?
基于肝干細胞的肝癌生物學(xué)研究進展
職曉松,訾曉淵,胡以平
( 第二軍醫(yī)大學(xué) 基礎(chǔ)部細胞生物學(xué)教研室,上海200433)
[摘要]肝干細胞是一類具有自我更新能力和分化為肝細胞與膽管細胞能力的肝原始細胞。而原發(fā)性肝癌是我國死亡率居第2位的惡性腫瘤。近年在中晚期肝癌中發(fā)現(xiàn)了具有干細胞特性的細胞(即肝癌干細胞)存在,并認為肝癌干細胞自我更新機制的失調(diào)可能是原發(fā)性肝癌發(fā)生的因素之一,這種細胞可能與肝癌細胞增殖的維持、轉(zhuǎn)移、放療和化療抵抗等現(xiàn)象有關(guān)。本文就肝干細胞和肝癌干細胞在原發(fā)性肝癌的發(fā)生、轉(zhuǎn)移和治療抵抗中發(fā)揮的作用進行綜述。
[關(guān)鍵詞]肝干細胞;肝癌干細胞;肝癌;轉(zhuǎn)移;放療化療抵抗
肝干細胞目前認為是一類存在于肝門管區(qū)Hering管中的肝原始細胞,具有持續(xù)的自我更新能力和分化為成熟肝細胞和膽管細胞的能力,主要參與生理性肝臟細胞更新和病理性肝損傷修復(fù)。而原發(fā)性肝癌在我國已成為死亡率居第2位的惡性腫瘤,具有早期診斷難、進展快、預(yù)后差及復(fù)發(fā)率高等特點。目前認為,限制肝癌研究進展的一個關(guān)鍵因素就是對肝癌生物學(xué)行為的細胞學(xué)基礎(chǔ)認識不清。近年來,有動物實驗發(fā)現(xiàn),許多調(diào)控肝干細胞自我更新的信號通路失調(diào)節(jié)會導(dǎo)致肝癌的發(fā)生,這為認識肝癌的發(fā)病機制提供了新的思路。而許多中晚期腫瘤組織中同樣存在一小群能維持腫瘤組織惡性生長的具有干細胞特性的細胞,并定義這群細胞為腫瘤干細胞(或稱腫瘤啟動細胞)[1]。在肝癌中,同樣發(fā)現(xiàn)了肝癌干細胞。肝癌干細胞與肝干細胞都具有自我更新和多向分化能力,并表達許多相同的表面標志物,如EpCAM、CK19和CD133[2-4].但是,肝癌干細胞內(nèi)與細胞生長相關(guān)的信號通路通常處于失調(diào)節(jié)的狀態(tài),這造成肝癌干細胞呈現(xiàn)異常的分裂增殖狀態(tài)并產(chǎn)生畸形的后代細胞[5]。除此以外,肝癌干細胞還可能是腫瘤轉(zhuǎn)移和放療化療抵抗的重要原因[6]。準確理解肝干細胞和肝癌干細胞與原發(fā)性肝癌生物學(xué)行為之間的關(guān)系,對肝癌早期診斷和靶向治療研究有重要的指導(dǎo)意義。
1肝干細胞自我更新失調(diào)導(dǎo)致原發(fā)性肝癌的發(fā)生
肝臟是再生能力很強的內(nèi)胚層來源的器官,其再生可分為部分肝切除后再生和肝細胞彌漫性損傷后再生。其中部分肝切除后再生主要依賴于成熟肝細胞自身的分裂增殖;而化學(xué)藥物和嗜肝病毒所造成的肝細胞慢性彌漫性損傷(尤其重型肝損傷),則主要依賴于門管區(qū)增殖的肝干細胞修復(fù)再生,這種再生過程稱為膽管反應(yīng),通常伴隨肝臟慢性炎癥和肝纖維化,嚴重增生失調(diào)者則形成原發(fā)性肝癌。
腫瘤是當今世界危害人類健康的重大疾病之一,其難以攻克的主要原因就是對于腫瘤形成機制不清楚,隨著腫瘤干細胞概念的提出,人們逐漸認識到干細胞在腫瘤發(fā)生發(fā)展中的作用,并陸續(xù)在乳腺癌[7]、前列腺癌[8]、黑素瘤[9]和腸癌[10]中發(fā)現(xiàn)和鑒別出了相應(yīng)的腫瘤干細胞,并在腸癌中證實了腸癌干細胞來源于Wnt活化的lgr5+腸隱窩干細胞[10]。肝癌細胞系,肝癌動物模型和人原發(fā)性肝癌標本中同樣存在表達CD133、CD90、CD44、EpCAM等腫瘤干細胞標志的肝癌干細胞,這群細胞在維持肝癌細胞惡性增殖中發(fā)揮了重要作用[5]。但是肝癌干細胞是否來源于肝干細胞仍有爭議。
肝干細胞自我更新的維持依賴于多種信號通路的調(diào)控,包括Wnt/β-catenin通路、Notch通路、TGF-β通路、EpCAM通路和Hedgehog通路等。而肝癌干細胞中這些通路處于失調(diào)節(jié)狀態(tài),故有人認為,肝干細胞中這些通路的失調(diào)可能導(dǎo)致肝干細胞惡性轉(zhuǎn)化,從而成為了潛在的肝癌干細胞。
1.1Wnt/β-catenin通路與肝干細胞惡性轉(zhuǎn)化Wnt/β-catenin通路主要調(diào)節(jié)細胞增殖、細胞分化、細胞遷徙和細胞凋亡等。遺傳因素或表觀遺傳因素所造成的Wnt通路失調(diào)節(jié)和許多癌癥相關(guān),尤其是腸癌和肝癌。Wang等發(fā)現(xiàn)3,5-二乙酯-1,4-二氫三甲吡啶(3,5-diethoxycarbonyl-1,4-dihydrocollidine,DDC)處理的乙肝病毒轉(zhuǎn)基因小鼠全部形成肝癌,其肝癌標本中Wnt通路出現(xiàn)明顯活化,并從中分選出干細胞標志物EpCAM陽性的細胞進行裸鼠移植實驗,證實了這些肝干細胞具有再次成瘤的能力[11]。另有小鼠實驗發(fā)現(xiàn)當選擇性敲除肝細胞β-catenin基因使肝細胞失去增殖能力后,肝門管區(qū)出現(xiàn)大量表達肝干細胞表型OV6和EpCAM的β-catenin+的細胞,這些細胞表現(xiàn)出異?;罨脑鲋衬芰?,并在后期有可能會自發(fā)地形成肝細胞癌[12]。這提示當肝細胞增殖能力受損后,肝干細胞成為肝癌發(fā)生的起始細胞。近年來,基于Cre-LoxP系統(tǒng)的細胞譜系示蹤技術(shù)正逐漸地被用于干細胞與腫瘤發(fā)生相關(guān)性的研究。S. Mokkapati等發(fā)現(xiàn)了胚胎期肝干細胞標志物Cited1(一種肝臟轉(zhuǎn)錄激活因子),并構(gòu)建了Cited1-CreERTM-GFP;β-catemin+/fl小鼠,進而發(fā)現(xiàn),在這種雙轉(zhuǎn)基因小鼠的Cited1陽性細胞中的Wnt/β-catenin通路可被選擇性地活化,并在26周后發(fā)現(xiàn)91%的這種小鼠都有肝癌的發(fā)生[13]。這一發(fā)現(xiàn),為肝癌的干細胞來源學(xué)說提供了有力證據(jù),同時,也顯示了細胞譜系示蹤技術(shù)在肝干細胞與肝癌發(fā)生相關(guān)性的研究中的有效性。
1.2Notch通路與肝干細胞惡性轉(zhuǎn)化已有證據(jù)表明,Notch通路在胚胎期和成年期干細胞的自我更新和分化過程中起著關(guān)鍵作用。在哺乳動物中,目前已發(fā)現(xiàn)4種Notch受體(Notch1~4),配體與Notch受體結(jié)合后會促使Notch受體的胞外和跨膜區(qū)釋放出Notch受體胞內(nèi)區(qū)(Notch intracellular domain; NICD),NICD入核后與DNA上的重組信號結(jié)合蛋白Jκ(DNA-binding recombination signal-binding protein Jκ; RBP-Jκ)相結(jié)合從而啟動Notch信號的靶基因轉(zhuǎn)錄。在肝臟中,Notch信號主要促使肝干細胞向膽管細胞方向分化而非肝細胞方向分化[14],Notch通路阻斷將導(dǎo)致先天性膽管系統(tǒng)發(fā)育不全[15]。臨床標本發(fā)現(xiàn),約1/3肝癌(包括肝細胞癌和肝內(nèi)膽管癌)中可以觀察到Notch通路活化,而且Notch通路活化的肝癌通常會同時具備肝細胞癌和膽管細胞癌兩種病理學(xué)分型,即混合型肝癌(一種肝原始細胞來源的肝癌)[16]。而且,在Alfp-Cre/N1ICD和Alb-Cre/N2ICD雙轉(zhuǎn)基因小鼠中,組成型激活胚胎源性肝干細胞(或稱肝成纖維細胞)的Notch信號,確實可以誘導(dǎo)肝細胞癌或混合型肝癌的生成[16-17]。在典型的混合型肝癌中,有一小群細胞體積小而均一,呈卵圓形,胞漿少,核染色質(zhì)深染,存在于典型的肝細胞癌和膽管細胞癌區(qū)域之間,同時表達OV-6、CD133、EpCAM和c-kit等干細胞標記,這種過渡區(qū)域細胞被認為是混合型肝癌的肝癌干細胞[18]。雖然上述事實提示Notch活化可以促使胚胎源性肝干細胞惡變,但其是否參與成體肝干細胞致癌過程尚無定論。
1.3TGF-β通路與肝干細胞惡性轉(zhuǎn)化TGF-β通路與胚胎期以及成年后細胞更新、分化和凋亡相關(guān),作用方式為TGF-β和膜受體結(jié)合,使受體發(fā)生磷酸化,Smad2/3蛋白發(fā)生核轉(zhuǎn)位與Smad4蛋白形成復(fù)合體,從而調(diào)節(jié)轉(zhuǎn)錄過程。TGF-β在肝癌發(fā)生發(fā)展中具有雙向調(diào)節(jié)作用[19]。人群中,TGF-β先天缺失將導(dǎo)致Beckwith-Wiedemann綜合征,一種遺傳性干細胞來源的疾病,這種疾病患癌(包括肝癌)風險比正常人要高出800倍[20]。動物實驗也證實,β2血影蛋白(TGF-β信號的接頭蛋白)缺失的轉(zhuǎn)基因小鼠出現(xiàn)和人類Beckwith-Wiedemann綜合征相似的表型如內(nèi)臟肥大,巨舌,面部畸形等,并在幾個月后長出肝癌、胃腸癌和胰腺癌等胃腸道腫瘤[21]。然而,TGF-β過高表達也能誘發(fā)肝癌。二甲基亞硝胺誘發(fā)大鼠肝癌過程中,表達持續(xù)升高的TGF-β能夠使OV6陽性的肝干細胞CD133、CD90和EpCAM等腫瘤干細胞標志物表達同步升高,從而猜測TGF-β可能誘發(fā)了肝干細胞惡性轉(zhuǎn)化,之后發(fā)現(xiàn)TGF-β處理的WB-F344肝干細胞系能夠再植成瘤,從而也驗證了這種猜測[22]。
雖然多種證據(jù)表明,內(nèi)外致癌因素誘導(dǎo)的維持肝干細胞自我更新的通路失調(diào)節(jié)會引起肝干細胞惡性轉(zhuǎn)化,產(chǎn)生異?;蚧蔚暮蟠毎?,最終誘發(fā)肝癌形成。然而,決定肝干細胞惡性轉(zhuǎn)化的信號通路中的關(guān)鍵調(diào)控分子及其相互作用機制仍有待于進一步研究。
2肝癌干細胞與轉(zhuǎn)移干細胞
腫瘤轉(zhuǎn)移是指腫瘤細胞從腫瘤原發(fā)部位侵襲進入血管、淋巴管或體腔,遷徙到他處而繼續(xù)生長,最終形成與原發(fā)瘤病理類型相同的腫瘤的過程。肝癌極易復(fù)發(fā)轉(zhuǎn)移,最常發(fā)生的是肝內(nèi)轉(zhuǎn)移,這是肝癌難以根治的一個重要原因。然而,并非所有的肝癌細胞都具備發(fā)生轉(zhuǎn)移的能力,癌細胞在遷徙的過程中不僅要逃避自身免疫系統(tǒng)中T細胞,巨噬細胞和NK細胞的殺傷,還要逃避化療藥物的殺傷,因此大量腫瘤細胞(包括腫瘤干細胞)在遷徙過程中死亡[23]。T. Oskarsson于2014年提出了轉(zhuǎn)移干細胞[24]的概念。轉(zhuǎn)移干細胞指的是任何能夠在遠處形成同種類型的肉眼可見的腫瘤組織的播散性腫瘤細胞。在肝癌中,雖然原發(fā)灶中肝癌干細胞和轉(zhuǎn)移灶中一小群細胞(可能是轉(zhuǎn)移干細胞)在表型和功能上具有相似性,但是肝癌中轉(zhuǎn)移干細胞是否來源于肝癌干細胞仍然未知。肝癌中轉(zhuǎn)移干細胞可能有以下兩種來源。
2.1肝癌中轉(zhuǎn)移干細胞可能就是存在于原發(fā)灶中的肝癌干細胞臨床上,人們發(fā)現(xiàn)肝癌原發(fā)灶中高表達干細胞標志物的患者預(yù)后更差,轉(zhuǎn)移發(fā)生率更高[25]。在肝臟中,Hedgehog通路在肝干細胞自我更新和肝癌發(fā)生發(fā)展中均起著重要調(diào)節(jié)作用,當Hedgehog通路被抑制后,肝癌組織中肝成纖維細胞和CD44陽性肝癌干細胞數(shù)量明顯減少,肝癌轉(zhuǎn)移灶也相應(yīng)減少[26]。同樣,當在肝癌細胞系HuH-7、Hep3B和HepG2中,以小干擾RNA降低與肝干細胞惡性轉(zhuǎn)化相關(guān)的cadherin-17表達時,這些肝癌細胞的再植成瘤能力和轉(zhuǎn)移能力明顯減低[27]。這暗示肝癌干細胞可能是肝癌的轉(zhuǎn)移干細胞。然而,最有力的證據(jù)證明組織干細胞、腫瘤干細胞和轉(zhuǎn)移干細胞的關(guān)系來自于腸腺瘤和腸癌的研究。譜系示蹤實驗證明,腸隱窩干細胞中大腸腺癌息肉病基因APC選擇性敲除后能轉(zhuǎn)化為腫瘤干細胞,維持腸腺瘤的生長。在晚期結(jié)腸癌的動物實驗中發(fā)現(xiàn),維持原發(fā)灶形成的腸癌干細胞和轉(zhuǎn)移灶中干細胞群的基因表達譜是相似的,而且空間位置上都處于腺癌隱窩處[28-29]從而提示了腫瘤干細胞和轉(zhuǎn)移干細胞的譜系一致性。
2.2肝癌中轉(zhuǎn)移干細胞也可能由其他肝癌細胞經(jīng)上皮間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition; EMT)而來。EMT是胚胎形成的重要過程,尤其在組織遷徙如原腸胚和神經(jīng)嵴遷徙中發(fā)揮重要作用。目前認為,腫瘤轉(zhuǎn)移過程中也存在EMT。一些上皮源性的腫瘤細胞在間質(zhì)性細胞如成纖維細胞、間充質(zhì)干細胞、巨噬細胞等分泌的一些細胞因子的刺激下發(fā)生EMT,腫瘤細胞間粘附能力下降,遷移能力增強[30]。而且,腫瘤細胞發(fā)生EMT過程中可獲得干細胞的特征。例如,間質(zhì)中成纖維細胞分泌的肝細胞生長因子(hepatocyte growth factor, HGF)能夠加強Wnt/β-catenin信號通路,從而誘導(dǎo)分化的結(jié)直腸癌細胞發(fā)生EMT,并高表達干細胞標志lgr5[31]。此外,乳腺癌的循環(huán)腫瘤細胞中已被證實存在能引起骨、肺和肝轉(zhuǎn)移的EpCAM+CD44+CD47+MET+轉(zhuǎn)移干細胞,其中CD44是乳腺癌干細胞的標志物,而MET是HGF受體,預(yù)示著細胞發(fā)生了EMT[32].這極大地提示了乳腺癌轉(zhuǎn)移干細胞是其他腫瘤細胞經(jīng)歷EMT獲得干細胞特性后轉(zhuǎn)化而來。肝癌中,EMT也被認為是肝內(nèi)和遠處轉(zhuǎn)移的中心環(huán)節(jié)。其中E-cadherin的抑制子Snail和Twist的高表達被認為是肝細胞癌發(fā)生EMT的關(guān)鍵過程。E-cadherin的缺失或Snail和Twist蛋白的升高預(yù)示著肝癌轉(zhuǎn)移和較差的預(yù)后[33]。體外和成瘤實驗也證明,肝癌細胞系中過表達Snail和Twist會誘導(dǎo)EMT和肝癌轉(zhuǎn)移;相反,Snail和Twist敲除后,肝癌細胞系則表現(xiàn)出低侵襲性和低轉(zhuǎn)移趨勢[34-35]。與乳腺癌相似,可能引起肝癌轉(zhuǎn)移的循環(huán)腫瘤細胞中也發(fā)現(xiàn)EpCAM+CD133+轉(zhuǎn)移干細胞,同時這些細胞表現(xiàn)出間質(zhì)細胞表型vimentin+/E-cadherin-[36]。這些事實說明,肝癌細胞可能經(jīng)歷EMT獲得干細胞特性,從而促進了肝癌轉(zhuǎn)移。而腫瘤相關(guān)巨噬細胞分泌的TGF-β1可能正是啟動肝癌EMT過程的關(guān)鍵因素[37]。
3基于肝癌干細胞的肝癌放療化療抵抗及靶向治療
肝癌的中晚期治療主要依靠放療和化療。放化療雖然短期內(nèi)能抑制肝癌的生長,但是卻不能根除肝癌,即肝癌對放化療存在治療抵抗。放療和化療通常能夠殺死快速增殖的細胞,而對于處于G0期的靜息細胞則不具備殺傷效果。肝癌中肝癌干細胞多數(shù)時間處于靜息狀態(tài),因而能夠逃避放療和化療的殺傷而幸存。然而,和其他快速增殖的肝癌細胞相比,肝癌干細胞卻表現(xiàn)出更強的再植成瘤能力[18, 38]。因此即使所有的快速增殖肝癌細胞均被放化療殺傷,肝癌依然會從殘存的肝癌干細胞重新生長出來[1, 39]。臨床上也發(fā)現(xiàn),同樣的化療后患者,高表達腫瘤干細胞標志物EpCAM、CD44、CK19及CD133的腫瘤患者預(yù)后要明顯差于腫瘤干細胞標志物未高表達的患者,而抑制這些標志物表達,如抑制CD44的表達,則可以增強腫瘤化療敏感性和加快腫瘤細胞的凋亡[7, 40-41]。
因此,根治肝癌組織最佳的治療方法是在殺傷快速增殖的腫瘤細胞同時能夠特異性地對肝癌干細胞進行靶向殺傷,最大程度的消除腫瘤組織而不損傷正常細胞[42]。根據(jù)肝癌中肝癌干細胞的生物學(xué)特性,其靶向治療可從以下3個方面實現(xiàn):①消除關(guān)鍵的干性標志物?;谝阎母伟└杉毎砻鏄酥疚铮鏑D133,CD90,OV6,EpCAM和CD44,從中篩選出影響肝癌干細胞生物學(xué)行為的關(guān)鍵靶分子進行靶向治療。目前發(fā)現(xiàn),EpCAM就是一個潛在的治療靶點[43-44]。它在腫瘤干細胞中表達明顯高于正常細胞,且通常提示預(yù)后較差。2009年,德國研究者率先開發(fā)了抗EpCAM和CD3的卡妥索單抗,并在Ⅱ/Ⅲ期臨床研究中證實,卡妥索單抗可以明顯減少卵巢癌,胃腸癌,胰腺癌等患者惡性腹水的生成,并能延長卵巢癌患者的生存期[45],這為肝癌的靶向治療指引了發(fā)展方向。②阻斷肝癌干細胞自我更新的信號通路。例如Wnt通路抑制因子DKK1結(jié)合低密度脂蛋白受體相關(guān)蛋白6(LRP6)從而阻斷Wnt/β-catenin通路[46]?;蚶眯「蓴_RNA阻斷Hedgehog通路——一種在胚胎發(fā)育和成年后維持肝干細胞自我更新的通路,這種方法不僅能降低肝癌細胞增殖速率同時能增強肝癌對化療藥5-氟尿嘧啶的敏感性從而誘導(dǎo)肝癌細胞凋亡[47]。③誘導(dǎo)肝癌干細胞分化。肝癌干細胞處于干細胞狀態(tài)下能夠抵抗放化療,因而誘導(dǎo)其分化可能使其失去這種特性。肝細胞生長因子4α(HNF4α)是調(diào)節(jié)肝干細胞向肝細胞方向分化的關(guān)鍵因子,實驗證明HNF4α高表達能夠有效抑制小鼠肝癌生長,而其敲除后則促進小鼠肝癌生長[48-49]。
雖然基于肝癌干細胞的肝癌靶向治療顯示出巨大的潛力,但是目前依然停留在實驗室階段,靶向藥物的開發(fā)仍存在很多限制。例如:①許多靶分子在正常肝干細胞和肝癌肝干細胞是共表達的,只是表達程度有所差異;②許多調(diào)控肝干細胞惡性轉(zhuǎn)化的的信號通路同時也調(diào)控胚胎發(fā)育和器官形成,消除肝癌干細胞的同時可能會影響正常肝干細胞的生理性自我更新;③肝癌干細胞存在一定可塑性,表型表達和功能特性不穩(wěn)定,對靶向藥物敏感性存在一定差異。
4展望
雖然目前認為原發(fā)性肝癌的發(fā)生、轉(zhuǎn)移、治療抵抗中均發(fā)現(xiàn)有肝干細胞或者肝癌干細胞的參與,這對今后肝癌的生物學(xué)研究和肝癌靶向治療指引了方向,但其中仍存在很多未解決的問題。例如,肝干細胞和肝癌干細胞的分離和鑒定均沒有統(tǒng)一的標準,肝干細胞與肝癌干細胞之間、以及肝癌干細胞與肝癌轉(zhuǎn)移干細胞是否存在譜系相關(guān)性,它們在肝癌的生物學(xué)行為中發(fā)揮作用程度的大小和作用機制依然未知。近年來,細胞譜系示蹤技術(shù)結(jié)合單細胞轉(zhuǎn)錄組和外顯子測序技術(shù)逐漸興起,它可以動態(tài)研究肝癌各階段(包括癌前病變期、癌癥早期和中晚期)少量目的細胞的表型和分子表達變化,這可能有助于以上問題的解決,對揭示肝癌發(fā)生發(fā)展和復(fù)發(fā)轉(zhuǎn)移的機理、發(fā)現(xiàn)肝癌早期預(yù)判和早期診斷的特異性分子標志物、尋找肝癌治療的新靶點具有重大的理論意義和實用價值。
[參考文獻]
[1] Reya T,Morrison S J,Clarke M F,et al. Stem cells, cancer, and cancer stem cells[J]. Nature,2001,414(6859): 105-111.
[2] Okabe M,Tsukahara Y,Tanaka M,et al. Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver[J]. Development,2009,136(11): 1951-1960.
[3] Suzuki A,Sekiya S,Onishi M,et al. Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver[J]. Hepatology,2008,48(6): 1964-1978.
[4] Liu L L,F(xiàn)u D,Ma Y,et al. The power and the promise of liver cancer stem cell markers[J]. Stem Cells Dev,2011,20(12): 2023-2030.
[5] Wicha M S,Liu S,Dontu G. Cancer stem cells: an old idea--a paradigm shift[J]. Cancer Res,2006,66(4): 1883-1890.
[6] Dawood S,Austin L,Cristofanilli M. Cancer stem cells: implications for cancer therapy[J]. Oncology (Williston Park),2014,28(12): 1101-1107,1110.
[7] Al-Hajj M,Wicha M S,Benito-Hernandez A,et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci U S A,2003,100(7): 3983-3988.
[8] Wang Z A,Mitrofanova A,Bergren S K,et al. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity[J]. Nat Cell Biol,2013,15(3): 274-283.
[9] Schatton T,Murphy G F,F(xiàn)rank N Y,et al. Identification of cells initiating human melanomas[J]. Nature,2008,451(7176): 345-349.
[10] Schepers A G,Snippert H J,Stange D E,et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas[J]. Science,2012,337(6095): 730-735.
[11] Wang C,Yang W,Yan H X,et al. Hepatitis B virus X (HBx) induces tumorigenicity of hepatic progenitor cells in 3,5-diethoxycarbonyl-1,4-dihydrocollidine-treated HBx transgenic mice[J]. Hepatology,2012,55(1): 108-120.
[12] Wang E Y,Yeh S H,Tsai T F,et al. Depletion of beta-catenin from mature hepatocytes of mice promotes expansion of hepatic progenitor cells and tumor development[J]. Proc Natl Acad Sci U S A,2011,108(45): 18384-18389.
[13] Mokkapati S,Niopek K,Huang L,et al. beta-catenin activation in a novel liver progenitor cell type is sufficient to cause hepatocellular carcinoma and hepatoblastoma[J]. Cancer Res,2014,74(16): 4515-4525.
[14] Zong Y,Panikkar A,Xu J,et al. Notch signaling controls liver development by regulating biliary differentiation[J].Development,2009,136(10): 1727-1739.
[15] Geisler F,Nagl F,Mazur P K,et al. Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice[J].Hepatology,2008,48(2): 607-616.
[16] Villanueva A,Alsinet C,Yanger K,et al. Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice[J].Gastroenterology,2012,143(6): 1660-1669.e7.
[17] Zender S,Nickeleit I,Wuestefeld T,et al. A critical role for notch signaling in the formation of cholangiocellular carcinomas[J].Cancer Cell,2013,23(6): 784-795.
[18] Ogasawara S,Akiba J,Nakayama M,et al. Epithelial cell adhesion molecule-positive human hepatic neoplastic cells: development of combined hepatocellular-cholangiocarcinoma in mice[J].J Gastroenterol Hepatol,2015,30(2): 413-420.
[19] Bogaerts E,Heindryckx F,Vandewynckel Y P,et al. The roles of transforming growth factor-beta, Wnt, Notch and hypoxia on liver progenitor cells in primary liver tumours (Review)[J].Int J Oncol,2014,44(4): 1015-1022.
[20] Majumdar A,Curley S A,Wu X,et al. Hepatic stem cells and transforming growth factor beta in hepatocellular carcinoma[J].Nat Rev Gastroenterol Hepatol,2012,9(9): 530-538.
[21] Yao Z X,Jogunoori W,Choufani S,et al. Epigenetic silencing of beta-spectrin, a TGF-beta signaling/scaffolding protein in a human cancer stem cell disorder: Beckwith-Wiedemann syndrome[J].J Biol Chem,2010,285(46): 36112-3620.
[22] Wu K,Ding J,Chen C,et al. Hepatic transforming growth factor beta gives rise to tumor-initiating cells and promotes liver cancer development[J].Hepatology,2012,56(6): 2255-6722.
[23] Wang H,Chen L. Tumor microenviroment and hepatocellular carcinoma metastasis[J].J Gastroenterol Hepatol,2013,28 (Suppl 1):43-48.
[24] Oskarsson T,Batlle E,Massague J. Metastatic stem cells: sources, niches, and vital pathways[J].Cell Stem Cell,2014,14(3):306-321.
[25] Lee C W,Kuo W L,Yu M C,et al. The expression of cytokeratin 19 in lymph nodes was a poor prognostic factor for hepatocellular carcinoma after hepatic resection[J].World J Surg Oncol,2013,11(1): 136.
[26] Philips G M,Chan I S,Swiderska M,et al. Hedgehog signaling antagonist promotes regression of both liver fibrosis and hepatocellular carcinoma in a murine model of primary liver cancer[J].PLoS One,2011,6(9): e23943.
[27] Liu L X,Lee N P,Chan V W,et al. Targeting cadherin-17 inactivates Wnt signaling and inhibits tumor growth in liver carcinoma[J].Hepatology,2009,50(5): 1453-1463.
[28] Merlos-Suarez A,Barriga F M,Jung P,et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse[J].Cell Stem Cell,2011,8(5): 511-524.
[29] Kozar S,Morrissey E,Nicholson A M,et al. Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas[J].Cell Stem Cell,2013,13(5): 626-633.
[30] Mani S A,Guo W,Liao M J,et al. The epithelial-mesenchymal transition generates cells with properties of stem cells[J].Cell,2008,133(4): 704-715.
[31] Vermeulen L,De Sousa E M F,van der Heijden M,et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment[J].Nat Cell Biol,2010,12(5): 468-476.
[32] Baccelli I,Schneeweiss A,Riethdorf S,et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay[J].Nat Biotechnol,2013,31(6): 539-544.
[33] Yang M H,Chen C L,Chau G Y,et al. Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma[J].Hepatology,2009,50(5): 1464-1474.
[34] Lee T K,Poon R T,Yuen A P,et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition[J].Clin Cancer Res,2006,12(18): 5369-5376.
[35] Miyoshi A,Kitajima Y,Kido S,et al. Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma[J].Br J Cancer,2005,92(2): 252-258.
[36] Sun Y F,Xu Y,Yang X R,et al. Circulating stem cell-like epithelial cell adhesion molecule-positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection[J].Hepatology,2013,57(4): 1458-1468.
[37] Dubois-Pot-Schneider H,F(xiàn)ekir K,Coulouarn C,et al. Inflammatory cytokines promote the retrodifferentiation of tumor-derived hepatocyte-like cells to progenitor cells[J].Hepatology,2014,60(6): 2077-2090.
[38] Michishita M,Ezaki S,Ogihara K,et al. Identification of tumor-initiating cells in a canine hepatocellular carcinoma cell line[J].Res Vet Sci,2014,96(2): 315-322.
[39] Sell S,Leffert H L. Liver cancer stem cells[J].J Clin Oncol,2008,26(17): 2800-2805.
[40] Xie Z,Choong P F,Poon L F,et al. Inhibition of CD44 expression in hepatocellular carcinoma cells enhances apoptosis, chemosensitivity, and reduces tumorigenesis and invasion[J].Cancer Chemother Pharmacol,2008,62(6): 949-957.
[41] Chen Y,Yu D,Zhang H,et al. CD133(+)EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells[J].Int J Biol Sci,2012,8(7): 992-1004.
[42] Zhou G,Wilson G,George J,et al. Targeting cancer stem cells as a therapeutic approach in liver cancer[J].Curr Gene Ther,2015,15(2): 161-170.
[43] Ogawa K,Tanaka S,Matsumura S,et al. EpCAM-targeted therapy for human hepatocellular carcinoma[J].Ann Surg Oncol,2014,21(4): 1314-1322.
[44] Fernando J,Malfettone A,Cepeda E B,et al. A mesenchymal-like phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells[J].Int J Cancer,2015,136(4): E161-172.
[45] Berek J S,Edwards R P,Parker L P,et al. Catumaxomab for the treatment of malignant ascites in patients with chemotherapy-refractory ovarian cancer: a phase II study[J].Int J Gynecol Cancer,2014,24(9): 1583-1589.
[46] Li Y,Lu W,King T D,et al. Dkk1 stabilizes Wnt co-receptor LRP6: implication for Wnt ligand-induced LRP6 down-regulation[J].PLoS One,2010,5(6): e11014.
[47] Wang Q,Huang S,Yang L,et al. Down-regulation of Sonic hedgehog signaling pathway activity is involved in 5-fluorouracil-induced apoptosis and motility inhibition in Hep3B cells[J].Acta Biochim Biophys Sin,2008,40(9): 819-829.
[48] Walesky C,Edwards G,Borude P,et al. Hepatocyte nuclear factor 4 alpha deletion promotes diethylnitrosamine-induced hepatocellular carcinoma in rodents[J].Hepatology,2013,57(6): 2480-2490.
[49] Ning B F,Ding J,Yin C,et al. Hepatocyte nuclear factor 4 alpha suppresses the development of hepatocellular carcinoma[J].Cancer Res,2010,70(19): 7640-7651.
[收稿2015-04-25;修回2015-05-15]
(編輯:譚秀榮)
專家論壇
Research advancement on biology of Liver Cancer based on liver stem cells
ZhiXiaosong,ZiXiaoyuan,HuYiping
(Department of Cell Biology, Second Military Medical University,Shanghai 200433,China)
[Abstract]Liver stem cells are a primitive cell population typi cally characterized by the capacity for self-renewal and bi-potential differentiation capability towards both hepatocytes and cholangiocytes. The primary liver cancer is the second fatality rate of malignant tumors in China. It is recently recognized that dysregulation of self-renewal for liver stem cell drives the liver cancer. While a set of cell populations with stem cell properties, termed liver cancer stem cells, is also found to exist in the specimens of liver cancer in advanced stages, which maintain the proliferation of liver cancer cells and is associated with the metastasis of liver cancer as well as chemotherapy and radiotherapy resistance. This review mainly introduced current research upon the role of liver stem cells and liver cancer stem cells in the initiation, metastasis and chemoradiotherapy resistance of primary liver cancer.
[Key words]liver stem cells; liver cancer stem cells; liver cancer; metastasis; chemoradiotherapy resistance
[文獻標志碼][中圖法分類號] R730.55 A
[文章編號]1000-2715(2015)03-0209-06
[基金項目]國家自然科學(xué)基金面上項目(NO:31171309)。
[通信作者]胡以平,男,博士,教授,博士生導(dǎo)師,第二軍醫(yī)大學(xué)干細胞與醫(yī)學(xué)研究中心主任。1978年7月畢業(yè)于第二軍醫(yī)大學(xué)軍醫(yī)系,1992年7月畢業(yè)于復(fù)旦大學(xué)遺傳學(xué)專業(yè),獲碩士學(xué)位和博士學(xué)位。曾為美國Roswell Park腫瘤研究所博士后和美國Yale大學(xué)免疫學(xué)系副研究員。研究方向為肝干細胞的生物醫(yī)學(xué)問題,研究成果發(fā)表于JBC、Stem Cells、Hepatology及Cell Stem Cell等刊物,有1篇論文入選首屆“中國百篇最具影響優(yōu)秀國際學(xué)術(shù)論文”。擔任國家規(guī)劃教材《醫(yī)學(xué)細胞生物學(xué)》主編,中國細胞生物學(xué)會資深理事,中華醫(yī)學(xué)會細胞生物學(xué)分會副主任委員,《中國細胞生物學(xué)報》、World Journal of Stem Cells和Journal of Single-Cell Biology等雜志編委。