任蕾
摘要:卷積是信號(hào)與系統(tǒng)課程中的一個(gè)重要知識(shí)點(diǎn),是溝通系統(tǒng)時(shí)域分析與變換域分析方法的橋梁。直流信號(hào)作為一類特殊信號(hào),與能量信號(hào)進(jìn)行卷積運(yùn)算時(shí),一般可結(jié)合卷積定義或卷積的各類性質(zhì)實(shí)現(xiàn)。這一類卷積計(jì)算的本質(zhì)可理解為直流激勵(lì)通過(guò)線性時(shí)不變系統(tǒng),或者信號(hào)通過(guò)全積分系統(tǒng),其卷積結(jié)果為系統(tǒng)的零狀態(tài)響應(yīng)。通過(guò)幾個(gè)例子介紹了該類卷積計(jì)算的本質(zhì)和計(jì)算過(guò)程中需注意的問(wèn)題。
關(guān)鍵詞:卷積;信號(hào)與系統(tǒng);直流激勵(lì);能量信號(hào)
中圖分類號(hào):TN911 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1009-3044(2015)33-0152-02
The Nature of Convolution Between Direct Current Signal and Energy Signals
REN Lei
(College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China)
Abstract: Convolution is one important knowledge point of signal and system, which is the bridge between time-domain analysis method and transform-domain analysis method for system. Generally, convolution of direct current signal and other signals can be conducted using the definition and properties of convolution. The nature of such convolution is considered as the process that direct current signal as excitation signal through a linear time-invariant system or through all integration system. The result of convolution is the zero-state response of system. Several examples are provided to show the nature of convolution and the notes about it are also pointed out.
Key words: convolution; signal and system; direct current excitation of system; energy signal
3 結(jié)束語(yǔ)
卷積不僅是一種積分運(yùn)算,在線性時(shí)不變系統(tǒng)分析中,卷積運(yùn)算有重要作用。系統(tǒng)的零狀態(tài)響應(yīng)可由激勵(lì)信號(hào)與系統(tǒng)沖激響應(yīng)卷積求得,因此,深刻理解其含義和本質(zhì)有助于本知識(shí)點(diǎn)的學(xué)習(xí)。本文著重討論了直流信號(hào)與能量信號(hào)卷積的本質(zhì)和計(jì)算,通過(guò)例題說(shuō)明了其卷積計(jì)算的過(guò)程和本質(zhì)。
參考文獻(xiàn):
[1] 奧本海姆.信號(hào)與系統(tǒng)[M]. 劉樹(shù)棠,譯.2版.西安:西安交通大學(xué)出版社,1998.
[2] Simon Haykin.信號(hào)與系統(tǒng) [M]. 秩盛,譯. 2版.北京:電子工業(yè)出版社,2006.
[3] 鄭君里,應(yīng)啟珩,楊為理.信號(hào)與系統(tǒng)[M].北京:高等教育出版社,2000.
[4] 管致中,夏恭恪,孟橋.信號(hào)與線性系統(tǒng)[M]. 4版.北京:高等教育出版社,2004.
[5] 吳大正.信號(hào)與線性系統(tǒng)分析 [M]. 4版.北京:高等教育出版社,2006.
[6] 楊忠根. 信號(hào)與系統(tǒng)[M].北京:電子工業(yè)出版社,2012.
[7] 李華圖. 關(guān)于卷積及其存在性的探討[J]. 重慶:重慶郵電大學(xué)學(xué)報(bào),1999,11(1):69-72.
[8] 王曉翔,黃靜,梁忞飛. 關(guān)于卷積的運(yùn)算規(guī)則及存在性[J].電氣電子教學(xué)學(xué)報(bào),2012,34(2):39-42.
[9] 周井泉. 卷積結(jié)合律成立的條件[J].電氣電子教學(xué)學(xué)報(bào),2004,26(2):43-45.