李凌云,霍紅梅,高蘆燕,宋鍇,王愛東
(蘇州大學(xué)附屬第二醫(yī)院,江蘇蘇州215004)
?
白藜蘆醇對(duì)2型糖尿病大鼠腎臟的保護(hù)作用及機(jī)制探討
李凌云,霍紅梅,高蘆燕,宋鍇,王愛東
(蘇州大學(xué)附屬第二醫(yī)院,江蘇蘇州215004)
摘要:目的觀察白藜蘆醇(Res)對(duì)2型糖尿病大鼠腎臟的保護(hù)作用,并探討其作用機(jī)制。方法40只SD大鼠分別予普通飼料喂養(yǎng)16只(對(duì)照組、空白組各8只)和高脂高糖飼料喂養(yǎng)24只,喂養(yǎng)8周后高脂高糖喂養(yǎng)的大鼠一次性腹腔注射鏈脲佐菌素40 mg/kg制作2型糖尿病模型,取16只隨機(jī)分為觀察組、模型組各8只。觀察組和對(duì)照組予10 mg/(kg·d) Res,模型組和空白組予等量的1%羧甲基纖維素鈉,每日灌胃1次,連續(xù)8周。比較各組空腹血糖(FBG)、TG、TC、腎臟質(zhì)量指數(shù)(Kw/Bw)、24 h尿蛋白定量。PAS染色觀察腎臟組織病理學(xué)變化,免疫組化法檢測(cè)腎臟組織CD68和α平滑肌肌動(dòng)蛋白(α-SMA),Western blot法檢測(cè)轉(zhuǎn)化生長(zhǎng)因子β1(TGF-β1)、Smad3和磷酸化Smad3蛋白。結(jié)果觀察組24 h尿總蛋白、FBG、TC、TG、Kw/Bw均低于模型組,P均<0.01;模型組24 h尿總蛋白、FBG、TC、TG、Kw/Bw均高于空白組、對(duì)照組,P均<0.01。腎臟組織病理改變?yōu)橛^察組輕于模型組,模型組重于空白組、對(duì)照組。觀察組腎臟組織α-SMA、CD68的表達(dá)均低于模型組,P均<0.01;模型組腎臟組織α-SMA、CD68表達(dá)均低于空白組、對(duì)照組,P均<0.01。觀察組TGF-β1、磷酸化Smad3蛋白的相對(duì)表達(dá)量明顯低于模型組、對(duì)照組,P均<0.01;模型組TGF-β1、磷酸化Smad3蛋白的相對(duì)表達(dá)量明顯低于空白組,P均<0.01。結(jié)論Res對(duì)2型糖尿病大鼠的腎臟功能有保護(hù)作用,可能與抑制TGF-β1/ Smad3信號(hào)通路有關(guān)。
關(guān)鍵詞:白藜蘆醇;2型糖尿病;糖尿病腎?。晦D(zhuǎn)化生長(zhǎng)因子β1;Smad3蛋白
糖尿病腎病(DN)是糖尿病的主要并發(fā)癥,是發(fā)達(dá)國(guó)家終末期腎臟疾病的最常見病因,我國(guó)DN發(fā)病率逐年上升。探討DN發(fā)病的分子機(jī)制,尋找DN治療的靶點(diǎn),對(duì)于開發(fā)新型DN治療藥物、控制和延緩DN的發(fā)展進(jìn)程具有重要意義。腎小管間質(zhì)纖維化是DN發(fā)展至終末期腎臟病的主要病理改變。轉(zhuǎn)化生長(zhǎng)因子β1(TGF-β1)是腎臟纖維化發(fā)生、發(fā)展的核心因子[1,2]。Smad依賴的信號(hào)通路是傳導(dǎo)TGF-β信號(hào)的主要途徑,DN患者腎臟組織中可見Smad2、Smad3的表達(dá)水平均明顯升高[3,4]。白藜蘆醇(Res) 是一種多酚化合物,廣泛存在于葡萄、花生及虎杖等植物中,具有抗腫瘤、抗心血管疾病、抗炎、抗氧化、保肝、保護(hù)神經(jīng)系統(tǒng)等多種藥理學(xué)作用[5,6]。近年研究發(fā)現(xiàn),Res能改善糖尿病大鼠腎臟炎性損傷,但其治療DN的作用機(jī)制尚不明確。2014年3~12月,我們觀察了Res對(duì)2型糖尿病大鼠的腎保護(hù)作用,并探討其分子機(jī)制?,F(xiàn)報(bào)告如下。
1材料與方法
1.1材料健康雄性4周齡清潔級(jí)SD大鼠40只,體質(zhì)量90~100 g,由蘇州大學(xué)醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物中心提供,許可證號(hào)SYXK(蘇)2012-0045 。高脂高糖飼料配方:豬油 10%、蛋黃粉10%、膽固醇2.5%、膽酸鈉0.05%、蔗糖20%、普通飼料57.5%。鏈脲佐菌素(STZ);Res(純度>98%, 上海同田生物),用質(zhì)量分?jǐn)?shù)1%的羧甲基纖維素鈉配制成混懸液后備用;ABC檢測(cè)試劑盒和DAB顯色試劑盒(Vector Laboratories); 抗體α-SMA(1∶100, Santa-cruz);CD68(1∶100,Abcam);TGF-β1(1∶1 000;Santa-cruz);Smad3(1∶1 000,Cell signaling)。OneTouch血糖儀(美國(guó)強(qiáng)生醫(yī)療器材有限公司);正置顯微鏡(Scope A1,德國(guó)Zeiss),蛋白電泳儀(美國(guó)Bio-rad)。
1.2動(dòng)物分組與干預(yù)40只SD大鼠,分別予普通飼料(16只)、高脂高糖飼料(24只)喂養(yǎng)8周。高脂高糖飼料喂養(yǎng)的大鼠一次性腹腔注射STZ 40 mg/kg制作2型糖尿病模型;注射后72 h尾靜脈測(cè)定空腹血糖,血糖≥16.7 mmol/L且1周穩(wěn)定者為造模成功;隨機(jī)選取16只分為觀察組和模型組各8只。普通飼料喂養(yǎng)者空腹予注射等量枸櫞酸緩沖液,隨機(jī)分為對(duì)照組和空白組各8只。觀察組和對(duì)照組予10 mg/(kg·d) Res,模型組和空白對(duì)照組予等體積質(zhì)量分?jǐn)?shù)為1%羧甲基纖維素鈉,每日上午灌胃給藥1次,連續(xù)8周。
1.3糖脂及腎功能指標(biāo)檢測(cè)末次給藥后收集各組24 h尿液,采用磺基水楊酸法檢測(cè)24 h尿總蛋白。禁食不禁水12 h后,抽取尾靜脈血3 mL檢測(cè)FBG。稱量大鼠體質(zhì)量,心臟取血,分離血漿,采用全自動(dòng)生化分析儀檢測(cè)血脂指標(biāo)TC、TG。乙醚麻醉大鼠,腹主動(dòng)脈插管灌注4 ℃預(yù)冷PBS沖洗腎臟去除血液,取雙腎,剝離包膜,稱重,計(jì)算腎臟質(zhì)量指數(shù)(腎質(zhì)量/體質(zhì)量,Kw/Bw,mg/g)。
1.4腎臟組織病理觀察取1/2左腎組織,用 4%多聚甲醛固定,其余腎臟放入液氮速凍后-80 ℃保存?zhèn)溆?。取部分腎臟組織,常規(guī)石蠟包埋,4 μm切片;脫蠟后行過PAS染色,光鏡下觀察各組大鼠腎臟組織病理。
1.5腎臟組織α平滑肌肌動(dòng)蛋白(α-SMA)和CD68檢測(cè) 取各組腎臟組織,切片脫蠟,3%H2O2封閉內(nèi)源性過氧化物酶;0.01 mol/L枸櫞酸鈉緩沖液中煮沸30 min,進(jìn)行抗原修復(fù),采用免疫組化法檢測(cè)各組腎臟組織α-SMA和CD68表達(dá)。操作均嚴(yán)格按照使用說明書進(jìn)行。α-SMA和CD68陽性表達(dá)均呈黃褐色。各組隨機(jī)選取30個(gè)視野采集圖像,用圖像分析軟件Image Pro Plus 6.0測(cè)量α-SMA、CD68的陽性區(qū)域所占整個(gè)圖像的面積比來表示α-SMA和CD68的表達(dá)。
1.6腎臟組織TGF-β1、Smad3和磷酸化Smad3蛋白檢測(cè)取各組部分腎臟組織,采用Western blot法檢測(cè)各組腎臟組織TGF-β1、Smad3和磷酸化Smad3蛋白表達(dá)。以β-actin(1∶10 000)作為內(nèi)參,實(shí)驗(yàn)重復(fù)3次。Image J軟件分析各蛋白表達(dá)條帶的光密度值,以空白組的條帶光密度值為100%,進(jìn)行半定量分析比較。
2結(jié)果
2.1各組24 h尿總蛋白、FBG、TC、TG和Kw/Bw比較見表1。
2.2各組腎臟組織病理鏡下可見,空白組和對(duì)照
表1 各組24 h尿總蛋白、FBG、TC、TG和Kw/Bw比較
注:與空白組、對(duì)照組比較,*P<0.01;與模型組比較,#P<0.01。組大鼠腎臟組織結(jié)構(gòu)均無明顯異常。與空白組、對(duì)照組比較,模型組腎小球體積增大,基底膜增厚,系膜細(xì)胞增生,細(xì)胞外基質(zhì)(ECM)增多,毛細(xì)血管壁節(jié)段性增厚硬化,腎小囊粘連,腎小管排列紊亂,偶有腎小管萎縮閉塞,間質(zhì)血管壁增厚。觀察組上述病理改變較模型組減輕。
2.3各組腎臟組織α-SMA和CD68表達(dá)比較見表2。
表2 各組腎臟組織α-SMA和CD68表達(dá)
注:與空白組、對(duì)照組比較,*P< 0.01;與模型組比較,#P<0.01。
2.4各組腎臟組織TGF-β1、Smad3和磷酸化Smad3蛋白表達(dá)見表3。
表3 各組腎臟組織TGF-β1、Smad3和磷酸化Smad3
注:與空白組、對(duì)照組比較,*P<0.01;與模型組比較,#P<0.01。
3討論
DN的發(fā)病機(jī)制十分復(fù)雜,糖脂代謝紊亂是其主要致病基礎(chǔ)[7]。研究發(fā)現(xiàn),DN大鼠腎臟組織中TGF-β1mRNA與蛋白表達(dá)水平明顯增加[8~10]。TGF-β1是許多細(xì)胞因子導(dǎo)致腎臟損傷最終的共同信號(hào)通路,可促進(jìn)細(xì)胞肥大、ECM積聚,進(jìn)一步導(dǎo)致腎小球硬化和腎臟廣泛纖維化[11]。與配體結(jié)合后,TGF-β家族受體激活由 Smad 蛋白家族介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)通路。Smad2和Smad3是受體調(diào)節(jié)型Smad蛋白,可以被受體磷酸化而被激活。磷酸化Smad2和Smad3是TGF-β1途徑下游的重要信號(hào),Smad2/3 被磷酸化后轉(zhuǎn)位至細(xì)胞核,作用于靶基因,在轉(zhuǎn)錄水平調(diào)控α-SMA的表達(dá),促進(jìn)腎小管上皮細(xì)胞向成纖維細(xì)胞轉(zhuǎn)化,介導(dǎo)間質(zhì)纖維化和腎小球硬化[12]。此外,TGF-β1還誘導(dǎo)淋巴細(xì)胞和巨噬細(xì)胞浸潤(rùn)于腎間質(zhì),誘發(fā)腎組織的慢性炎癥反應(yīng),促進(jìn)腎小管間質(zhì)纖維化。
Res是一種天然多酚類物質(zhì)。研究表明,Res可控制高熱量飲食引起的動(dòng)物體質(zhì)量增加,減輕胰島素抵抗水平,改善高脂飼養(yǎng)大鼠的腎臟功能,可能與其抗氧化、抑制NF-κB 活性、降低單核細(xì)胞趨化蛋白1(MCP-1)的表達(dá)有關(guān)[13]。此外,Res可下調(diào)糖尿病大鼠腎臟TGF-β1、Smad2 mRNA的表達(dá)[14]。Res既能激活過氧化物酶增殖物激活受體γ(PPARγ),也可激活PPARα[15]。研究發(fā)現(xiàn),長(zhǎng)期使用PPARα激動(dòng)劑可減輕2型糖尿病動(dòng)物的腎小球肥大和系膜基質(zhì)增生,改善腎臟結(jié)構(gòu)和功能,主要作用機(jī)制為阻斷NF-κB和TGF-β1/Smad3[16]。Res能抑制TGF-β/Smad和ERK1/2信號(hào)途徑,緩解STZ誘導(dǎo)的1型糖尿病大鼠早期腎損傷[17]。
本研究結(jié)果顯示,觀察組24 h尿總蛋白、FBG、TC、TG、Kw/Bw均低于模型組,提示Res可改善高血糖、高脂血癥,對(duì)腎臟有保護(hù)作用,減輕糖尿病早期微血管病變。同時(shí),長(zhǎng)期服用Res對(duì)正常大鼠腎功能和組織結(jié)構(gòu)無明顯影響,與以往研究結(jié)果[18,19]一致。細(xì)胞因子MCP-1在腎臟中主要分布于腎小球系膜細(xì)胞、內(nèi)皮細(xì)胞及腎小管上皮細(xì)胞,其作用主要是募集單核-巨噬細(xì)胞在腎組織聚集[20]。本研究發(fā)現(xiàn),模型組腎臟組織中有大量CD68陽性細(xì)胞,提示存在巨噬細(xì)胞浸潤(rùn),主要累及腎小管間質(zhì)和部分腎小球系膜;Res可顯著減輕CD68陽性細(xì)胞浸潤(rùn),還能減少糖尿病大鼠腎小管間質(zhì)和腎小囊周圍的α-SMA聚積表達(dá),表明Res可通過抑制腎小管上皮細(xì)胞分化為成纖維細(xì)胞,改善腎組織纖維化。本研究還發(fā)現(xiàn),Res可減少糖尿病大鼠腎組織TGF-β1表達(dá)量,降低糖尿病大鼠腎組織Smad3磷酸化水平,提示Res可能通過抑制TGF-β1分泌和Smad3活化,抑制TGF-β1/Smad3信號(hào)轉(zhuǎn)導(dǎo)通路,減輕糖尿病大鼠腎臟細(xì)胞的損傷、腎組織的炎癥反應(yīng)和間質(zhì)纖維化。
綜上所述,Res可降低2型糖尿病大鼠的血糖和血脂,減少糖尿病大鼠腎臟組織巨噬細(xì)胞浸潤(rùn),抑制TGF-β1/Smad3信號(hào)通路,抑制腎小管上皮細(xì)胞轉(zhuǎn)分化為成纖維細(xì)胞,緩解腎臟組織炎癥反應(yīng)和纖維化,發(fā)揮腎臟保護(hù)作用。
參考文獻(xiàn):
[1] Bottinger EP. TGF-β in renal injury and disease[J]. Semin Nephrol, 2007, 27(3): 309-320.
[2] Lan HY. Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation[J]. Int J Biol Sci, 2011,7(7): 1056-1067.
[3] Tasanarong A, Kongkham S, Duangchana S, et al. Vitamin E ameliorates renal fibrosis by inhibition of 170 TGF-beta Smad2/3 signaling pathway in UUO mice[J]. J Med Assoc Thai, 2011, 94(7):1-9.
[4] Chung AC, Zhang H, Kong XZ, et al. Advanced glycation end-products induce tubular CTGF via TGF-beta-independet Smad3 signaling[J]. J Am Soc Nephrol, 2010, 21(2): 249-260.
[5] Yu W, Fu YC, Wang W. Cellular and molecular effects of resveratrol in health and disease[J]. J Cellular Biochem, 2012,113(3):752-759.
[6] Kim S,Jin Y,Choi Y,et al. Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice[J]. Biochem Pharm, 2011,81(11):1343-1351.
[7] Dullaart RP, de Vries R, Lefrandt JD. Increased large VLDL and small LDL particles are related to lower bilirubin in Type 2 diabetes mellitus[J]. Clin Biochem, 2014, 47(16-17) : 170-175.
[8] Yamamoto T, Nakamura T, Noble NA, et al. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy[J]. Proc Natl Acad Sci USA, 1993,90(5):1814-1818.
[9] Ziyadeh FN, Isono M, Chen S. Involvement of the transforming growth factor-β system in the pathogenesis of diabetic nephropathy [J]. Clin Exp Nephrol, 2009,6(3):125-129.
[10] Yano N, Suzuki D, Endoh M, et al. High ambient glucose induces angiotensin independent AT1 receptor activation, leading to increases in proliferation and extracellular matrix accumulation in MES-13 mesangial cells[J]. Biochem J, 2009(432):129-143.
[11] 馮英,胡昭,張佼佼.糖尿病腎病大鼠腎組織中TSP-1、TGF-β、APP、VEGF、ColⅠ的表達(dá)及意義[J].山東醫(yī)藥,2013,53(28): 9-12.
[12] Ten DP, Hill CS. New insights into TGF-beta-Smad signalling[J]. Trends Biochem Sci, 2004(29): 265-273.
[13] Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet[J]. Nature ,2006, 444 (7117):337-342.
[14] 楊競(jìng),徐楊,金濤,等. 白藜蘆醇通過抑制TGF-β1/Smad2信號(hào)通路抗糖尿病腎病[J]. 中國(guó)新藥與臨床雜志,2013, 32( 4) : 307-310.
[15] Lee MJ, Feliers D, Sataranatarajan K, et al. Resveratrol ameliorates high glucose-induced protein synthesis in glomerular epithelial cells[J]. Cellular Sign, 2010(22): 65-70.
[16] Li LY, Emmett N, Mann D, Zhao X. Fenofibrate attenuates tubulointerstitial fibrosis and inflammation through suppression of NF-кB and TGF-β1/Smad3 in diabetic nephropathy[J]. Exper Biolo Med, 2010(235):383-391.
[17] Chen KH, Hung CC, Hsu HH, et al. Resveratrol ameliorates early diabetic nephropathy associated with suppression of augmented TGF-β/smad and ERK1/2 signaling in streptozotocin-induced diabetic rats [J]. Chem Biol Interact, 2011,190(1):45-53.
[18] 劉珊珊,江蓓,李冰,等.白藜蘆醇抑制系膜細(xì)胞增殖治療糖尿病大鼠早期腎損害的研究[J]. 新醫(yī)學(xué),2013, 45(1): 17-21.
[19] 鄭曉英,朱深銀,周遠(yuǎn)大, 等.白藜蘆醇改善糖尿病大鼠腎臟炎癥損傷[J].中國(guó)藥學(xué)雜志,2014 , 49(11) : 919-924.
[20] Chung CH, Fan J, Lee EY, et al. Effects of tumor necrosis factor-α on podocyte expression of monocyte chemoattractant protein-1 and in diabetic nephropathy[J]. Nephron Extra, 2015, 5(1):1-18.
Renal protection of resveratrol on type 2 diabetic rats and the mechanism
LILing-yun,HUOHong-mei,GAOLu-yan,SONGKai,WANGAi-dong
(TheSecondAffiliatedHospitalofSoochowUniversity,Suzhou215004,China)
Abstract:Objective To observe the protective effect of resveratrol (Res) on the kidney of rats with type 2 diabetes mellitus and to explore the underlying mechanism. MethodsDuring 40 SD rats, 16 rats were fed with normal diet (control group and blank group, 8 rats in each group) and 24 rats were fed with high- fat diet for 8 weeks, and then 40 mg/kg streptozotocin (STZ) were injected into the 24 rats to make the type 2 diabetes mellitus models. After that, 16 model rats were selected and were randomly divided into the observation group and model group. Rats in the observation group and control group were treated with 10 mg/(kg · d) Res intragastrically and the model group and blank group with the same volume of 1% sodium carboxymethyl cellulose, once a day and for 8 weeks. The fasting blood glucose (FBG), blood lipid (TG), cholesterol (TC), kidney weight/body weight (Kw/Bw) and 24 h urine protein were assayed, and the pathologic changes of renal tissues were observed. The expression of CD68 and α-SMA was detected by immunohistochemistry. The expression of transforming growth factor-β1(TGF-β1), Smad3 and phospho-Smad3 was detected by Western blotting. ResultsThe 24 h urine protein, FBG, TC, TG and Kw/Bw of the observation group were lower than those of the model group (all P<0.01). The 24 h urine protein, FBG, TC, TG and Kw/Bw of the model group were higher than those of the blank group and the control group (all P<0.01). The pathologic changes of kidney tissues in the observation group were less than those of the model group, and the model group was more than that of the blank group. The expression of α-SMA and CD68 in the kidney tissues of the observation group was lower than that of the model group (all P<0.01), and the expression of α-SMA and CD68 in the kidney tissues of the model group was lower than that of the blank group and the control group (all P<0.01). The expression of TGF- β1and phospho-Smad3 in the observation group was lower than that of the model group (all P<0.01), and the expression of TGF-β1and phospho- Smad3 in the model group was lower than that of the blank group and the control group (all P<0.01).ConclusionRes protects the kidney function of type 2 diabetic rats, which may be related to the inhibition of TGF-β1/Smad3 signaling pathway.
Key words:resveratrol; type 2 diabetes mellitus; diabetic nephropathy; transforming growth factor -β1; Smad3 protein
收稿日期:(2015-08-05)
通信作者簡(jiǎn)介:王愛東(1968- ),女,博士,主任技師,主要研究方向?yàn)榉肿釉\斷學(xué)。E-mail: eagle.wangad@163.com
作者簡(jiǎn)介:第一李凌云(1978- ),女,碩士,助理研究員,主要研究方向?yàn)榉肿铀幚韺W(xué)。E-mail: lingyunlee@126.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(81200495)。
中圖分類號(hào):R966
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1002-266X(2015)46-0004-04
doi:10.3969/j.issn.1002-266X.2015.46.002