]. J Natl Cancer Inst, 2010,102(11): 812-827.
[22] LUO C W, PISARSKA M D, HSUEH A J. Identification of a stanniocalcin paralog, stanniocalcin-2, in fish and the paracrine actions of stanniocalcin-2 in the mammalian ovary[J]. Endocrinology, 2005, 146(1): 469-476.
[23] JAMES K, SEITELBACH M, MCCUDDEN C R, et al. Evidence for stanniocalcin binding activity in mammalian blood and glomerular filtrate[J]. Kidney International,2005, 170(5): 579-590.
[24] MIURA W, MIZUNASHI K, KIMURA N, et al. Expression of stanniocalcin in zona glomerulosa and medulla of normal human adrenal glands, and some adrenal tumors and cell lines[J]. APMIS, 2000, 108(5): 367-372.
[25] ISHIBASHI K, MIYAMOTO K, TAKETANI Y, et al. Molecular cloning of a second human stanniocalcin homologue(STC2) [J]. Biochem Biophys Res Commun, 1998, 250(2): 252-258.
[26] MOORE E E, KUESTNER R E, CONKLIN D C, et al. Stanniocalcin 2: characterization of the protein and its localization to human pancreatic alpha cells[J]. Horm Metab Res, 1999, 31(7): 406-414.
[27] JOENSUU K, HEIKKILA P, ANDERSSON L C. Tumor dormancy: elevated expression of stanniocalcins in late relapsing breast cancer[J]. Cancer Lett, 2008, 265(1): 76-83.
[28] DONDETI V R, WUBBENHORST B, LAL P, et al. Integrative genomic analyses of sporadic clear cell carcinoma define disease subtypes and potential new therapeutic targets[J]. Cancer Res, 2012, 72(1): 112-121.
[29] BOURAS T, SOUTHEY M C. Stanniocalcin 2 is an estrogenresponsive gene coexpressed with the estrogen receptor in human breast cancer[J]. Cancer Res, 2002, 62(5): 1289-1295.
[30] CHARPENTIER A H, BEDNAREK A K, DANIEL R L, et al. Effects of estrogen on global gene expression: identification of novel targets of estrogen action[J]. Cancer Res, 2000,60(21): 5977-5983.
[31] VOLLAND S, KUGLER W, SCHWEIGERER L, et al. Stanniocalcin 2 promotes invasion and is associated with metastatic stages in neuroblastoma[J]. Int J Cancer, 2009,125(9): 2049-2057.
[32] KITA Y, MIMORI K, IWATSUKI M, et al. STC2: a predictive marker for lymph node metastasis in esophageal squamouscell carcinoma[J]. Ann Surg Oncol, 2011, 18(1): 261-272.
[33] YOKOBORI T, MIMORI K, ISHII H, et al. Clinical significance of stanniocalcin 2 as a prognostic marker in gastric cancer[J]. Ann Surg Oncol, 2010, 17(10): 2601-2607.
[34] IETA K, TANAKA F, YOKOBORI T, et al. Clinicopathological significance of stanniocalcin 2 gene expression in colorectal cancer[J]. Int J Cancer, 2009, 125(4): 926-931.
[35] MEYER H A, T?LLE A, JUNG M, et al. Identification of stanniocalcin 2 as prognostic marker in renal cell carcinoma[J]. Eur Urol, 2009, 55(3): 669-678.
[36] TAMURA K, FURIHATA M, CHUNG S Y, et al. Stanniocalcin-2 overexpression in castration resistant prostate cancer and aggressive prostate cancer[J]. Cancer Sci, 2009,100(5): 914-919.
[37] KOGA Y, YASUNAGA M, KAJIKAWA M, et al. Novel virtual cytological analysis for the detection of endometrial cancer cells using autoscan fluoromicroscopy[J]. Cancer Sci, 2011,102(5): 914-919.
[38] LEE H J, LEE Y J, KANG C M. Differential gene signatures in rat mammary tumors induced by DMBA and those induced by fractionated γ radiation[J]. Radiat Res, 2008, 170(5): 579-590.
[39] LAW A Y, LAI K P, LUI W C, et al. Histone deacetylase inhibitor-induced cellular apoptosis involves stanniocalcin-1 activation[J]. Exp Cell Res, 2008, 314(16): 2975-2984.
[40] LAW A Y, YEUNG B H, CHING L Y, et al. Sp1 is a transcription repressor to stanniocalcin-1 expression in TSA-treated human colon cancer cells, HT29[J]. J Cell Biochem, 2011, 112(8): 2089-2096.
[41] NGUYEN A, CHANG A C, REDDEL R R. Stanniocalcin-1 acts in a negative feedback loop in the prosurvival ERK1/2 signaling pathway during oxidative stress[J]. Oncogene,2009, 28(18): 1982-1992.
[42] YEUNG H Y, CHAN D K, MAK N K, et al. Identification of signal transduction pathways that modulate dibutyryl cyclic adenosine monophosphate activation of stanniocalcin gene expression in neuroblastoma cells[J]. Endocrinology, 2003,144(10): 4446-4452.
[43] SHEIKH-HAMAD D. Mammalian stanniocalcin-1 activates mitochondrial antioxidant pathways: new paradigms for regulation of macrophages and endothelium[J]. Am J Physiol Renal Physiol, 2010, 298(2): F248-F254.
[44] LAW A Y, LAI K P, IP C K, et al. Epigenetic and HIF-1 regulation of stanniocalcin-2 expression in human cancer cells[J]. Exp Cell Res, 2008, 314(8): 1823-1830.
[45] LAW A Y, WONG C K. Stanniocalcin-2 is a HIF-1 target gene that promotes cell proliferation in hypoxia[J]. Exp Cell Res, 2010, 316(3): 466-476.
[46] RAULIC S, RAMOS-VALDES Y, DIMATTIA G E. Stanniocalcin 2 expression is regulated by hormone signalling and negatively affects breast cancer cell viability in vitro[J]. J Endocrinol, 2008, 197(3): 517-529.
[47] ITO D, WALKER J R, THOMPSON C S, et al. Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties[J]. Mol Cell Biol, 2004, 24(21): 9456-9469.
[48] JAUHIAINEN S, H?KKINEN S K, TOIVANEN P I, et al. Vascular endothelial growth factor (VEGF)-D stimulates VEGF-A, stanniocalcin-1, and neuropilin-2 and has potent angiogenic effects[J]. Arterioscler Thromb Vasc Biol, 2011,31(7): 1617-1624.
[49] LIU D, JIA H, HOLMES D I, et al. Vascular endothelial growth factor-regulated gene expression in endothelial cells: KDR-mediated induction of Egr3 and the related nuclear receptors Nur77, Nurr1, and Nor1[J]. Arterioscler Thromb Vasc Biol, 2003, 23(11): 2002-2007.
[50] HOLMES D I, ZACHARY I C. Vascular endothelial growth factor regulates stanniocalcin-1 expression via neuropilin-1-dependent regulation of KDR and synergism with fibroblast growth factor-2[J]. Cell Signal, 2008, 20(3): 569-579.
[51] KLEIN D, DEMORY A, PEYRE F, et al. Wnt2 acts as an angiogenic growth factor for non-sinusoidal endothelial cells and inhibits expression of stanniocalcin-1[J]. Angiogenesis, 2009, 12(3): 251-265.
[52] LAW A Y, WONG C K. Stanniocalcin-2 promotes epithelialmesenchymal transition and invasiveness in hypoxia human ovarian cancer cells[J]. Exp Cell Res, 2010, 316(20): 3425-3434.
The progress of the research on the relationship between stanniocalcins and cancers
YANG Shuwen,MA Ben, ZHOU Li, WANG Yu
(Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China)
Correspondence to: WANG Yu E-mail: neck130@hotmail.com
Stanniocalcin (STC) was first found as a calcium- and phosphate-regulating hormone produced in bony fish by the corpuscles of Stannius. In mammals, the homolog STC-1 displays a relative high amino acid sequence identity (nearly 50%) with fish STC, and STC-2 has a lower identity (nearly 35%) with STC-1 and fish STC. Both STC-1 and STC-2 are expressed in a variety of tissues. The functions of STC have not been understood. But some findings have been reported on their cellular localization, gene structure, and expression in different physiological and pathological conditions, which will be clues in elucidating the functions of STC in mammals. Moreover, STC-1 and STC-2 are expressed in many tumor cell lines, suggesting other biological functions of STC in mammals other than mineral metabolism.
Stanniocalcin; Tumor; Cell proliferation; Tumor microenvironmemt
10.19401/j.cnki.1007-3639.2016.10.012
R73-37
A
1007-3639(2016)10-0875-06
王 宇 E-mail: neck130@hotmail.com
(2015-02-10
2015-10-15)