亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        具有逆斷面的擬純正半群的同余

        2015-12-31 09:13:15王麗麗

        王麗麗,閆 媛

        (1.重慶理工大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,重慶 400054; 2.西北大學(xué) 數(shù)學(xué)學(xué)院,西安 710127)

        具有逆斷面的擬純正半群的同余

        王麗麗1,閆媛2

        (1.重慶理工大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,重慶400054; 2.西北大學(xué) 數(shù)學(xué)學(xué)院,西安710127)

        摘要:利用具有逆斷面的擬純正半群的分件半群L和R上的 o-同余所構(gòu)成的同余對(duì)來構(gòu)造此類半群的同余,證明了此類半群的所有o-同余的集合構(gòu)成一個(gè)完備格。

        關(guān)鍵詞:擬純正半群;逆斷面;同余;完備格

        1Introductions

        playaveryimportantroleininvestigatingthestructureS.In[3],McAlisterandMcFaddenshowedthat,ifSoisaQ-inversetransversalofS,thenΙandΛaresubbandsofS.TheregularsemigroupswithQ-inversetransversalSocanbeassembledbythreebricksSo, ΙandΛ,whereΙandΛareleftandrightnormalsubbandsofSrespectively(see[3]).

        AregularsemigroupSiscalledquasi-orthodoxifthereexistaninversesemigroupTandasurjectivehomomorphismφ:S→Tsuchthattφ-1isacompletesimplesubsemigroupofSforeacht∈E(T),whereE(T)denotesthesetofidemopotentsofT.LetSbeaquasi-orthodoxsemigroupwithaninversetransversalSo.In[5],SaitoshowsthatI[Λ]isaleft[right]regularband.Let

        Weobtainedin[5]and[11]thatL∩R=So, Ι∩Λ=E(So), E(L)=Ι, E(R)=ΛandthatΙ[Λ]isasubbandofSifandonlyifL[R]isasubsemigroupofS.Inthiscase, L[R]isaleft[right]inversesubsemigroupofS.

        ThecongruenceonregularsemigroupswithinversetransversalswasstudiedbyWangandTang(see[8-10]).In[8],theauthorsassembledthecongruenceonSo.In[5],Satiogaveastructuretheoryofquasi-orthodoxsemigroupswithinversetransversals.Inthispaper,wegivetheo-congruenceonquasi-orthodoxsemigroupswithinversetransversalsbytheo-congruencepairandthestructuretheoryin[5]andprovethatthesetofallo-congruencesonthiskindofsemigroupsisacompletelattice.

        2Preliminaries

        Welistseveralknownresults,whichwillbeusedfrequentlywithoutspecialreferenceinthispaper.

        Lemma2.1[2]LetSbearegularsemigroupwithaninversetransversalSo.Then: ① Ι={e∈E(S): eLeo}; ② Λ={f∈E(S): fRfo}.

        Lemma2.2[8]Sisorthodoxifonlyifforanyx,y∈S,(xy)o=yoxo.

        Lemma2.3[11]LetSbearegularseigroupwithaninversetransversalSo.

        ThenR[L]isasubsemigroupofSifandonlyifI[Λ]isasubsemigroupofS.

        Lemma2.4[5]LetLbealeftinversesemigroupandRarightinversesemigroup.SupposethatLandRhaveacommontranserversalSo.LetR×L→Ldescribedby(a,x)→a*xbemappingsuchthat,foranyx,y∈Landforanya,b∈R.

        (Q.1) (aox)o=(a*x)o;

        (Q.2) (aox)o(aox)=xoaoaooxooand

        (a*x)(a*x)o=aooxooxoao;

        (Q.3) aox xo(boy)=(aox)(aox)o((a*x)xoboy)and(a*x)xob*y=(a*xxo(boy))(b*y)o(b*y);

        (Q.4) aoxo=aooxo,a*xo=axo,ao*x=aoxooandaoox=aox.

        Defineamultiplicationontheset

        by

        ThenΓisaquasi-orthodoxsemigroupwithaninversetransversalwhichisisomorphictoSo.

        Conversely,everyquasi-orthodoxsemigroupwithaninversetransversalcanbeconstructedinthismanner.

        ForaregularsemigroupSwithaninversetransversalSo,thecompletelatticeofcongruencesonSisdenotedbyCon(S)andletρo=ρ|So.

        3Themainresults

        Inthissection,wefirstestablishacharacterizationofo-congruencesabstractlybyo-congruencespair.Wedescribeao-congruencespairoftheform(ρL,ρR)withρL∈Con(L)andρR∈Con(R)satisfyingsomeconditionsinorderthattheyproduceao-congruenceonSnaturally.

        Definition3.1AcongruenceρofaregularsemigroupSwithaninversetransversalSoisao-congruence,ifforx,y∈S,xρyifandonlyifxoρoyo.

        SupposeρRandρLareo-congruencesonRandL,respectively.Then(ρL,ρR)iscalledao-congruencepairforΓifthefollowingconditionshold:

        (C.1) ρL|So=ρR|So;

        (C.2) (?c∈R)(?x,y∈L)xρLy?(cox)ρL(coy) and (c*x)ρR(c*y);

        (C.3) (?z∈L)(?a,b∈R)aρRb?(aoz)ρL(boz) and (a*z)ρR(b*z).

        Define a relationρ(ρL,ρR) onΓby the following rule,

        Theorem3.2LetΓbeaquasi-orthodoxsemigrouphavinganinversetransversalasinLemma2.4,and(ρL,ρR)beao-congruencepaironΓ.Thenρ(ρL,ρR)isao-congruenceonΓ.Conversely,everyo-congruencepaironΓcanbeconstructedintheabovemanner.

        ProofLet(ρL,ρR)beao-congruencepaironΓ.Obviously, ρ(ρL,ρR)isanequivalenceonΓ.For(x,a),(y,b)∈Γ,with(x,a)ρ(ρL,ρR)(y,b),wehavexρLy,aρRb.Letz∈Landc∈Rbesuchthat(z,c)∈Γ.ByaρRbandC.3,wehave

        Itfollowsthat

        xxo(a oz)ρLyyo(b oz) and

        (a*z)cocρR(b*z)coc

        FromQ2,wehave

        sothatzozoo(aoz)o=(aoz)o.Thus

        Andsimilarly,

        Hence,byQ1,wehave

        Similarly,

        Thus

        Thatis,

        Andwecanprovesimilarly,

        Thusρ(ρL,ρR)isacongruenceonΓ.SinceρRandρLareo-congruenceonRandL,respectively.ThenwehavexoρL|S o yo,aoρR|S o bo.Itfollowsthat

        Itisclearthat(x,a)o=(xo,ao)forany(x,a)∈Γ.Thereforeρ(ρL,ρR)isao-congruenceonΓ.

        Conversely,assumethatρisao-congruenceonΓ.WedefinethefollowingequivalencesonLandR,respectively,

        SinceρisacongruenceonΓ,wehaveρLandρRareequivalencesonLandR,respectively.

        Let(x,a),(y,b),(x1,a1),(y1,b1)∈Γ.IfxρLyandx1ρLy1,then

        Nowweimmediatelyget

        Andthisimpliesthat

        Then

        Sowehaveprovedthatxx1ρLyy1.Similarly,wehaveaa1ρRbb1.

        ItisobviousthatxρLyifandonlyifxoρLyoandaρRbifandonlyxoρRyo.ThereforeρL,ρRareo-congruence.

        Andwehavethefollowingcases:

        ① ρR|So=ρL|Soisobvious.SoC.1holds.

        ②Letx,y∈LandxρLy.Then

        Hence,forany(z,c)∈Γ,

        Thatis,

        Sinceρisao-congruenceonΓ,

        ByQ1andQ2,

        Itfollowsthat

        (cox)oρL(coy)oand(c*x)oρR(c*y)o

        SinceρL,ρRareo-congruence,

        NowC.2holds.

        ③WecansimilarlyproveC,3.Nowfromtheaboveprove, (ρL,ρR)isao-congruencepaironΓ.

        Bythedirectlypart, ρ(ρL,ρR)isao-congruence.If(x,a)ρ(ρL,ρR)(y,b),thenwehave

        xρLy,aρRb

        Thus

        Itfollowsthat

        Thatis

        Thus, ρ(ρR,ρL)?ρ.Sinceρ?ρ(ρR,ρL)isobvious, ρ(ρR,ρL)=ρ.

        Wedenotethesetofallo-congruencesonΓandthesetofallo-congruencepairsonΓconstructedasinTheorem3.2byC(Γ)andCP(Γ).

        Thereverseimplicationisobvious.

        Define≤onCP(Γ)by

        ThenCP(Γ)isapartialorderedsetwithrespectto≤.ByTheorem3.2andLemma3.3,wecaneasilyseethatC(Γ)andCP(Γ)areisomorphicaspartialorderedset.

        Proposition3.4LetΩ?C(T)andTρ=(ρL,ρR)whereρ∈Ω.Then

        Thisimpliesthat

        Wehaveprovethat

        Now,bysumminguptheaboveresults,weobtainthefollowingtheorem.

        Theorem3.5letΓbeconstructedinTheorem2.4.ThenCP(Γ)formsacompletelatticewithrespectto≤andC(Γ)isisomorphictoCP(Γ)ascompletelattice.

        References:

        [1]BlythTS,McFaddenRB.Regularsemigroupswithamultiplicativeinversetransversal[J].ProcRoySocEdinburgh, 1982, 92A: 253-270.

        [2]TangXL.Regularsemigroupswithinversetransversal[J].SemigroupsForum, 1997, 55(1): 24-32.

        [3]McAlisterDB,McFaddenRB.Regularsemigroupswithinversetransversals[J].QuartJMathOxford, 1983, 34(2): 459-474.

        [4]McAlisterDB,McFaddenRB.Regularsemigroupswithinversetransversalasmatrixsemigroups[J].QuartJMathOxford, 1984, 35(2): 455-474.

        [5]SatioT.Quasi-orthodoxsemigroupswithinversetransversals[J].SemigroupForum, 1987, 36:47-54.

        [6]PetrichM.Thestructureofcompletelysemigroups[J].TransAmMathSoc, 1974, 189: 211-236.

        [7]PetrichM,ReillyN.Completelyregularsemigroups[M].NewYork:Wiley, 1999.

        [8]WangLM.OncongruencelatticeofregularsemigroupswithQ-inversetransversals[J].SemigroupForum, 1995, 50: 141-160.

        [9]TangXL,WangLM.Congruencesonregularsemigroupswithinversetransversals[J].CommAlgebra, 1995, 23: 4157-4171.

        [10]WangLM,TangXL.Congruencelatticeofregularsemigroupswithinversetransversals[J].Comm.Algebra, 1998, 26: 1234-1255.

        [11]SaitoT.Anoteonregularsemigroupswithinversetransversals[J].SemigroupForum, 1986,33: 149-152.

        (責(zé)任編輯劉舸)

        收稿日期:2015-06-18

        基金項(xiàng)目:西北大學(xué)研究生自主創(chuàng)新基金資助項(xiàng)目(YZZ14082)

        作者簡介:王麗麗(1982—),女,山東泰安人,博士,主要從事代數(shù)學(xué)群論研究。

        doi:10.3969/j.issn.1674-8425(z).2015.08.027

        中圖分類號(hào):O175

        文獻(xiàn)標(biāo)識(shí)碼:A

        文章編號(hào):1674-8425(2015)08-0150-05

        CongruencesonQuasi-OrthodoxSemigroupswithInverseTransversals

        WANGLi-li1, YAN Yuan2

        (1.CollegeofMathematicsandStatistics,ChongqingUniversityofTechnology,

        Chongqing400054,China; 2.SchoolofMathematics,

        NorthwestUniversity,Xi’an710127,China)

        Abstract:We gave a o-congruence on a quasi-orthodox semigroups with inverse transversals Soby the o-congruence pair abstractly which consists of o-congruence on the structure component parts L and R. We proved that the set of all o-congruences on this kind of semigroups is a complete lattice.

        Key words:quasi-orthodox semigroups; inverse transversal; congruence; complete lattice

        引用格式:王麗麗,閆媛.具有逆斷面的擬純正半群的同余[J].重慶理工大學(xué)學(xué)報(bào):自然科學(xué)版,2015(8):150-154.

        Citationformat:WANGLi-li,YANYuan.CongruencesonQuasi-OrthodoxSemigroupswithInverseTransversals[J].JournalofChongqingUniversityofTechnology:NaturalScience,2015(8):150-154.

        美女脱了内裤洗澡视频| 国产三级在线观看免费| 久久国产亚洲高清观看5388| 亚洲精品熟女乱色一区| 91精品久久久老熟女91精品| 国产精品久久久久9999吃药| 日韩精品一区二区三区视频| 国产无遮挡又黄又爽无VIP| 国产交换精品一区二区三区| 国产成人无码精品久久久露脸| 人妻少妇精品视中文字幕国语| 中文字幕有码在线视频| 国产一区二区中文字幕在线观看| 久久久国产精品va麻豆| 婷婷五月综合缴情在线视频| 男人天堂AV在线麻豆| 久亚洲精品不子伦一区| 欧美成人猛交69| 久久亚洲欧洲无码中文| 日韩狼人精品在线观看| 国产午夜视频在线观看.| 精品少妇人妻av无码专区| 午夜亚洲AV成人无码国产| 五月激情在线观看视频| 内射人妻无套中出无码| 欧美日韩精品一区二区三区不卡| yw193.can尤物国产在线网页| 午夜精品久久99蜜桃| 久久精品人妻无码一区二区三区| 亚洲欧美日韩综合中文字幕| 国产精品美女自在线观看| 亚洲av无码一区二区三区鸳鸯影院| 日本大片在线看黄a∨免费| 欧美人与物videos另类| 蜜桃臀av一区二区三区| 欧美性猛交xxxx富婆| chinese国产在线视频| 中文字幕乱码一区在线观看| 国产国产裸模裸模私拍视频| 爱我久久国产精品| 日本人妻三级在线观看|