蘭艷,黃鵬,江谷馳弘,雷小波,丁春邦,李天,3*(.四川農業(yè)大學農學院,成都630;.四川農業(yè)大學生命科學學院,四川雅安6504;3.四川農業(yè)大學水利水電學院,四川雅安6504)
成都平原稻作區(qū)施氮量和栽插密度對粳稻D46產量及品質的影響
蘭艷1,黃鵬1,江谷馳弘1,雷小波1,丁春邦2,李天1,3*
(1.四川農業(yè)大學農學院,成都611130;2.四川農業(yè)大學生命科學學院,四川雅安625014;3.四川農業(yè)大學水利水電學院,四川雅安625014)
摘要為探明成都平原稻作區(qū)粳稻產量和品質與施氮量、栽插密度及其互作的關系,實現(xiàn)水稻高產優(yōu)質生產.以粳稻D46為供試品種,采用二因素裂區(qū)試驗設計,設置3個氮水平(N 150、225、300 kg/hm2)和3個栽插密度(20× 104、26.67×104、40×104穴/hm2),研究其對粳稻D46產量和品質的影響.結果表明,施氮量和栽插密度均顯著影響粳稻D46產量及其構成因素(P<0.05).在施氮量為225 kg/hm2和栽插密度為26.67×104穴/hm2時,水稻產量最高(7.58×103kg/hm2),顯著高于其他處理(P<0.05).施氮量和栽插密度對稻米品質均有不同程度的影響,其中施氮量的影響最為顯著.在施氮量<225 kg/hm2時,隨著氮肥施用量的增加,稻米的加工品質提高,堊白率和蛋白質含量增加,堊白度和食味品質降低;而當施氮量>225 kg/hm2時稻米品質隨氮肥用量的增加而降低.提高栽插密度不利于稻米品質形成.本試驗研究認為,實現(xiàn)成都平原稻作區(qū)粳稻D46高產與優(yōu)質的適宜施氮量為225 kg/hm2,栽插密度為26.67×104穴/hm2.
關鍵詞成都平原;施氮量;栽插密度;粳稻D46;產量;品質
浙江大學學報(農業(yè)與生命科學版) 42(1):63~73,2016
Journal of Zhejiang University(Agric.&Life Sci.)
http://www.journals.zju.edu.cn/agr
E-mail:zdxbnsb@zju.edu.cn
URL:http://www.cnki.net/kcms/detail/33.1247.S.20160119.1928.008.html
Effect of nitrogen application and planting density on grain yield and quality of japonica rice cultivar D46 in the planting area of Chengdu plain.Journal of Zhejiang University(Agric.&Life Sci.),2016,42(1):63-73
LAN Yan1,HUANG Peng1,JIANG Guchihong1,LEI Xiaobo1,DING Chunbang2,LI Tian1,3*(1.Agricultural College,Sichuan Agricultural University,Chengdu 611130,China;2.College of Life Sciences,Sichuan Agricultural University,Ya”an 625014,Sichuan,China;3.College of Water Conservancy and Hydropower Engineering,Sichuan Agricultural University,Ya”an 625014,Sichuan,China)
Summary Rice is one of the most important crops in the world,especially in Asia,where more than 90%of the world’s rice is grown and consumed.In recent years,with the increase of living quality,the requirement for rice improvement is not only limited to yield,but also to its quality.During rice development,genetic and environmental factors significantly affect both of the yield and quality.Among the environmental factors,fertilizer management and planting density are considered as the main factors affecting rice growth and development.Data from the previous studies on the impact of nitrogen application rate and planting density on rice yield and quality have beeninconsistent due to the differences in regional ecological conditions.Therefore,it is necessary to continue exploring the influence of nitrogen application rate and planting density on rice yield and quality.
Chengdu plain,the main rice cropping region in the southwest of China,has the unique light,heat and water resources.In order to promote the planting of a japonica rice variety(identified in our previous research)in this area,we investigated how nitrogen(N)application rate and planting density and their interactions affect grain yield and quality.Data from this study would provide information for japonica rice cultivation in the area for high yield and good quality.
To investigate the effect of nitrogen application rate and planting density on rice grain yield and quality characteristics,we used japonica rice cultivar D46 as the test material in this study.Split plot experiments with N application rate(N 150,225 and 300 kg/hm2)as main plot and planting density(20×104,26.67×104and 40×104seedlings/hm2)as sub-plot were carried out.The experiment was conducted on sandy loam in 2013 at the experimental farm of Sichuan Agricultural University in Wenjiang,China.
The results showed that both N application rate and planting density had significant effects on the yield of the japonica rice cultivar D46(P<0.05).The combination of N application rate of 225 kg/hm2and planting density of 26.67×104seedlings/hm2led to the highest yield(7.58×103kg/hm2),and which was significantly higher than other treatments(P<0.05).Dry matter accumulation tended to increase with the increase of N application rate during the whole growth period,whereas,for planting density,it reached the maximum at 26.67×104seedlings/hm2rather than at 20×104and 40×104seedlings/hm2.Furthermore,N application rate and planting density were shown to have different degrees of influence on the rice quality.The processing quality,chalky rate and protein content increased as the N application increased from 150 to 225 kg/hm2and then declined with any further increases in N supply.In contrast,increasing planting density was not conducive to improving rice quality.
Based on the results,and considering the importance of improving both rice yield and quality,the optimal combination of N application rate and planting density for japonica rice cultivar D46 in the planting area of Chengdu plain is N 225 kg/hm2and 26.67×104seedlings/hm2,respectively.
Key words Chengdu plain;nitrogen application rate;planting density;japonica rice cultivar D46;grain yield;grain quality
水稻產量和品質形成主要受遺傳因子和環(huán)境因素的調控[1-6].在諸多環(huán)境因素中,種植密度和肥料運籌是影響水稻生長發(fā)育的重要因素[7 9].隨著農業(yè)用地日益緊張和不合理施肥導致的面源污染加劇,以優(yōu)化栽培密度和高效利用肥料的水稻高產優(yōu)質技術研究得到廣泛的關注[3,10 14].
已有研究表明,在一定范圍內施氮量與產量呈拋物線關系,適當增施氮肥量有利于植株生長,可以提高水稻產量[15];但過量氮肥施用不利于水稻營養(yǎng)器官中的碳水化合物形成和氮素向籽粒轉移,最終導致產量降低和土壤中氮素積累[16].近年來,如何提高稻米品質成為研究的核心,其中施氮量和栽插密度對稻米品質的影響成為研究的焦點[17-20].徐春梅等[19]研究認為增施氮肥能夠提高稻米的碾磨和外觀品質以及蛋白質含量;而栽插密度對稻米品質影響不明顯.謝黎虹等[21]研究認為增大種植密度可以提高整精米率,降低RVA的消減值、回復值和米飯質地的硬度.眾多研究一致認為,整精米率和蛋白質含量隨施氮量提高而增加,而堊白性狀和直鏈淀粉含量對氮肥用量的響應則不一致[22].
本課題組多年來致力于粳稻品種選育和推廣種植,篩選出了米飯食味獨特,產量高,適宜在成都平原種植的粳稻品種D46.為進一步加快該品種在成都平原稻作區(qū)的推廣,本試驗在前人已研究證明施氮量和栽插密度是影響水稻產量和品質形成的主要因素的基礎上,以施氮量和栽插密度為因素,研究其對粳稻D46品質的影響,對在成都平原稻作區(qū)生態(tài)條件下推廣種植粳稻具有重要的現(xiàn)實生產意義和理論意義.
1.1供試材料
田間試驗于2013年在四川農業(yè)大學成都校區(qū)試驗農場進行.試驗田耕層土壤質地為沙質壤土,有機質含量25.09 g/kg,全氮1.53 g/kg,全磷0.38g/kg,全鉀14.23 g/kg,堿解氮150.20 mg/kg,速效磷58.64 mg/kg,速效鉀108.52 mg/kg,p H 6.79.供試水稻品種為粳稻D46,該品種株型適中,產量高,品質優(yōu),穩(wěn)產,全生育期為140 d左右.
1.2試驗設計
采用二因素裂區(qū)設計,主區(qū)為栽插密度(D),設3個水平,分別為20×104穴/hm2(25 cm×20 cm,D1),26.67×104穴/hm2(25 cm×15 cm,D2)和40×104穴/hm2(25 cm×10 cm,D3);副區(qū)為施氮量,分別為無氮對照(N0)、低氮(N 150 kg/hm2,N1)、中氮(N 225 kg/hm2,N2)和高氮(N 300 kg/hm2,N3).共12個處理,每個處理3次重復.每個小區(qū)面積24 m2.小區(qū)間筑埂并用塑料薄膜包裹(高35 cm,寬30 cm),以防止串水串肥,小區(qū)四周設置保護行.4月2日播種,地膜育秧,5月7日移栽,葉齡為五葉一心,每穴雙苗.
試驗以尿素(N≥46.4%)為氮肥,作為基肥與蘗肥施入,比例為7∶3;以過磷酸鈣(含P2O512.0%)為磷肥,施用量為120 kg/hm2,全部以基肥一次性施入;以氯化鉀(含K2O 60%)為鉀肥,施用量為180 kg/hm2,作為基肥和穗肥施入,比例為1∶1.其余田間管理措施與一般大田水稻生產相同.
1.3測定項目與方法
1.3.1產量及其構成因素
成熟前每小區(qū)選取30株調查有效穗數(shù);并各取具有代表性植株5株進行考種,調查每穗粒數(shù)、結實率、千粒質量等指標,然后分區(qū)收獲,脫粒后曬干稱量.
1.3.2干物質質量的測定
分別于水稻分蘗盛期、拔節(jié)期、抽穗期、灌漿中期、成熟期按平均數(shù)法對每個處理隨機選取3穴取樣,將根剪除后按葉片、莖鞘、穗(抽穗后)分開,洗凈后在105℃下殺青30 min,75℃烘干至恒量,測定各器官的干物質質量.
1.3.3稻米品質的測定
各處理稻谷收獲后自然陰干、存放3個月使其理化性質穩(wěn)定后測定其加工、外觀、蒸煮及營養(yǎng)品質.堊白率和堊白度根據(jù)《GB/T 17891—1999》,糙米率根據(jù)《GB/T 5495—2008》,整精米率根據(jù)《GB 1350—2009》,直鏈淀粉含量依據(jù)《GB 15683—2008》,蛋白質含量根據(jù)《NY/T 3—1982》的方法測定.
稻米淀粉黏滯性使用澳大利亞Newport Scientific儀器公司生產的3-D型RVA儀測定,并用TCW(thermal cycle for Windows)配套軟件進行分析.按照AACC操作規(guī)程[23],測定稻米RVA譜特性;用峰值黏度、熱漿黏度、冷膠黏度、崩解值(峰值黏度與熱漿黏度之差)、消減值(冷膠黏度與峰值黏度之差)、回復值(冷膠黏度與熱漿黏度之差)表示,單位為RVU(rapid visco units)表示.
1.4數(shù)據(jù)處理
所有數(shù)據(jù)利用SPSS 19.0統(tǒng)計軟件進行數(shù)據(jù)分析,結果均為3次重復的平均值,利用最小顯著差數(shù)法(LSD)在P<0.05水平上做多重比較.
2.1施氮量和栽插密度對D46產量的影響
由表1可知,施氮量和栽插密度不同,粳稻D46籽粒產量均有差異.與對照N0(5.86×103kg/hm2)相比,N1、N2和N3處理的籽粒產量分別增產14.61%、25.01%和19.27%,達到顯著差異水平(P<0.05).但N2和N3處理間的籽粒產量差異不顯著(P>0.05),表明施氮量達到225 kg/hm2時,繼續(xù)增加氮肥用量對產量增加不明顯.而不同密度間稻谷產量差異不明顯(P>0.05).
從粳稻D46產量構成因素分析(表1)可知,施氮量對有效穗數(shù)影響達到顯著水平(P<0.05),穗數(shù)隨著施氮量的增加而增加,但在N2和N3處理間的有效穗數(shù)差異不明顯(P>0.05),表明在田間生產中施氮量為225 kg/hm2時就可保證高產的足夠有效穗數(shù);而施氮量對每穗粒數(shù)和結實率影響均未達到顯著差異水平(P>0.05),說明粳稻D46的每穗粒數(shù)和結實率對氮肥響應不敏感;施氮量對千粒質量影響達到顯著水平(P<0.05),千粒質量隨著氮肥用量的增加而下降.栽插密度對粳稻D46產量構成因素均達到顯著或極顯著影響(千粒質量除外);有效穗數(shù)隨栽插密度增加而增加,但在中密度D2和高密度D3處理間差異不顯著;而每穗粒數(shù)、結實率和千粒質量則隨著栽插密度的增加總體上呈下降的趨勢.
2.2施氮量和栽插密度對D46干物質質量的影響
氮肥運籌對粳稻D46主要生育期干物質積累量的影響達極顯著水平(P<0.01);不同栽插密度對粳稻D46主要生育期干物質積累量的影響達顯著或極顯著水平(分蘗期除外);而兩者交互效應對粳稻D46干物質積累量主要體現(xiàn)在分蘗期、拔節(jié)期和灌漿期(表2).
在粳稻D46生育前期(分蘗期和拔節(jié)期),干物質積累量以高密度D3處理最大;而在其生育后期(拔節(jié)期至成熟期)則以中密度D2處理最大.這是由于隨著生育期推進,水稻生長旺盛,在低密度D1處理下,穴數(shù)少導致干物質積累量也少;而在高密度D3處理下,植株生長擁擠,生長環(huán)境變差導致干物質積累量降低.而氮肥運籌對粳稻D46各生育期干物質積累量的影響明顯高于栽插密度運籌,且對中后期的影響程度明顯高于生育前期,以拔節(jié)期影響最明顯.隨著氮肥施用量的增加,水稻各生育期干物質積累量逐漸增加,以氮水平225 kg/hm2時達到最大值;再繼續(xù)增施氮肥會使水稻干物質積累量呈現(xiàn)不同程度降低趨勢.這是由于高氮處理導致水稻貪青徒長,不利于干物質的積累和產量的形成.
2.3施氮量和栽插密度對D46稻米品質的影響
2.3.1加工品質
施氮量顯著影響粳稻D46籽粒糙米率(圖1A)和整精米率(圖1B).籽粒糙米率和整精米率均隨氮肥用量的增加而增加,以氮水平225 kg/hm2時達到最大值;再繼續(xù)增施氮肥會使水稻加工品質呈現(xiàn)不同程度降低趨勢.與未施氮(N0)處理比較,高氮(N3)、中氮(N2)和低氮(N1)處理的籽粒糙米率和整精米率分別提高了1.04%、1.95%、1.44%和1.38%、4.37%、3.94%,且差異達到顯著水平,表明增施氮肥對提高水稻加工和外觀品質具有重要作用.不同栽插密度處理間的籽粒糙米率在D2處理下最大,D3最小,這表明增加基本苗不利于提高水稻糙米率.而稻米的整精米率隨栽插密度的增加而降低,在栽插植密度最小(D1)時整精米率最低.D1與D3間的整精米率差異均達顯著水平(P<0.05,圖1B).
2.3.2堊白率和堊白度
與未施氮(N0)處理相比,堊白率隨施氮量的增加而增加,尤其是當施氮量為300 kg/hm2時,堊白率明顯高于其他處理,且處理間的差異達到了顯著水平(P<0.05,圖1C).與未施氮(N0)處理相比,堊白度整體上呈現(xiàn)隨施氮量的增加而減少的趨勢,以氮水平為225 kg/hm2時堊白度最低,較未施氮水平降低了18.96%(圖1D).而堊白率和堊白度均隨著栽插密度的增加而增加,在高密度D3時顯著高于D1和D2處理(P<0.05),這表明增加栽插密度不利于提高水稻的外觀品質.
2.2.3直鏈淀粉和可溶性蛋白質含量
圖1E和圖1F顯示施氮量和栽插密度對粳稻D46的直鏈淀粉和可溶性蛋白質含量有一定的影響.增加氮肥施用量有利于提高粳稻D46的直鏈淀粉和可溶性蛋白質含量,特別是在高氮處理(N3,300 kg/hm2)與低氮處理(N1,150 kg/hm2)間的直鏈淀粉含量差異達顯著水平(P<0.05).而可溶性蛋白質含量在中氮處理(N2,225 kg/hm2)時最高,明顯高于未施氮處理.栽插密度對直鏈淀粉和可溶性蛋白質含量的影響較小.
2.2.4淀粉RVA譜特性
稻米的RVA譜特性是評價稻米品質的重要指標,也是優(yōu)質水稻品種的選育和栽培的參考指標.本研究的結果(表3)表明,施氮量極顯著地影響了粳稻D46的RVA譜特性(P<0.01).隨著施氮量的增加,粳稻D46的峰值黏度、熱漿黏度、冷膠黏度、崩解值、回復值等特性逐漸減低,而消減值呈現(xiàn)上升趨勢.可見,稻米淀粉的RVA譜特性受氮肥水平的影響并不一致,但整體上主要表現(xiàn)為負向的影響即提高氮肥用量,稻米的黏性有變差的趨勢.
在不同栽培密度下,粳稻D46的RVA譜特性也表現(xiàn)出一定的差異,它極顯著地影響了稻米的峰值黏度(P<0.01),而對其余RVA譜特性指標影響不明顯(P>0.05).在同一施氮水平條件下,提高栽插密度,粳稻D46的峰值黏度、熱漿黏度、冷膠黏度、崩解值等特性呈現(xiàn)先增加后減少的趨勢,而回復值和消減值呈上升趨勢.由以上可知,稻米淀粉的RVA譜特性受栽培密度影響較大,移栽的密度過大或過小均影響稻米的黏性,從而使稻米的品質變差.
3.1施氮量和栽插密度對D46產量及干物質積累的影響
水稻產量形成是一個物質生產、轉運和積累的過程;而干物質生產是水稻產量形成的基礎,干物質的積累、分配和轉運對水稻獲得高產具有重要意義[24-25].有研究表明,適當?shù)牡适┯昧亢驮圆迕芏瓤梢杂行У靥岣呷~綠素含量,進而有利于干物質的生產、積累和轉運,從而有利于水稻高產的形成[26].本研究結果表明,在氮用量0~225 kg/hm2范圍內增施氮肥,有效地促進了水稻的生長,增加了干物質的積累,有利于有效穗數(shù)、每穗粒數(shù)和結實率的增加;且各時期干物質積累量與產量密切相關(圖2).然而在高氮肥水平下(>225 kg/hm2),水稻貪青徒長,無效分蘗和低效分蘗也隨之增多而導致成穗率下降;且水稻各生育期的干物質質量和分配也降低,不利于植株干物質向籽粒的轉運,影響產量構成因素協(xié)調發(fā)展,不利于水稻高產的形成,還造成了氮肥的浪費以及對環(huán)境的污染,這與徐春梅等[19]的研究結果一致.
增加栽插密度,水稻植株間生長空間逐漸縮小,葉片重疊加劇,葉面積指數(shù)下降,通風透光性降低,從而光合作用減弱[12].本實驗條件下,低密度20×104穴/hm2栽培植株間光合作用最強,結實率最好.然而,群體有效穗數(shù)和每穗粒數(shù)少,干物質積累量較低,不利于水稻高產的形成(表1,表2);相反,在高密度40×104穴/hm2栽培下,雖有效穗數(shù)有增加,但植株緊湊,生長環(huán)境惡化,且加之四川盆地高溫高濕的環(huán)境,加劇了植株間病蟲害的發(fā)生,葉片早衰現(xiàn)象嚴重,導致干物質積累量在生育后期轉運受阻;而每穗粒數(shù)和結實率也最低,不利于水稻高產的形成.而在中等密度26.67×104穴/hm2栽培下,植株光合作用較強,使得干物質積累較大,群體有效穗數(shù)較高,每穗粒數(shù)和結實率最大,因此產量最高.這與樊紅柱等[27]在四川盆地稻作區(qū)的研究結果基本一致.
施氮量和栽插密度的交互作用也會對產量、產量構成因素及干物質形成產生不同的影響,只有協(xié)調產量構成因素之間的關系,才能實現(xiàn)優(yōu)質高產[19].在本試驗中,施氮量和栽插密度的增加,水稻分蘗和群體穴數(shù)增加,從而使得群體有效穗數(shù)增加,然而大量分蘗又不能有效成穗,使得成穗率降低,這限制了產量的增加.在施氮量N2(225 kg/hm2)處理下,每穗粒數(shù)最大,且每穗粒數(shù)隨栽插密度增加而下降;結實率隨施氮量增加而增加,且在密度D2(26.67×104穴/hm2)處理下最大;而千粒質量隨施氮量的增加而不斷減小,受密度的影響則不明顯.綜上所述,在施氮量225 kg/hm2與栽插密度26.67× 104穴/hm2的組合(D2N2)下產量和干物質積累量最大,是實現(xiàn)高產栽培的最優(yōu)組合.
3.2施氮量和栽插密度對D46品質的影響
稻米品質形成與水稻生長發(fā)育過程密切相關,是多種物質共同完成了一系列積累、轉化等過程而形成的[28].本試驗研究結果表明,在施氮量0~225 kg/hm2的范圍內增施氮肥,干物質積累量增加,糙米率和整精米率增加;而在高施氮量300 kg/hm2處理下,干物質積累分配下降,灌漿受阻,不飽滿籽粒增多,糙米率和整精米率下降.在栽培密度上,中密度(26.67×104穴/hm2)比低密度和高密度栽培下糙米率和整精米率都較高.可見,在施氮量225 kg/hm2和栽插密度為26.67×104穴/hm2的組合下,稻米的加工品質最好.
堊白率和堊白度體現(xiàn)了稻米的外觀品質.在本試驗中,栽培密度由20.00×104穴/hm2提高至40.00×104穴/hm2時,水稻植株間緊湊、葉片重疊加劇、通風透氣性下降,植株光合作用減弱,使堊白率和堊白度增加.這與已有報道關于氮肥用量對稻米堊白性質影響的結果不一致.有研究認為施氮量與堊白呈負相關[29];而許仁良等[30]的研究指出氮肥用量與堊白呈正相關;也有研究者發(fā)現(xiàn)稻米堊白性質不受施氮量的影響[31].在本研究中,堊白率隨施氮量增加而增加.這是由于增施氮肥雖促進植株的生長,但成穗率降低,晚生分蘗增多,穗部的干物質和氮素分配減少,淀粉體排列疏松使得堊白率增加[17,19,22];此外,施氮量的增加會導致水稻光合作用增強,物質的積累和轉運增強,使堊白面積減小,從而降低了堊白度;但在高施氮量300 kg/hm2處理下,物質的積累和轉運受阻,堊白面積增大,從而使堊白度有所增加(圖1D),這與程效義等[32]的研究結果基本一致.
已有研究表明,直鏈淀粉含量和淀粉RVA譜特性與稻米的蒸煮食味品質具有密切聯(lián)系,對判斷稻米蒸煮食味品質的優(yōu)劣具有重要參考價值[18,20 21,24].王玉文等[33]研究指出淀粉RVA譜特性的消減值<0時,崩解值越大、消減值越低或消減值>0時,崩解值越小、消減值越大,稻米的黏度就越大,口感越好.本試驗研究表明,氮肥用量對淀粉RVA譜特性的影響最大,各處理間差異達顯著水平;而栽插密度對淀粉RVA譜特性的影響較小,各處理間差異不顯著.同時,本研究中粳稻D46淀粉RVA譜特性中的消減值均為負值(表3),表明增加崩解值和減小消減值可以提高稻米的口感.而崩解值和消減值受施氮量的影響較大,氮肥用量增加,崩解值減小、消減值增加,稻米的口感降低,表明減少施氮量有助于稻米蒸煮食味品質的提高.栽插密度對粳稻D46淀粉RVA譜特性的影響較小.在中低密度栽培(<26.67×104穴/hm2)時稻米的口感優(yōu)于高密度栽培(>40.00×104穴/hm2),這與葉全寶等[24]對粳稻“常優(yōu)1號”和“武運粳7號”的研究結果基本一致.有研究表明,稻米直鏈淀粉含量與淀粉RVA譜特性之間存在一定的關系[34-35].在本試驗中,直鏈淀粉含量與崩解值呈極顯著負相關(-0.809),而與消減值呈極顯著正相關(0.769).結果(表4)表明,直鏈淀粉含量降低,崩解值增大、消減值減小,米飯適口性好,稻米的蒸煮食味品質提高,這與隋炯明等[34]的研究結果基本一致.
本試驗研究表明,稻米可溶性蛋白質含量主要受施氮量的影響比較明顯,而受栽插密度的影響不明顯.施氮量在0~225 kg/hm2范圍內增加時,植株氮素積累量和轉運增強,故蛋白質含量增加;而在高氮300 kg/hm2水平條件下,植株氮素積累量增加,但轉運卻有所下降.因此,氮素向籽粒的轉運受阻導致蛋白質含量降低.可見,適宜的氮肥用量才有利于提高稻米可溶性蛋白質含量,提高其營養(yǎng)品質.
在本試驗條件下,施氮量和栽插密度對產量、產量構成因素及干物質積累量有顯著影響,且存在明顯交互效應,產量提高主要是通過增加有效穗數(shù)實現(xiàn)的.在施氮量<225 kg/hm2時,增加栽插密度可顯著提高水稻籽粒產量;而在施氮量>225 kg/hm2時,繼續(xù)增施氮肥不能提高水稻產量和干物質積累量,這表明通過增施氮肥來提高水稻產量是不現(xiàn)實的.而施氮量和栽插密度對粳稻D46品質有不同程度的影響,其中以施氮量的影響最為顯著.在低氮肥條件下,隨著施氮量的增加,稻米的加工品質、外觀品質、食味品質均趨好;而當?shù)视昧浚?25 kg/hm2時稻米品質有所降低;提高栽插密度對稻米品質形成無利.以上所述,成都平原稻作區(qū)粳稻D46高產與優(yōu)質的適宜施氮量為225 kg/hm2,栽插密度為26.67×104穴/hm2.
參考文獻(References):
[1]GRIGLIONE A,LIBERTO E,CORDERO C,et al.Highquality Italian rice cultivars:chemical indices of ageing and aroma quality.Food Chemistry,2015,172:305-313.
[2]閔捷,湯圣祥,施建華,等.中國20世紀80年代以來育成糯稻品種的品質及其優(yōu)質達標率分析.中國農業(yè)科學,2010,43 (1):12-19.MIN J,TANG S X,SHI J H,et al.Analysis of grain quality and superior quality rate of glutinous rice cultivars bred since the 1980s of the 20th century in China.Scientia Agricultura Sinica,2010,43(1):12-19.(in Chinese with English abstract)
[3]孫永健,楊志遠,孫園園,等.成都平原兩熟區(qū)水氮管理模式與磷鉀肥配施對雜交稻岡優(yōu)725產量及品質的影響.植物營養(yǎng)與肥料學報,2014,20(1):17-28.SUN Y J,YANG Z Y,SUN Y Y,et al.Effects of waternitrogen management patterns and phosphorus and potassium fertilizer combined application on grain yield and quality of hybrid rice Gangyou 725 in rapeseed(wheat)-rice planting area of Chengdu plain.Journal of Plant Nutrition and Fertilizer,2014,20(1):17-28.(in Chinese with English abstract)
[4]李凌,田麟,王濤濤,等.優(yōu)質稻米“青香軟粳”低直鏈淀粉含量形成分子機制的初步研究.植物生理學報,2012,48(2):147-155.LI L,TIAN L,WANG T T,et al.Preliminary study for the molecular mechanism of low amylose content in high-quality rice (Oryza sativa L.) variety“Qingxiangruanjing”.Plant Physiology Journal,2012,48(2):147-155.(in Chinese with English abstract)
[5]DONG W,CHEN J,WANG L,et al.Impacts of nighttime post-anthesis warming on rice productivity and grain quality in East China.The Crop Journal,2014,2(1):63-69.
[6]REHMANI M I A,WEI G,HUSSAIN N,et al.Yield and quality responses of two indica rice hybrids to post-anthesis asymmetric day and night open-field warming in lower reaches of Yangtze River delta.Field Crops Research,2014,156:231-241.
[7]HUANG M,YANG C,JI Q,et al.Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of southern China.Field Crops Research,2013,149:187-192.
[8]呂騰飛,周偉,孫永健,等.不同秧齡和氮肥運籌對雜交秈稻株型的影響.浙江大學學報(農業(yè)與生命科學版),2015,41(2):169-178.LYU T F,ZHOU W,SUN Y J,et al.Effects of different transplanting seedling ages and nitrogen managements on plant type of indica hybrid rice.Journal of Zhejiang University(Agric.&Life Sci.),2015,41(2):169-178.(in Chinese with English abstract)
[9]嚴奉君,孫永健,馬均,等.秸稈覆蓋與氮肥運籌對雜交稻根系生長及氮素利用的影響.植物營養(yǎng)與肥料學報,2015,21 (1):23-35.YAN F J,SUN Y J,MA J,et al.Effects of straw mulch and nitrogen management on root growth and nitrogen utilization characteristics of hybrid rice.Journal of Plant Nutrition and Fertilizer,2015,21(1):23-35.(in Chinese with English abstract)
[10]VIJAYALAKSHMI P,VISHNUKIRAN T,KUMARI B R,et al.Biochemical and physiological characterization for nitrogen use efficiency in aromatic rice genotypes.Field Crops Research,2015,179:132-143.
[11]DENG F,WANG L,REN W,et al.Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea.Field Crops Research,2014,169:30-38.
[12]陳海飛,馮洋,蔡紅梅,等.氮肥與移栽密度互作對低產田水稻群體結構及產量的影響.植物營養(yǎng)與肥料學報,2014,20(6):1319-1328.CHENG H F,FENG Y,CAI H M,et al.Effect of the interaction of nitrogen and transplanting density on the rice population structure and grain yield in low-yield paddy fields.Journal of Plant Nutrition and Fertilizer,2014,20(6):1319-1328.(in Chinese with English abstract)
[13]胡雅杰,朱大偉,邢志鵬,等.改進施氮運籌對水稻產量和氮素吸收利用的影響.植物營養(yǎng)與肥料學報,2015,21(1):12-22.HU Y J,ZHU D W,XING Z P,et al.Modifying nitrogen fertilization ratio to increase the yield and nitrogen uptake of super japonica rice.Journal of Plant Nutrition and Fertilizer,2015,21(1):12-22.(in Chinese with English abstract)
[14]劉彥伶,來慶,徐旱增,等.不同氮肥類型對黃泥田雙季稻產量及氮素利用的影響.浙江大學學報(農業(yè)與生命科學版),2013,39(4):403-412.LIU Y L,LAI Q,XU H Z,et al.Effects of different types of nitrogen fertilizers on grain field and utilization of doublecropping rice in the yellow clayey soil.Journal of Zhejiang University(Agric.&Life Sci.),2013,39(4):403-412.(in Chinese with English abstract)
[15]馮洋,陳海飛,胡孝明,等.高、中、低產田水稻適宜施氮量和氮肥利用率的研究.植物營養(yǎng)與肥料學報,2014,20(1):7-16.FENG Y,CHEN H F,HU X M,et al.Optimal nitrogen application rates on rice grain yield and nitrogen use efficiency in high,middle and low-yield paddy fields.Journal of Plant Nutrition and Fertilizer,2014,20(1):7-16.(in Chinese with English abstract)
[16]巨曉棠,谷保靜.我國農田氮肥施用現(xiàn)狀、問題及趨勢.植物營養(yǎng)與肥料學報,2014,20(4):783-795.JU X T,GU B J.Status-quo,problem and trend of nitrogen fertilization in China.Journal of Plant Nutrition and Fertilizer,2014,20(4):783-795.(in Chinese with English abstract)
[17]于曉慧,王廣元,李廣信,等.不同施氮量和栽插密度對晉稻8號產量及品質的影響.中國稻米,2011,17(4):45-47.YU X H,WANG G Y,LI G X,et al.Effects of N application rate and planting density on the yield and quality of Jindao 8.China Rice,2011,17(4):45-47.(in Chinese with English abstract)
[18]金軍,徐大勇,蔡一霞,等.施氮量對水稻主要米質性狀及RVA譜特征參數(shù)的影響.作物學報,2004,30(2):154-158.JIN J,XU D Y,CAI Y X,et al.Effect of N-fertilizer on main quality characters of rice and RVA profile parameters.Acta Agronomica Sinica,2004,30(2):154-158.(in Chinese with English abstract)
[19]徐春梅,王丹英,邵國勝,等.施氮量和栽插密度對超高產水稻中早22產量和品質的影響.中國水稻科學,2008,22(5):507-512.XU C M,WANG D Y,SHAO G S,et al.Effects of transplanting density and nitrogen fertilizer rate on yield formation and grain quality of super high yielding rice Zhongzao 22.Chinese Journal of Rice Science,2008,22(5):507-512.(in Chinese with English abstract)
[20]趙國珍,陳于敏,蘇振喜,等.施氮量和栽插密度對云粳30號淀粉RVA譜特性影響.中國稻米,2013,19(5):33-35.ZHAO G Z,CHENG Y M,SU Z X,et al.Effects of nitrogen fertilizer amount and transplanting density on RVA profile characteristics of Yunjing 30.China Rice,2013,19 (5):33-35.(in Chinese with English abstract)
[21]謝黎虹,葉定池,陳能,等.播期和種植密度對水稻“中浙優(yōu)1號”RVA特征值和米飯質地的影響.江西農業(yè)學報,2007,19 (10):1-4.XIE L H,YE D C,CHEN N,et al.Effect of sowing date and plant density on starch RVA and texture properties in rice“Zhongzheyou 1”.Acta Agriculture Jiangxi,2007,19 (10):1-4.(in Chinese with English abstract)
[22]張自常,李鴻偉,曹轉勤,等.施氮量和灌溉方式的交互作用對水稻產量和品質影響.作物學報,2013,39(1):84-92.ZHANG Z C,LI H W,CAO Z Q,et al.Effect of interaction between nitrogen rate and irrigation regime on grain yield and quality of rice.Acta Agronomica Sinica,2013,39(1):84-92.(in Chinese with English abstract)
[23]American Association of Cereal Chemist (AACC).Approved Methods of the American Association of Cereal Chemists.9th ed.Methods for RVA,The association:St.Paul,MN.1995.
[24]葉全寶,張洪程,李華,等.施氮水平和栽插密度對粳稻淀粉RVA譜特性的影響.作物學報,2005,31(1):124-130.YE Q B,ZHANG H C,LI H,et al.Effects of amount of nitrogen applied and planting density on RVA profile characteristic of japonica rice.Acta Agronomica Sinica,2005,31(1):124-130.(in Chinese with English abstract)
[25]董桂春,李進前,于小鳳,等.不同庫容量常規(guī)秈稻品種物質生產與分配的基本特征.中國水稻科學,2009,23(6):639-644.DONG G C,LI J Q,YU X F,et al.Characteristics of dry matter accumulation and distribution in conventional indica rice cultivars with different sink potentials.Chinese Journal of Rice Science,2009,23(6):639-644.(in Chinese with English abstract)
[26]張洪程,許軻,張軍,等.雙季晚粳生產力及相關生態(tài)生理特征.作物學報,2014,40(2):283-300.ZHANG H C,XU K,ZHANG J,et al.Productivity and eco-physiological characteristics of late japonica rice in double-cropping system.Acta Agronomica Sinica,2014,40 (2):283-300.(in Chinese with English abstract)
[27]樊紅柱,曾祥忠,張冀,等.移栽密度與供氮水平對水稻產量、氮素利用影響.西南農業(yè)學報,2010,23(4):1137-1141.FAN H Z,ZENG X Z,ZHANG J,et al.Effects of transplanting density and nitrogen management on rice grain and nitrogen utilization efficiency.Southwest China Journal of Agricultural Sciences,2010,23(4):1137-1141.(in Chinese with English abstract)
[28]殷春淵,王書玉,薛應征,等.氮肥處理對水稻穗部性狀和品質的影響.天津農業(yè)科學,2013,19(1):15-19.YIN C Y,WANG S Y,XUE Y Z,et al.Effects of nitrogen treatment on the rice characteristics and quality.Tianjin Agricultural Sciences,2013,19(1):15-19.(in Chinese with English abstract)
[29]熊飛,王忠,顧蘊潔,等.施氮時期對揚稻6號穎果發(fā)育及稻米品質的影響.中國水稻科學,2007,21(6):637-642.XIONG F,WANG Z,GU Y J,et al.Effects of nitrogen application time on caryopsis development and grain quality of rice variety of Yangdao 6.Chinese Journal of Rice Science,2007,21(6):637-642.(in Chinese with English abstract)
[30]許仁良,戴其根,霍中洋,等.施氮量對水稻不同品種類型稻米品質的影響.揚州大學學報(農業(yè)與生命科學版),2005,26 (1):66-68.XU R L,DAI Q G,HUO Z Y,et al.Effects of nitrogen fertilizer quality on different rice variety quality.Journal of Yangzhou University(Agricultural and Life Science Edition),2005,26(1):66-68.(in Chinese with English abstract)
[31]李世峰,劉蓉蓉,張岳芳.施氮量對機插稻主要米質性狀的影響.北方水稻,2012,42(3):9-12,16.LI S F,LIU R R,ZHANG Y F.Effects of nitrogen application rate on rice quality of mechanical transplanting rice.Northern Rice,2012,42(3):9-12,16.(in Chinese with English abstract)
[32]程效義,徐海,馬作斌,等.施氮量與栽插密度對粳稻稻米品質的影響.雜交水稻,2011,26(5):77-80.CHENG X Y,XU H,MA Z B,et al.Effects of nitrogen rate and transplanting density on grain quality of japonica rice.Hybrid Rice,2011,26(5):77-80.(in Chinese with English abstract)
[33]王玉文,李會霞,田崗,等.小米外觀品質及淀粉RVA譜特征與米飯適口性的關系.山西農業(yè)科學,2008,36(7):34-39.WANG Y W,LI H X,TIAN G,et al.Relationship between cooked millet palatability and both visual quality and RVA profile character of starch.Journal of Shanxi Agricultural Sciences,2008,36(7):34-39.(in Chinese with English abstract)
[34]隋炯明,李欣,嚴松,等.稻米淀粉RVA譜特征與品質性狀相關性研究.中國農業(yè)科學,2005,38(4):657-663.SUI J M,LI X,YAN S,et al.Studies on the rice RVA profile characteristics and its correlation with the quality.Scientia Agricultura Sinica,2005,38(4):657-663.(in Chinese with English abstract)
[35]李剛,鄧其明,李雙成,等.稻米淀粉RVA譜特征與品質性狀的相關性.中國水稻科學,2009,23(1):99-102.LI G,DENG Q M,LI S C,et al.Correlation analysis between RVA profile characteristics and quality in rice.Chinese Journal of Rice Science,2009,23(1):99-102.(in Chinese with English abstract)
收稿日期(Received):2015-07-29;接受日期(Accepted):2015-10-27;網絡出版日期(Published online):2016-01-19
*通信作者(
Corresponding author):李天(http://orcid.org/0000-0003-1255-4804),Tel:+86-835-2882176,E-mail:lit@sicau.edu.cn第一作者聯(lián)系方式:蘭艷(http://orcid.org/0000-0001-6398-3487),E-mail:lanyansicau@163.com
基金項目:四川省科技廳科技支撐計劃項目(2014NZ0103).
DOI:10.3785/j.issn.1008-9209.2015.07.291
中圖分類號S 511
文獻標志碼A