Federico+Guerrini
在這個大部分人口不愁吃、不愁穿的年頭,農(nóng)業(yè)的重要性很容易被人忽略。然而展望未來,人口不斷膨脹,可用耕地越來越有限,影響農(nóng)業(yè)的不可預(yù)測因素也層出不窮,該如何養(yǎng)活全球人口是我們不得不面對的嚴肅問題。過去,我們依靠科技解決了人們的溫飽問題,未來我們需要讓農(nóng)業(yè)的經(jīng)營跟上信息化的步伐,朝著更加精細化、智能化的方向發(fā)展。
The agricultural sector is going to face enormous challenges in order to feed the 9.6 billion people that the FAO1) predicts are going to inhabit the planet by 2050: Food production must increase by 70% by 2050, and this has to be achieved in spite of the limited availability of arable2) lands, the increasing need for fresh water (agriculture consumes 70 per cent of the worlds fresh water supply) and other less predictable factors, such as the impact of climate change, which, according to a recent report by the UN could lead, among other things3), to changes to seasonal events in the life cycle of plant and animals.
One way to address these issues and increase the quality and quantity of agricultural production is using sensing technology to make farms more “intelligent” and more connected through the so-called “precision agriculture” also known as “smart farming.”
Its something thats already happening, as corporations and farm offices collect vast amounts of information from crop yields, soil-mapping, fertiliser applications, weather data, machinery, and animal health. In a subset of smart farming, Precision Livestock Farming (PLF), sensors are used for monitoring and early detection of reproduction events and health disorders in animals.
Typical monitored data are the body temperature, the animal activity, tissues4) resistivity5), pulse and the GPS position. SMS6) alerts can be sent to the breeder based on predefined events, say, if a cow is ready for reproduction.
The European Union has sponsored several projects on the topic during the Seventh Framework Programme7) and, now, during Horizon 20208). The currently running EU-PLF project, for instance, is designed to look at the feasibility of bringing proven and cost-effective Precision Livestock Farming tools from the lab to the farm.
Several private companies are also starting to be active in this field, such as Anemon (Switzerland), eCow (UK), Connected Cow (Medria Technologies and Deutsche Telekom). Smart fishing is at initial stage with some projects in Europe, South Korea, North America and Japan.
“Precision agriculture is not new. The agricultural vehicle manufacturers (John Deere, CNH Global, Claas and others) have been involved in this segment for some time. Initially, it was about position technologies (GNSS9)) mainly, but it is becoming more complex moving towards the idea of a connected harvester,” Beecham Researchs principal analyst, Saverio Romeo tells me.
Romeo is the co-author of a report called “Towards Smart Farming—Agriculture Embracing the IoT10) Vision” published in January, 2015 by Beecham and focused on exploring how agricultural operations are changing through the Internet of Things.
The aim of the agriculture sector is to optimize processes and uses of resources and efficient use of existing arable land. The Internet of Things can enable all that. It can increase production, but it can also increase the level of quality of agriculture.
“I would like to highlight the fact,” Romeo says, “that the aim should not be ‘industrializing agriculture, but making agriculture more efficient, sustainable and of high quality. We should not look for revolutions. We should look for re-interpretation of the farming practices through use of data-centric technologies. And this re-interpretation should be placed also within a new vision of rural areas.”
That is to say that smart rural areas should not come out of the blue11) and live in a void, but be connected with smart agri-food industry, smart tourism and other activities that move in rural areas and around agriculture.
Although the cost of smart farming is still high for any but the largest farms (this, by the way, helps explain why the USA, with its vast territories, is at the forefront of this new paradigm), this doesnt mean precision agriculture cant be done in small places. Actually, there are quite a few applications in small-field farming too. In vineyards for instance. “Sensors are installed in various location in the fields in order to have data about the soil and the plants and then this data are used to prevent diseases such as the peronospora12),” Romeo says.
Helpful and sought after13) as it might be, smart farming has still to overcome many hurdles before it becomes more widespread. “One is that the agricultural sector is extremely low margin14). Therefore, investments in innovation are difficult,” the researcher says. Then theres also what we might call an “image problem,” that is causing a hemorrhage15) of labour. “Being a farmer is not cool because agriculture is perceived as something that belong to history, to the grandfathers,” Romeo tells me.
There are also a number of concerns about the role of giant companies such as DuPont16), John Deere and Monsanto17) that raise questions: for example, data ownership. Who is the owner of soil sensing data? Monsanto or the farmer? And if it is Monsanto (or another company), what does it do with that? One answer could be price discrimination: Data on the soil or on the water could be used by biotech giants to charge farmers a different amount for the same product or service.
Access to real time information about harvesting, planting and yields could also help corporations predict the property value of farms better than anyone else and have unparalleled insight into the commodities market.
Another problem that could slow down IoT in agriculture is the issue of communicating with farmers, who could often not understand the technicalities. “If we tell them that you can do this and that with IoT, they will not understand. The language of the IoT industry has to change dramatically,” Romeo says, “Here, we need a revolution.”
Analysts, however, are positive that in the end this and other barriers will be cancelled.
“It will require some time, also, because the agriculture does not have the same pace of other sectors because of its nature. But, we will be there because we need it. And allow me this, because agriculture will return to be cool.”
聯(lián)合國糧食及農(nóng)業(yè)組織(FAO)預(yù)測,到2050年,地球上居住的人口將達到96億。要養(yǎng)活這些人口,農(nóng)業(yè)部門將面臨巨大的挑戰(zhàn):到2050年,糧食產(chǎn)量必須增長70%,這一增長比率必須得實現(xiàn),盡管可用耕地有限,淡水需求將增加(農(nóng)業(yè)消耗了全球淡水供給的70%),其他難以預(yù)測的因素也會發(fā)生,比如根據(jù)聯(lián)合國近期發(fā)布的報告,氣候變化連同其他因素所產(chǎn)生的影響可能會改變動植物生命周期中的季節(jié)性活動。
要解決這些問題并提高農(nóng)業(yè)生產(chǎn)的質(zhì)量與產(chǎn)量,一個方法就是通過所謂的“精準農(nóng)業(yè)”(也稱為“智慧農(nóng)業(yè)”),運用傳感技術(shù)使農(nóng)場變得更加“智能化”和互聯(lián)化。
人們已經(jīng)開始這樣做了,一些公司和農(nóng)場辦公室針對糧食產(chǎn)量、土壤分布圖、施肥情況、天氣數(shù)據(jù)、機械裝置以及動物健康情況收集了大量信息。在智慧農(nóng)業(yè)的一個細分類別—精準畜牧業(yè)中,傳感器被用來監(jiān)測和及早發(fā)現(xiàn)動物的繁育行為和健康問題。
具有代表性的監(jiān)測數(shù)據(jù)包括體溫、動物活動、動物組織的電阻率、脈搏和GPS定位?;陬A(yù)設(shè)的事件(比如當一頭母牛準備好生小牛時),系統(tǒng)能向飼養(yǎng)員發(fā)送短信提示。
歐盟已經(jīng)在其第七框架計劃以及目前的“地平線2020”計劃中資助了關(guān)于這一主題的幾個項目。比如現(xiàn)在正在進行的歐洲精準畜牧業(yè)項目,它的設(shè)計目的是為了研究將可靠且劃算的精準畜牧業(yè)工具從實驗室推向農(nóng)場的可行性。
有幾家私營公司也開始活躍于這一領(lǐng)域,比如,瑞士的阿內(nèi)蒙公司、英國的電子牛公司以及梅德羅爾科技公司與德國電信公司合辦的互聯(lián)牛公司 。智慧漁業(yè)還處于起步階段,在歐洲、韓國、北美和日本有一些相關(guān)項目。
“精準農(nóng)業(yè)并不是一個新概念。農(nóng)用機械制造商(約翰·迪爾公司、凱斯紐荷蘭全球公司、科樂收公司以及其他公司)進軍這一領(lǐng)域已經(jīng)有些時間了。最初,精準農(nóng)業(yè)主要圍繞定位技術(shù)(全球?qū)Ш叫l(wèi)星系統(tǒng)),但后來有了互聯(lián)收割機的想法,這個概念就變得更復(fù)雜了。”比徹姆研究公司的首席分析師薩韋里奧·羅密歐告訴我。
比徹姆研究公司在2015年1月份發(fā)布了一份標題為《走向智慧農(nóng)業(yè)—農(nóng)業(yè)擁抱物聯(lián)網(wǎng)的愿景》的報告,羅密歐是報告的合著者。這份報告的焦點是探討物聯(lián)網(wǎng)手段正在使農(nóng)業(yè)管理發(fā)生怎樣的改變。
農(nóng)業(yè)部門的目標是優(yōu)化資源的加工和使用,并最大化地有效利用現(xiàn)有耕地。物聯(lián)網(wǎng)能讓所有這些成為可能。它不僅能夠增加產(chǎn)量,還能提高農(nóng)業(yè)的質(zhì)量等級。
“我想強調(diào)一個事實,”羅密歐說,“那就是,我們的目標不應(yīng)該是使農(nóng)業(yè)‘產(chǎn)業(yè)化,而是打造更加高效、可持續(xù)和優(yōu)質(zhì)的農(nóng)業(yè)。我們不應(yīng)該尋求劇烈的變革,而應(yīng)該運用以數(shù)據(jù)為中心的技術(shù)對農(nóng)業(yè)實踐進行重新解讀,這樣的重新解讀也應(yīng)該放在對農(nóng)村地區(qū)的全新愿景之下來進行?!?/p>
也就是說,智慧農(nóng)村不應(yīng)該是毫無征兆地出現(xiàn),然后與世隔絕地存在。它應(yīng)該與智慧農(nóng)產(chǎn)品工業(yè)、智慧旅游業(yè)以及正向農(nóng)村地區(qū)轉(zhuǎn)移并圍繞農(nóng)業(yè)展開的其他活動相結(jié)合。
除了那些最大型的農(nóng)場,智慧農(nóng)業(yè)對于其他農(nóng)場而言成本仍然較高(順便說一下,這有助于解釋為什么擁有廣袤土地的美國走在這一新潮流的最前沿)。但是,這并不意味著精準農(nóng)業(yè)不能在小地方實施。事實上,還真有不少在小型農(nóng)場里應(yīng)用的案例,例如在葡萄園里?!皩鞲衅靼惭b在田地里的不同地方以便收集土壤和植物的數(shù)據(jù),而后這些數(shù)據(jù)可以用來預(yù)防諸如霜霉病之類的疾病?!绷_密歐說。
雖說智慧農(nóng)業(yè)可能會大有益處而且很受歡迎,但是在廣泛普及之前還需要克服很多困難。“其一,農(nóng)業(yè)是利潤率很低的部門。因此,它很難獲得創(chuàng)新投資?!边@位研究員說。其次,還有我們所說的“形象問題”,這一因素導(dǎo)致勞動力大量流失?!白鲆粋€農(nóng)民可不是一件多酷的事,因為農(nóng)業(yè)被認為是屬于歷史和祖輩的行業(yè)?!绷_密歐告訴我。
還有人對于像杜邦、約翰·迪爾和孟山都這樣的公司巨頭充當?shù)慕巧硎局T多擔憂,他們提出了許多問題,比如數(shù)據(jù)的所有權(quán)。誰才是土壤傳感數(shù)據(jù)的所有者?是孟山都公司還是農(nóng)民?如果所有者是孟山都公司(或者其他公司),它會用那些數(shù)據(jù)做什么呢?一種答案可能就是價格方面的差別待遇:生物技術(shù)巨頭在出售同樣的商品或者服務(wù)時,可以利用土壤或者水源的數(shù)據(jù)向農(nóng)民收取不同的費用。
掌握收割、播種和產(chǎn)量的實時信息還可以幫助企業(yè)比其他任何人更好地預(yù)測農(nóng)場的資產(chǎn)價值,并擁有對農(nóng)產(chǎn)品市場無與倫比的洞察力。
另一個可能導(dǎo)致農(nóng)業(yè)物聯(lián)網(wǎng)發(fā)展緩慢的原因就是與農(nóng)民的溝通問題,他們經(jīng)常搞不懂專業(yè)術(shù)語?!叭绻覀兏嬖V他們可以通過物聯(lián)網(wǎng)干這干那,他們會聽不懂。物聯(lián)網(wǎng)產(chǎn)業(yè)的專門用語必須得有個大的改變,”羅密歐說,“在這個方面,我們需要進行一場變革?!?/p>
然而,分析人士很樂觀地認為這個問題以及其他障礙終將被克服。
“這還需要一些時間,因為鑒于農(nóng)業(yè)本身具有的屬性,其發(fā)展無法與其他部門步調(diào)一致。但是,我們會成功的,因為我們需要智慧農(nóng)業(yè)。請允許我這樣說,因為農(nóng)業(yè)將會重新變得酷起來?!?/p>
1. FAO: 聯(lián)合國糧食及農(nóng)業(yè)組織(Food and Agriculture Organization的縮寫)
2. arable [??r?b(?)l] adj. 可耕的,適合耕種的
3. among other things:除……之外還有,與……一起
4. tissue [?t??u?] n. [生]組織
5. resistivity [r??z?s?t?v?ti] n. 電阻率,電阻系數(shù)
6. SMS:短信息服務(wù)(short message service)
7. Seventh Framework Programme:歐盟第七框架計劃(簡稱FP7),這是歐盟官方投資的全球性科技合作開發(fā)計劃,其研究以國際前沿和競爭性科技難點為主要內(nèi)容,實施年限為2007年至2013年,總預(yù)算為505.21億歐元。
8. Horizon 2020:“地平線2020”計劃,歐盟于2014年初啟動的總額為800億歐元的研發(fā)創(chuàng)新框架計劃,為期七年(2014~2020)。
9. GNSS: 全球?qū)Ш叫l(wèi)星系統(tǒng)(Global Navigation Satellite System的縮寫)
10. IoT:物聯(lián)網(wǎng)(Internet of Things的縮寫),利用局部網(wǎng)絡(luò)或互聯(lián)網(wǎng)等通信技術(shù)把傳感器、控制器、機器、人員和物品等通過新的方式聯(lián)在一起,形成人與物、物與物相聯(lián),實現(xiàn)信息化、遠程管理控制和智能化的網(wǎng)絡(luò)。
11. out of the blue:出乎意料,突然
12. peronospora [p?r???n?sp?r?] n. 霜霉病
13. sought after:受歡迎的,很吃香的
14. margin [?mɑ?(r)d??n] n. 利潤,盈利;利潤率
15. hemorrhage [?hem(?)r?d?] n. 大量流損,大損失
16. DuPont:杜邦公司,一家以科研為基礎(chǔ)的全球性企業(yè),成立于1802年,業(yè)務(wù)涉及農(nóng)業(yè)與食品、樓宇與建筑、通訊與交通、能源與生物應(yīng)用科技等眾多領(lǐng)域。
17. Monsanto:孟山都公司,成立于1901年,目前已成為世界第一大種子公司,致力于通過不同的農(nóng)田解決方案來滿足不斷增長的世界人口對于食物和營養(yǎng)的需求。