亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Weighted Pseudo Almost Automorphic Mild Solutions to Abstract Functional Differential Equations

        2015-12-24 01:38:24LEIGuoliang
        湖南師范大學自然科學學報 2015年5期

        LEI Guo-liang,

        (1.School of Science, Hubei University of Automotive Technology, Shiyan 442002, China;2.College of Science, China University of Mining and Technology, Xuzhou 442002, China)

        ?

        WeightedPseudoAlmostAutomorphicMildSolutionstoAbstractFunctionalDifferentialEquations

        LEI Guo-liang1,YUETian1

        (1.SchoolofScience,HubeiUniversityofAutomotiveTechnology,Shiyan442002,China;2.CollegeofScience,ChinaUniversityofMiningandTechnology,Xuzhou442002,China)

        AbstractIn this paper, by using the theory of semigroups of operators and Banach fixed point theorem, the existence and uniqueness of weighted pseudo almost automorphic mild solutions to a class of abstract functional differential equation in Banach space are obtained under some suitable hypotheses, which extend some known results.

        Key wordsweighted pseudo almost automorphic; abstract functional differential equation; exponentially stable; existence and uniqueness

        ThetheoryofalmostautomorphywasfirstintroducedintheliteraturebyBochnerintheearliersixties,whichisanaturalgeneralizationofalmostperiodicity[1],formoredetailsaboutthistopicswerefertotherecentbook[2]wheretheauthorgaveanimportantoverviewonthetheoryofalmostautomorphicfunctionsandtheirapplicationstodifferentialequations.Inthelastdecade,severalauthorsincludingEzzinbi,Goldstein,N’Guérékataandothers,haveextendedthetheoryofalmostautomorphyanditsapplicationstodifferentialequations[1-7].

        Xiao,LiangandZhang[8]postulatedanewconceptofafunctioncalledapseudo-almostautomorphicfunction,establishedexistenceanduniquenesstheoremsofpseudo-almostautomorphicsolutionstosomesemilinearabstractdifferentialequationsandstudiedtwocompositiontheoremsaboutpseudo-almostautomorphicfunctionsaswellasasymptoticallyalmostautomorphicfunctions(Theorems2.3and2.4,[8]).

        Weightedpseudo-almostautomorphicfunctionsaremoregeneralthanweightedpseudo-almostperiodicfunctionswhichwereintroducedbyDiagana[9-11]andrecentlystudiedbyHacene,Ezzinbi[12-13],Ding[14].Blot,Mophou,N’Guérékata,Pennequin[15]andLiu[16-17]havestudiedbasicpropertiesofweightedpseudo-almostautomorphicfunctionsandthenusedtheseresultstostudytheexistenceanduniquenessofweightedpseudo-almostautomorphicmildsolutionstosomeabstractdifferentialequations.

        Motivatedbyworks[13,16,18],weconsidertheexistenceanduniquenessoftheweightedpseudoalmostautomorphicmildsolutionofthefollowingsemilinearevolutionequationinaBanachspaceX

        (1)

        where WPAA(R,ρ) is the set of all weighted pseudo almost automorphic functions fromRtoXandthefamily{A(t),t∈R} of operators inXgenerates an exponentially stable evolution family {U(t,s),t.s}.

        1Preliminaries

        ItisclearthatUB?U∞?Uwithstrictinclusions. {U (t, s),t≥s}isanexponentiallystableevolutionfamily,ifthereexistsM≥1andδ>0suchthat‖U(t,s)‖≤Me-δ(t-s)fort≥s.

        ThecollectionofallsuchfunctionswillbedenotedbyAA(X).

        Definition1.2[19]Acontinuousfunctionf:R×X→Xis said to be almost automorphic iff(t,x) is almost automorphic for eacht∈R uniformly for allx∈B, whereBis any bounded subset ofX.

        The collection of all such functions will be denoted by AA(R×X,X).

        Lemma1.3[1]Assumethatf:R→Xis almost automorphic, thenfis bounded.

        Lemma1.5[20]Letf:R×X→Xbe almost automorphic int∈R,x∈Xand assume thatf(t,x) satisfies a Lipschitz condition inxuniformly int∈R Thenx(t)∈AA(X) impliesf(t,x(t))∈AA(X).

        The notation PAA0,PAA0(R×X,X)respectively,standforthespaceoffunctions

        Definition 1.6[8]A continuous functionf:R→X(R×X→X)issaidtobepseudoalmostautomorphicifitcanbedecomposedasf=g+φ,whereg∈AA(X)(AA(R×X,X))andφ∈PAA0(X)(PAA0(R×X,X)).

        DenotebyPAA(X)(PAA(R×X, X))thesetofallsuchfunctions.

        Nowforρ∈U∞,wedefine

        Definition 1.7[15]A bounded continuous functionf:R→X(R×X→X)issaidtobeweightedpseudoalmostautomorphicifitcanbedecomposedasf=g+φ,where

        g∈AA(X)(AA(R×X,X))andφ∈PAA0(R,ρ)(PAA0(R×X,ρ)).

        DenotebyWPAA(R,ρ)(WPAA(R×X,ρ))thesetofallsuchfunctions.

        Lemma 1.8[15]The decomposition of a weighted pseudo almost automorphic function is unique for anyρ∈UB.

        Lemma 1.10[15]Letf=g+φ∈WPAA(R,ρ)whereρ∈U∞,g∈AA(R×X,X)andφ∈PAA0(R×X,ρ).AssumebothfandgareLipschitzianinx∈Xuniformlyint∈RThenx(t)∈WPAA(R,ρ)impliesf(t, x(t))∈WPAA(R,ρ).

        Lemma 1.11[16]Let ∑θ={z∈C:|argz|≤θ}∪{0}?ρ(A(t)),θ∈(-π/2,π),ifthereexistaconstantK0andasetofrealnumbersα1,α2,…,αk,β1,…,βkwith0≤βi<αi≤2,(i=1,2,…,k)suchthat

        fort,s∈R,λ∈∑θ{0}andthereexistsaconstantM≥0suchthat

        Thenthereexistsauniqueevolutionfamily{U(t,s),t≥s>-∞}.

        Definition 1.12A continuous functionx(t):R→Xiscalledweightedpseudoalmostautomorphicmildsolutiontoequation(1)ifitsatisfies

        (2)

        fort≥sands∈R.

        2The Main Results

        To show our main results, we assume that the following conditions are satisfied.

        (H1)F1(t,·)∈WPAA(R×X,X),(i=1,2)andthereexisttwopositiveconstantsLi(i=1,2)suchthat‖F(xiàn)i(t,x)-Fi(t,y)‖≤Li‖x-y‖WPAA(R×X,ρ)forallt∈Randx,y∈WPAA(R,ρ), ρ∈U∞.

        (H2) a,b∈C(R,R),a(R)=R,b(R)=RandthereexisttwopositiveconstantsKi(i=1,2)suchthat‖x(a)-y(a)‖≤K1‖x-y‖WPAA(R,ρ),‖x(b)-y(b)‖≤K2‖x-y‖WPAA(R,ρ),witha,b∈WPAA(R,ρ)wheneverx,y∈WPAA(R,ρ).

        (H3) {A(t),t∈R}satisfiesLemma1.11and{U (t,s),t≥s}isexponentiallystable.

        (H4)Foreverysequenceofrealnumbers{sn}n∈N,thereexistsasubsequence{τn}n∈Nandforanyfixeds∈R,ε>0,thereexistsanN∈Nsuchthat,foralln>N,itfollowsthat

        ‖U(t+τn,s+τn)-U(t,s)‖≤εe-δ(t-s)/2,

        forallt≥s∈R.Moreover

        ‖U(t-τn,s-τn)-U(t,s)‖≤εe-δ(t-s)/2,forallt≥s∈R.

        ProofFirst we observe thatv(t) is bounded. By Lemma 1.3,h(s) is bounded, we assume that there existsM1>0, such that ‖h(·)‖AA(X)≤M1. So

        Hencev(t) is bounded. Now we show thatv(t) is almost automorphic with respect tot∈R.Let{sn}n∈Nbeanarbitrarysequenceofrealnumbers.Sinceh(t)∈AA(X),thereexistasubsequence{τn}n∈Nsuchthat

        Nowweconsider

        Obviously, v(t+τn)isboundedforalln=1,2,….

        For(A1),foranyfixeds∈Randε>0,thereexistsanN0∈Nsuchthat,foralln>N0,whichfollowsthat‖h(s+τn)-g(s)‖<ε.Inaddition,bycondition(H4),forsandεabove,thereexistsanN1∈Nsuchthat,foralln>N1,itfollowsthat‖U(t+τn,s+τn)-U(t,s)‖≤εe-δ(t-s)/2.

        NowtakingN=max{N0,N1},foralln>N,

        ‖U(t+τn,s+τn)h(s+τn)-U(t,s)g(s)‖≤

        ‖U(t,s)‖‖h(s+τn)-g(s)‖+‖U(t+τn,s+τn)-U(t,s)‖‖h(s+τn)‖≤

        Mεe-δ(t-s)+M1εe-δ(t-s)/2

        Asn→∞,foreachs∈Rfixedandanyt≥s,wehave

        U(t+τn,s+τn)h(s+τn)→U(t,s)g(s).

        WedefineamappingTby

        ProofLetx∈WPAA(R,ρ).Obviously,thefunctionx(a(t)), x(b(t))areweightedpseudoalmostautomorphic.Bythecompositiontheoremofweightedalmostautomorphicfunctionsin[14]orLemma1.10,itfollowsthatH(t)=F1(t,x(a(t))),F2(t,x(b(t)))∈WPAA(R×X,X).

        Let

        F2(t,x(b(t)))=h(t)+φ(t),whereh∈AA(X), φ∈PAA0(R,ρ).

        Then

        ByLemma2.1,weknowthatG1∈AA(X),soG1(t)isalmostautomorphic.

        ByusingtheFubinitheorem,wehave

        Furthermore, Txisweightedpseudoalmostautomorphic.Theproofiscompleted.

        ProofBy Theorem 2.2, we can seeTmaps WPAA(R,ρ)intoWPAA(R,ρ) .

        Letx,y∈WPAA(R,ρ),andnoticethat

        ‖(Tx)(t)-(Ty)(t)‖≤‖F(xiàn)1(t,x(a(t)))-F1(t,y(a(t)))‖+

        Sowehave

        Therefore,bytheBanachfixedpointtheorem, Thasauniquefixedpointx∈WPAA(R,ρ)suchthatTx=x.

        Fixings∈Rwehave

        SinceU(t,s)=U(t,r)U(r,s),fort≥r≥s (see[21,Chapter5,Theorem5.2]),

        Fort≥τ,

        x(t)-F1(t,x(a(t)))-U(t,τ)x(τ)+U(t,τ)F1(τ,x(a(τ))).

        Sothat

        Itfollowsthatx(t)satisfiesequation(2).Hencex(t)isamildsolutiontoequation(1).

        Inconclusion, x(t)istheuniquemildsolutiontoequation(1),whichcompletestheproof.

        Remark 2.4WhenU(t,s)=T(t-s), we can deal with the existence and uniqueness of a weighted pseudo almost automorphic solution for

        whereAistheinfinitesimalgeneratorofaC0-semigroup{T(t)}t≥0.Inthiscasewehavethemildsolutiongivenby

        Remark 2.5Whenρ=1, we can deal with the existence and uniqueness of a pseudo almost automorphic solution for

        Inthiscasewehavethemildsolutiongivenby

        Remark 2.6WhenU(t,s)=T(t-s),ρ=1, we can also deal with the existence and uniqueness of a weighted pseudo almost automorphic solution for

        Inthiscasewehavetheweightedpseudoalmostautomorphicmildsolutiongivenby

        References:

        [1]N’GUéRéKATA G M. Almost automorphic and almost periodic functions in abstract spaces [M].New York: Kluwer Academic, 2001.

        [2]N’GUéRéKATA G M. Topics in almost automorphy [M]. New York: Springer-Verlag, 2005.

        [3]N’GUéRéKATA G M. Existence and uniqueness of almost automorphic mild solutions to some semilinear abstract differential equations [J]. Semigroup Forum, 2004,69(1):80-86.

        [4]N’GUéRéKATA G M. Almost automorphic solutions to second-order semilinear evolution equations [J].Nonlinear Anal, 2009,71(2):432-435.

        [5]EZZINBI K, N’GUéRéKATA G M. Almost automorphic solutions for some partial functional differential equations [J]. J Math Anal Appl, 2007,328(1):344-358.

        [6]EZZINBI K, NELSON V, N’GUéRéKATA G M.C(n)-almost automorphic solutions of some nonautonomous differential equations [J]. Cubo Math J, 2008,6(3):61-74.

        [7]GOLDSTEIN J A, N’GUéRéKATA G M. Almost automorphic solutions of semilinear evolution equations [J].Proc Am Math Soc, 2005,133(8):2401-2408.

        [8]LIANG J, ZHANG J, XIAO T J. Composition of pseudo almost automorphic and asymptotically almost automorphic functions [J]. J Math Anal Appl, 2008,340(2):1493-1499.

        [9]DIAGANA T. Weighted pseudo almost periodic functions and applications [J]. C R Acad Sci, 2006,343(10):643-646.

        [10]DIAGANA T. Weighted pseudo-almost periodic solutions to some differential equations [J]. Nonlinear Anal, 2008,68(8):2250-2260.

        [11]DIAGANA T. Weighted pseudo-almost periodic solutions to a neutral delay integral equation of advanced type [J]. Nonlinear Anal, 2009,70(1):298-304.

        [12]HACENE N B, EZZINBI K. Weighted pseudo almost periodic solutions for some partial functional differential equations [J]. Nonlinear Anal, 2009,71(9):3612-3621.

        [13]HACENE N B, EZZINBI K. Weighted pseudo-almost automorphic solutions for some partial functional differential equations [J]. Nonlinear Anal, 2011,12(1):562-570.

        [14]DING H S, LONGA W, N’GUéRéKATA G M. A composition theorem for weighted pseudo-almost automorphic functions and applications [J]. Nonlinear Anal, 2010,73(8):2644-2650.

        [15]BLOT J, MOPHOU G M, N’GUéRéKATA G M,etal. Weighted pseudo almost automorphic functions and applications to abstract differential equations [J]. Nonlinear Anal, 2009,71(3):903-909.

        [16]LIU J H, SONG X Q. Almost automorphic and weighted pseudo almost automorphic solutions of semilinear evolution equations [J]. J Funct Anal, 2010,258(1):196-207.

        [17]LIU J H, SONG X Q, ZHANG P. Weighted pseudo almost periodic mild solutions of semilinear evolution equations with nonlocal conditions [J]. Appl Math Comput, 2009,215(5):1647-1652.

        [18]WANG Q, WANG Z J, DING M M,etal. Weighted pseudo almost periodic solutions for abstract functional differential equations [J]. Math Appl, 2011,24(3):587-592.

        [19]BOCHNER S. Continuous mappings of almost automorphic and almost automorphic functions [J]. Proc Nati Acad Sci USA, 1964,52(4):907-910.

        [20]DIAGANA T, HENRIQUEZ H R, HERNNDEZ E M. Almost automorphic mild solutions to some partial neutral functional-differential equations and applications [J]. Nonlinear Anal, 2008,69(5):1485-1493.

        [21]PAZY A. Semigroups of linear operators and applications to partial differential equations [M]. New York: Springer-Verlag, 1983.

        (編輯胡文杰)

        抽象泛函微分方程的權偽概自守溫和解

        雷國梁1,岳田1*,宋曉秋2

        (1.湖北汽車工業(yè)學院理學院,中國 十堰442002;2. 中國礦業(yè)大學理學院,中國 徐州221116)

        摘要利用算子半群理論和Banach 不動點定理研究了一類抽象泛函微分方程權偽概自守溫和解的存在唯一性,所得結論拓展了已有結果.

        關鍵詞權偽概自守;抽象泛函微分方程;指數(shù)穩(wěn)定;存在唯一性

        中圖分類號O175.1

        文獻標識碼A

        文章編號1000-2537(2015)05-0084-07

        通訊作者*,E-mail:yuetian@cumt.edu.cn, SONG Xiao-qiu2

        基金項目:國家自然科學基金資助項目(51374199); 中央高?;究蒲袠I(yè)務費專項資金項目(2012LWB53); 湖北省自然科學基金資助項目(2014CFB629)

        收稿日期:2014-07-14

        DOI:10.7612/j.issn.1000-2537.2015.05.014

        伊人久久大香线蕉午夜av| 素人激情福利视频| 亚洲日本精品一区二区三区| 免费在线观看av不卡网站 | 在线播放免费播放av片| 亚洲中文字幕乱码| 精品亚洲一区二区视频| 日本二区在线视频观看| 国产精品女人呻吟在线观看 | 三级全黄的视频在线观看| 国产熟女高潮视频| 97色综合| h视频在线免费观看视频| 欧美老肥妇做爰bbww| 洗澡被公强奷30分钟视频| 免费黄色福利| 99热婷婷一区二区三区| 伊人中文字幕亚洲精品乱码| 正在播放东北夫妻内射| 欧美a在线播放| 国产成人久久精品二区三区| 国产在线一区二区三区四区| 久久精品成人无码观看不卡| 久久久久久人妻精品一区百度网盘 | а天堂中文在线官网| 国产精品一区高清在线观看| 国产99视频一区二区三区| 精品亚洲一区二区三区四区五区| 亚洲色欲综合一区二区三区| 亚洲区偷拍自拍29p| 久久免费精品日本久久中文字幕| 超碰人人超碰人人| 八戒网站免费观看视频| 国产人成视频免费在线观看| 亚洲中文字幕久久精品一区| 私人毛片免费高清影视院| 久久精品国产热| 国产又色又爽的视频在线观看91| 在线无码中文字幕一区| 成人免费毛片内射美女-百度| 免费在线日韩|