亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于模型的CICA及其在滾動(dòng)軸承故障診斷中的應(yīng)用

        2016-01-12 10:41:31王志陽(yáng),杜文遼,陳進(jìn)
        振動(dòng)與沖擊 2015年8期

        第一作者王志陽(yáng)男,講師,1974年1月生

        通信作者陳進(jìn)男,教授,博士生導(dǎo)師,1959年6月生

        基于模型的CICA及其在滾動(dòng)軸承故障診斷中的應(yīng)用

        王志陽(yáng)1,杜文遼2,陳進(jìn)3

        (1.河南理工大學(xué)機(jī)械與動(dòng)力工程學(xué)院, 河南焦作454000; 2.鄭州輕工業(yè)學(xué)院機(jī)電工程學(xué)院, 鄭州45400023.上海交通大學(xué)機(jī)械系統(tǒng)與振動(dòng)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 上海200240)

        摘要:由獨(dú)立成分分析(ICA)的順序不確定性帶來(lái)的源數(shù)估計(jì)和對(duì)傳感器個(gè)數(shù)的估計(jì)問(wèn)題使得ICA在機(jī)械故障診斷中的廣泛應(yīng)用受到了限制,而約束獨(dú)立成分分析(CICA)充分利用了設(shè)備的先驗(yàn)知識(shí)作為ICA的約束條件,可以使ICA算法收斂到感興趣的故障信號(hào)。本文提出了一種基于滾動(dòng)軸承模型的約束獨(dú)立成分分析(CICA)方法,該方法可以從傳感器信號(hào)中快速診斷出設(shè)備是否發(fā)生了滾動(dòng)軸承故障,并用仿真和實(shí)驗(yàn)驗(yàn)證了該方法在滾動(dòng)軸承故障診斷中的有效性。

        關(guān)鍵詞:獨(dú)立成分分析;約束獨(dú)立成分分析;盲源分離; 機(jī)械故障診斷;滾動(dòng)軸承

        基金項(xiàng)目:國(guó)家自然科學(xué)

        收稿日期:2013-06-02修改稿收到日期:2014-04-03

        中圖分類號(hào):TH165.3;TP206.3文獻(xiàn)標(biāo)志碼:A

        Fault diagnosis of rolling element bearings with model-based constrained independent component analysis

        WANGZhi-yang1,DUWen-liao2,CHENJin3(1.School of Mechanics and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China;2. Mechanical and Electrical Engineering Institute, Zhengzhou University of Light Industry, Zhengzhou 454002, China;3. State Key Lab. of Mechanism and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China)

        Abstract:The order ambiguity of independent component analysis (ICA) makes it very difficult to estimate numbers of sources and sensors. Constrained independent component analysis (CICA) can use some prior knowledge of equipments as a constraint of ICA to make the ICA algorithm converge to fault signals to be interested. Here, a model-based constrained independent component analysis method for fault diagnosis of rolling element bearings was presented. Its effectiveness was verified with simulations and tests.

        Key words:independent component analysis (ICA); constrained independent component analysis (CICA); blind source separation; machine fault diagnosis; rolling element bearing

        盡管獨(dú)立成分分析(ICA)已經(jīng)在通信工程[1-2]、語(yǔ)音處理[3]、生物工程[4-5]等 諸多領(lǐng)域中有著廣泛的應(yīng)用,但它在機(jī)械故障診斷中的應(yīng)用還有許多困難。其中一個(gè)重要的原因就是機(jī)械故障診斷中的源數(shù)是非常多的,甚至是無(wú)法估計(jì)的。這使得對(duì)ICA的源數(shù)估計(jì)和對(duì)傳感器個(gè)數(shù)的估計(jì)變得非常困難。多傳感器使我們的測(cè)試代價(jià)高昂,而源數(shù)估計(jì)問(wèn)題和故障信號(hào)的微弱性等其它因素,使得ICA算法在機(jī)械故障診斷中的有效性大大降低。這最終導(dǎo)致ICA方法在機(jī)械故障診斷(特別是大型復(fù)雜機(jī)械故障診斷)中的應(yīng)用受到了比較大的限制。

        如何從大量的測(cè)試數(shù)據(jù)中提取有效信息是機(jī)械故障診斷的顯著特點(diǎn)。而約束獨(dú)立成分分析(CICA)在這方面顯示出了比ICA方法更加適宜的優(yōu)異性能。相對(duì)傳統(tǒng)的ICA而言,CICA 可以利用機(jī)器的先驗(yàn)知識(shí)作為參考信號(hào),只需提取感興趣的故障信號(hào)。這樣就可以避開ICA方法中難于處理的順序不確定問(wèn)題和源數(shù)估計(jì)問(wèn)題。因此,CICA 方法在機(jī)械 故障診斷領(lǐng)域中具有很大的應(yīng)用潛力。

        約束獨(dú)立成分分析方法(CICA)由獨(dú)立成分分析方法發(fā)展而來(lái)。該方法的關(guān)鍵是在ICA基礎(chǔ)算法中引入有效的約束條件(參考信號(hào))。約束條件既要滿足ICA算法的非高斯性和獨(dú)立性要求,還要能夠使ICA算法在收斂時(shí)向著約束條件所要求的方向收斂。因此約束條件要能夠攜帶感興趣信號(hào)的特征信息,如周期、頻譜等。王志陽(yáng)等[6-7]提出的基于脈沖法的約束獨(dú)立成分分析方法就是利用了感興趣信號(hào)的周期特性。Wang等[8]提出的基于循環(huán)平穩(wěn)性的約束獨(dú)立成分分析方法在通信工程中也得到了很好的應(yīng)用。

        滾動(dòng)軸承是旋轉(zhuǎn)機(jī)械中的重要零部件,開展?jié)L動(dòng)軸承的狀態(tài)監(jiān)測(cè)和故障診斷對(duì)于提高滾動(dòng)軸承的可靠性和壽命具有重要意義。本文在約束獨(dú)立成分分析方法的基礎(chǔ)上提出了一種基于滾動(dòng)軸承模型的約束獨(dú)立成分分析方法,并通過(guò)實(shí)驗(yàn)驗(yàn)證了該方法在滾動(dòng)軸承故障診斷中的有效性。

        1方法

        1.1 約束獨(dú)立成分分析基本原理(CICA)

        一個(gè)公認(rèn)的基本ICA模型是這樣的:假設(shè)k個(gè)可觀測(cè)的時(shí)間序列x(t)=[x1(t),x2(t)…,xk(t)]由l個(gè)滿足獨(dú)立性的未知非高斯性源信號(hào)s(t)=[s1(t),s2(t),…,sl(t)]線性混合而成(l個(gè)信號(hào)源中至多一個(gè)高斯性信號(hào)),即

        x(t)=As(t)

        (1)

        那么,ICA方法就是在混合矩陣A和源信號(hào)向量s(t)均未知的條件下,求一個(gè)矩陣W,使得W對(duì)混合信號(hào)x(t)的線性變換:

        y(t)=Wx(t)=WAs(t)=Cs(t)

        (2)

        y(t)是對(duì)源信號(hào)向量s(t)或某些分量的一個(gè)估計(jì)。式中W稱為分離矩陣,C稱為全局矩陣或者混合-分離矩陣。

        中心極限定理告訴我們,獨(dú)立隨機(jī)變量之和的分布較任何一個(gè)原始的隨機(jī)變量更接近于高斯分布。因此,非高斯性是ICA估計(jì)的基礎(chǔ)。按照信息理論,在所有方差相同的隨機(jī)變量中,高斯變量具有最大的熵,也就是說(shuō),高斯變量是最隨機(jī)的。因此,可以用負(fù)熵度量信號(hào)的非高斯性。負(fù)熵定義為:

        J(y)=H(ygauss)-H(y)

        (3)

        J(y)≈ρ{E[G(y)]-E[G(ν)]}2

        (4)

        (5)

        式中:1≤a1≤2,常取作1。然后利用下面的定點(diǎn)迭代算法:

        W=E(yg(WTy))?

        (1+α)W=E(yg(WTy))+αW

        (6)

        式中g(shù)是G的導(dǎo)數(shù)。對(duì)于式中的α,可使用近似牛頓迭代方法來(lái)搜索。

        上述的one-unit ICA方法理論上收斂到負(fù)熵的最大值。因此提取的獨(dú)立成分是混合信號(hào)中非高斯性最大的那個(gè)信號(hào)。如果欲提取某個(gè)特定的獨(dú)立成分,除非該成分恰好就是非高斯性最大的那個(gè)成分,否則one-unit ICA 方法就會(huì)失效。如果我們?cè)趏ne-unit ICA的收斂算法中加入一個(gè)約束條件,當(dāng)然,該約束條件隱含有我們想要的獨(dú)立成分的一個(gè)特征,那么算法就會(huì)收斂到我們感興趣的獨(dú)立成分[9]。假設(shè)該約束條件可以表示成參考信號(hào)r(t),定義待抽取的獨(dú)立成分y和參考信號(hào)r(t)的距離函數(shù)為ε(y,r)。ε(y,r)可以用均方誤差ε(y,r)=E{(y-r)2}來(lái)度量,也可以用相關(guān)函數(shù)ε(y,r)=-E{yr}來(lái)度量。那么有下面的不等式:

        ε(w*Tx,r)<ε(wT1x,r)≤…≤ε(wTl-1x,r)

        (7)

        這里w*是待提取的獨(dú)立成分對(duì)應(yīng)的最優(yōu)解向量,wi,i=1,2…,l-1(wi≠w*)是其它獨(dú)立成分對(duì)應(yīng)的解向量。那么下述的約束函數(shù)有且只有在y=w*Tx時(shí)為真:

        g(y)=ε(y,r)-ξ≤0

        (8)

        這里ξ∈[ε(w*Tx,r),ε(wT1x,r)]是個(gè)閾值參數(shù)。把式(8)代入式(4)中,可以得到約束獨(dú)立成分(C ICA)算法[10]如下:

        maxJ(y)≈ρ{E[G(y)]-E[G(v)]}2

        (9)

        式中,J(y)是式(4)中描述的one-unit對(duì)照函數(shù);g(y)是約束函數(shù);h(y)和h(r)分別是使輸出的獨(dú)立成分y和參考信號(hào)具有單位方差。式(9)實(shí)際上是一個(gè)約束優(yōu)化問(wèn)題,它可以通過(guò)拉格朗日乘數(shù)法求解。

        1.2 參考信號(hào)的建立

        本文所采取的參考信號(hào)來(lái)自于Randall[11]的滾動(dòng)軸承模型,這個(gè)軸承模型綜合考慮了軸承結(jié)構(gòu)(幾何形狀)、公差、調(diào)幅、滾珠隨機(jī)滑動(dòng)、表面磨損(諸如點(diǎn)蝕、剝落等)的綜合影響。該模型已經(jīng)在文獻(xiàn)[11-13]中已經(jīng)有比較成功的應(yīng)用。定義T為沖擊發(fā)生的周期,因?yàn)闈L動(dòng)軸承工作環(huán)境較為惡劣,一般存在較強(qiáng)的環(huán)境噪聲,模型中考慮加性噪聲n(t)的干擾,假定n(t)為零均值平穩(wěn)隨機(jī)噪聲。則滾動(dòng)軸承故障模型可以表示為:

        (10)

        式中,A為幅調(diào)因子函數(shù);fr為轉(zhuǎn)頻,pt為故障產(chǎn)生的某次沖擊振蕩,其周期為T-1/fp(fp為振蕩頻率),τi為滾動(dòng)體與滾道之間的微小滑動(dòng),fn為滾動(dòng)軸承的系統(tǒng)共振頻率,A0為任意正常數(shù),CA為依賴于軸承型號(hào)的衰減系數(shù)。

        2計(jì)算機(jī)仿真及分析

        現(xiàn)用計(jì)算機(jī)仿真產(chǎn)生三個(gè)源信號(hào)。第一個(gè)信號(hào)s1是一頻率調(diào)制信號(hào),由式(11)生成,其中f1=610 Hz,f2=200 Hz。第二個(gè)信號(hào)s2由式(10)生成,其參數(shù)如表1所示。第三個(gè)信號(hào)s3是一個(gè)高斯白噪聲信號(hào)。

        (11)

        三個(gè)源信號(hào)的時(shí)域波形如圖1所示?,F(xiàn)隨機(jī)產(chǎn)生一混合矩陣A, 按等式(12)對(duì)源信號(hào)進(jìn)行線性隨機(jī)混合。得到混合信號(hào)如圖2所示。

        (12)

        這里的T為向量的轉(zhuǎn)置符號(hào),實(shí)際工作中滾動(dòng)軸承的型號(hào)和轉(zhuǎn)速是已知的,因此它的特征頻率是可以通過(guò)公式計(jì)算或查表法獲得[14]。本文用均方誤差方法為約束算法,以滾動(dòng)軸承的特征頻率為已知條件輸入模型(式10),它所產(chǎn)生的信號(hào)為參考信號(hào)。圖3 (上) 是一個(gè)周期等于滾動(dòng)軸承內(nèi)圈通過(guò)周期的參考信號(hào),其它參數(shù)任意,以此參考信號(hào)為約束條件,圖3 (中)是對(duì)應(yīng)的提取信號(hào)y的時(shí)域波形。

        圖1 源信號(hào)S的時(shí)域波形 Fig.1 The time domain waveforms of source signal S

        圖2 可觀測(cè)的混合信號(hào) Fig.2 Threeobservable mixed signals

        為了更加清楚地分析已經(jīng)提取出的信號(hào),現(xiàn)對(duì)提取出的信號(hào)做包絡(luò)分析。圖3(下)為利用本文算法提取出的信號(hào)y的包絡(luò)頻譜圖,從圖中可以看出,在52 Hz處的兩邊等間距(12 Hz)地分布著40 Hz和63 Hz。這是滾動(dòng)軸承內(nèi)圈故障頻率被轉(zhuǎn)頻調(diào)制的典型特征。因此,基于模型的CICA算法正確地提取出了故障信號(hào)。

        圖3 參考信號(hào)(上)、提取信號(hào)的時(shí)域波形 (中)和包絡(luò)頻譜圖(下) Fig.3 Time waveforms of the reference ref.(top) and the extracted y(mid) and envelope-spectrum graph of the extracted signal y(below)

        圖4 不正確的參考信號(hào)(a),抽取的信號(hào) y的時(shí)域波形(b)以及y的包絡(luò)頻譜(c) Fig.4 Time waveform of the improper reference signal (top) and the extracted signal y (mid), and corresponding envelope-spectrum graph of the extracted signal y (below)

        為了驗(yàn)證算法,下面我們用一個(gè)不正確的參考信號(hào)作為約束條件。用模型(式10)產(chǎn)生一個(gè)滾動(dòng)軸承的外圈故障信號(hào)作為參考信號(hào)如圖4(上)。圖4 (中) 是利用CICA 算法提取信號(hào)的時(shí)域波形,圖4(下)是利用CICA 算法提取信號(hào)的包絡(luò)頻譜圖。圖4(下)的結(jié)果表明:此時(shí)CICA算法沒(méi)有提取出正確的故障信號(hào)。這是因?yàn)楣收闲盘?hào)的特征未隱含在參考信號(hào)中,反復(fù)的實(shí)驗(yàn)顯示,故障信號(hào)無(wú)法被提取出來(lái)。

        3滾動(dòng)軸承實(shí)驗(yàn)及分析

        本實(shí)驗(yàn)用一個(gè)具有內(nèi)圈故障的滾動(dòng)軸承來(lái)驗(yàn)證CICA方法的有效性。滾動(dòng)軸承的觀測(cè)振動(dòng)信號(hào)來(lái)自上海交通大學(xué)機(jī)械系統(tǒng)與振動(dòng)國(guó)家重點(diǎn)實(shí)驗(yàn)室的滾動(dòng)軸承振動(dòng)測(cè)試臺(tái)(如圖5所示)。該試驗(yàn)臺(tái)由交流電機(jī)驅(qū)動(dòng),通過(guò)聯(lián)軸器帶動(dòng)轉(zhuǎn)子運(yùn)轉(zhuǎn)。在測(cè)試過(guò)程中,滾動(dòng)軸承的外圈固定在實(shí)驗(yàn)臺(tái)架上,內(nèi)圈隨工作軸同步轉(zhuǎn)動(dòng)。試驗(yàn)軸承的型號(hào)為GB6203,內(nèi)圈用電火花加工方法加工一0.5×0.5×4(單位:mm)的故障如圖6所示。工作軸的轉(zhuǎn)速為720 轉(zhuǎn)/分鐘,經(jīng)查表計(jì)算,軸承的內(nèi)圈特征頻率為59.4 Hz。四個(gè)傳聲器的位置如圖5所示,信號(hào)采集系統(tǒng)為丹麥B.K PULSE 6530C采集系統(tǒng),采樣頻率66 kHz。

        圖5 軸承試驗(yàn)臺(tái)及傳感器布置 Fig.5 Bearing test bench and photo of sensors

        圖6 滾動(dòng)軸承的故障位置 Fig.6 Photo of the rolling element bearing with the inner race fault

        本實(shí)驗(yàn)中所測(cè)得的傳感器信號(hào)的成分比較復(fù)雜,除了滾動(dòng)軸承的故障信號(hào)外,還混有不明顯的不平衡故障信號(hào),皮帶擾動(dòng)等其它干擾信號(hào)。直接對(duì)其作頻譜分析,其結(jié)果往往難以令人滿意?,F(xiàn)用本文中提出的基于模型的CICA 方法來(lái)確定故障。與前面的仿真一樣,根據(jù)工作軸的轉(zhuǎn)速和軸承型號(hào),由式(10)產(chǎn)生一個(gè)參考信號(hào)。算法的提取結(jié)果示于圖7中。從提取信號(hào)y的包絡(luò)頻譜可以看出,內(nèi)圈故障頻率(60 Hz)被轉(zhuǎn)頻(12 Hz)所調(diào)制。這表明算法正確地提取出了故障信號(hào)。

        圖7 參考信號(hào)(上)、抽取的信號(hào) y (中)和 y的包絡(luò)頻譜(下) Fig.7 Reference signal(top), extracted signal y(mid) and envelop-spectrum of the extracted signal (below)

        現(xiàn)根據(jù)模型(10)產(chǎn)生一個(gè)外圈故障信號(hào)作為基于模型的CICA算法的參考信號(hào),其時(shí)域波形示于圖8(上)中。將該參考信號(hào)和四個(gè)測(cè)量信號(hào)作為基于模型的CICA算法的輸入,其它條件不變,算法輸出的時(shí)域波形示于圖8(中)。顯然,這是一雜亂無(wú)章的信號(hào),對(duì)其做包絡(luò)分析,其包絡(luò)頻譜圖示于圖8 (下),圖8(下)明顯不具有滾動(dòng)軸承外圈故障的包絡(luò)頻譜結(jié)構(gòu)特征。這說(shuō)明設(shè)備沒(méi)有發(fā)生滾動(dòng)軸承的外圈故障。如果我們將參考信號(hào)改為滾動(dòng)體故障信號(hào)或者其它參考信號(hào),可以得到類似的結(jié)果。

        圖8 不正確的參考信號(hào)(上)、抽取的 信號(hào)y (中)和 y的包絡(luò)頻譜(下) Fig.8 Incorrect reference signal and its extracted results: Reference signal(top), extracted signal (mid) and envelop-spectrum of the extracted signal(below)

        值得說(shuō)明的是,文中參考信號(hào)所用的理論故障模型由于滾珠滑移等其它原因和軸承的實(shí)際故障并不完全相符,但這并不影響算法的收斂。這是由于基于模型的約束獨(dú)立成分分析方法本質(zhì)上是使輸入信號(hào)中的獨(dú)立成分向著與參考信號(hào)相符的方向收斂。模型產(chǎn)生的參考信號(hào)不必和真實(shí)故障信號(hào)完全一致,只要它和真實(shí)故障信號(hào)的“距離”(以非高斯性為測(cè)度)比其它任何一個(gè)都“短”,算法就會(huì)最終收斂于感興趣的真實(shí)故障信號(hào)。

        4結(jié)論

        本文提出了一種基于滾動(dòng)軸承模型的約束獨(dú)立成分分析方法并用計(jì)算機(jī)仿真和實(shí)驗(yàn)驗(yàn)證了該方法在滾動(dòng)軸承故障診斷中的適用性和有效性。

        仿真和實(shí)驗(yàn)表明,只有與故障軸承相符合的模型信號(hào)才能提取出正確的故障信號(hào),與故障軸承不符合的模型信號(hào),無(wú)法收斂于感興趣的故障信號(hào)。該算法將測(cè)量數(shù)據(jù)的統(tǒng)計(jì)獨(dú)立性和滾動(dòng)軸承的理論故障模型相結(jié)合,可以快速而精確地診斷出設(shè)備的滾動(dòng)軸承故障。這為滾動(dòng)軸承的智能快速故障診斷提供了一種新的方法和手段。

        參考文獻(xiàn)

        [1]Seungjin Choi A C, Park H M,Lee S Y, Blind source separation and independent component analysis: A Review [J]. Neural Information Processing-Letters and Reviews, 2005,6(1):1-57.

        [2]Kardec Barros A, Carlos Principe J, Erdogmus D. Independent component analysis and blind source separation [J], Signal Processing, 2007,87(8):1817-1818.

        [3]Hyv?rinen A,Oia E. Independent component analysis: algorithms and applications [J].Neural computation,2001,13(7):1527.

        [4]Barros A K, Cichocki A, Extraction of specific signals with temporal structure [J]. Neural Computation,2001,13(9):1995-2003.

        [5]Puntonet C G,Lang E W. Blind source separation and independent component analysis [J]. Neurocomputing,2006,69(13-15):1413-1413.

        [6]Wang Z Y, Chen J, Dong G M, et al. Constrained independent component analysis and its application to machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2011, 25(7):2501-2512.

        [7]王志陽(yáng),陳進(jìn),肖文斌,等, 基于約束獨(dú)立成分分析的滾動(dòng)軸承故障診斷[J]. 振動(dòng)與沖擊,2012,31(9):105-109.

        WANG Zhi-yang,CHEN Jin, XIAO Wen-bin,et al. Fault diagnosis of rolling element bearing based on constrained independent component analysis[J] . Journal of Vibration and Shock, 2012, 31(9): 105-109.

        [8]WangX, Huang Z, Zhou Y,et al. Approaches and applications of semi-blind signal extraction for communication signals based on constrained independent component analysis: The complex case[J]. Neurocomputing, 3013, 101(0): 204-216.

        [9]Hyv?rinen A. O-Unit Contrast functions for independent component analysis: a statistical analysis [J]. Neural Networks for Signal Processing, 1997,VII:388-397.

        [10]Lu W, Rajapakse J C, ICA with reference [J]. Neurocomputing, 2006,69(16-18):2244-2257.

        [11]Randall R B, Antoni J, Chobsaard S, The relationship between special correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals [J]. Mechanical Systems and Signal Processing,2001,15(5):945-962.

        [12]Antoni J, Randall B R. Differential diagnosis of gear and bearing faults [J]. American Society of Mechanical Engineers,2002,124(2):165-171.

        [13]Pan N Y, Chen J, Li X L, Spectral entropy: a complementary index for rolling element bearing performance degradation assessment[J]. Mechanical Engineering Science, 2009, 1223-1231.

        [14]陳進(jìn), 機(jī)械設(shè)備振動(dòng)監(jiān)測(cè)與故障診斷[M].上海: 上海交通大學(xué)出版社, 1999.

        亚洲精品一品区二品区三品区 | 天干天干天啪啪夜爽爽av| 国产精品亚洲精品日韩已方 | 亚洲精品网站在线观看你懂的| 国产精品一区二区资源| 中文字幕亚洲无线码高清| 国产精品高清一区二区三区人妖| 伊人久久大香线蕉av五月| 亚洲av中文无码乱人伦在线播放| 色丁香色婷婷| 99热在线播放精品6| 亚洲视频一区二区三区免费| 久久精品国产亚洲av成人文字| 97精品久久久久中文字幕| 亚洲人成无码网站久久99热国产| 蜜桃av无码免费看永久| 中文av字幕一区二区三区| 亚洲av无码乱码在线观看裸奔| a级毛片免费观看视频| 日本高清视频在线一区二区三区| 精品一区二区三区蜜桃麻豆| 亚洲欧洲国产码专区在线观看| 性色av无码一区二区三区人妻| 中日韩欧美高清在线播放| 日本亚洲视频免费在线看| 欧美成人精品a∨在线观看| 无码精品人妻一区二区三区影院| 永久黄网站色视频免费| 中文字幕亚洲精品人妻| 一区二区三区国产黄色| 免费无码又爽又刺激网站直播| 无码精品a∨在线观看十八禁| 国产精品久久久久久2021| 日本久久黄色高清视频| 午夜精品久久久久久久久| 国产成a人亚洲精v品无码性色| 欧美精品高清在线xxxx| 国产精品一区二区熟女不卡| 欧美乱人伦人妻中文字幕| 久久精品国产99精品九九 | 成人免费av色资源日日|