亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Boundedness of Vector-Valued Multilinear Singular Integral Operators on Generalized Morrey Spaces

        2015-12-24 01:37:54
        關(guān)鍵詞:積分算子安徽師范大學(xué)量值

        (School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China)

        ?

        Boundedness of Vector-Valued Multilinear Singular Integral Operators on Generalized Morrey Spaces

        YUFei

        (School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China)

        AbstractIn this paper, we mainly investigate the boundedness of vector-valued multilinear singular integral operators on generalized Morrey spaces.

        Key wordssingular integral operator; vector-valued multilinear singular integral operator; BMO; generalized Morrey spaces

        The multilinear singular integral operatorTAwas first introduced by Cohen and Gosselin, which is defined as follows:

        TheLp(p>1)boundednessofthemultilinearsingularintegraloperatorisprovedbytheauthorsof[1-3].Later,HuandYangprovedavariantsharpestimateforthemultilinearsingularintegraloperatorsin[4].In2010,Liuconsideredthemultilinearsingularintegraloperatorsonclassicalmorreyspacein[5].Recently,DuandHuangstudiedtheboundednessofvector-valuedmultilinearsingularintegraloperatoronvariableexponentLebesguespacesin[6].Thevector-valuedmultilinearsingularintegraloperatorisdefinedasfollws:

        Whenλ=0, Lp,0(Rn)=Lp(Rn). Whenλ=n, Lp,n(Rn)=L∞(Rn). Ifλ<0 orλ>n, then Lp,λ={0}. The generalized Morrey spacesMr,φ(Rn) were first defined by Guliyev in [12]. The generalized Morrey spaces recover the classical Morrey spaces, which will be explained in next section.

        1Preliminaries

        Inthissection,wewillgivesomebasicdefinitionsandlemmas,whichwillbeusedintheproofofourmainresults.

        Definition1.1Fixε>0.LetSandS′beSchwartzspaceanditsdual, T:S→S′bealinearoperator.IfthereexistsalocallyintegrabalfunctionK(x,y)onRn×Rn{(x,y)∈Rn×R:x=y}suchthatT(f)(x)=∫RnK(x,y)f(y)dy,foreveryboundedandcompactlysupportedfunctionf,whereKsatises|K(x,y)|≤C|x-y|-nand|K(y,x)-K(z,x)|+|K(x,y)-K(x,z)|≤C|y-z|ε|x-z|-n-ε,if2|y-z|≤|x-z|.ThroughoutthepaperCwilldenoteapositiveconstantwhichmaybedifferentfromlinetoline.

        Definition 1.2Letmjbe positive integers (j=1…,l),m1+…+ml=m, andAjbe functions on Rn(j=1,…,l). For 1

        Definition 1.4[10]We call functionΦ(t) a Young function, if functionΦ(t) is a contious, nonnegative, strictly increasing and convex function on [0,∞) withΦ(0)=0 andΦ(t)→∞. TheΦ-average of a functionfover a cubeQis defined as

        In the following, we give some lemmas which will play important roles in proof of our main results.

        Lemma 1.1[6]Let 1

        Remark 1. This Lemma can get from Theorem 2 in [6].

        Lemma 1.3[3]LetAbe a function on Rnand DαA∈Λq(Rn) for allαwith |α|=mandq>n. Then

        Lemma1.4[14](1)Forall1≤p<∞,thefollowingistrue

        (2)Letb∈BMO(Rn). Then there exists a constantC>0 such that

        for 0<2r≤t.

        and

        Remark2.Ifweusetheballinsteadofcube,theaboveresultsstillhold.

        2Mainresultanditsproof

        Theorem2.1Let1

        then|TA|sisboundedfromMp,φ1(Rn) toMp,φ2(Rn) for all ‖|f|s‖Lp(Rn)<∞.

        ForI, by Lemma 2.1 then we have

        On the other hand,

        Then we can get

        Now let us estimateII

        I1+I2+I3+I4

        We first estimateI1. By Lemma 2.3 and 2.4, we have

        So we get

        Then

        Using the same method in proof ofI2, we can get

        According to the above estimate, we obtain

        Thus,

        Then according to the condition,

        The proof is completed.

        References:

        [1]COHENJ.AsharpestimateforamultilinearsingularintegralinRn[J].IndianaUnivMathJ, 1981,30(5):693-702.

        [2]COHENJ,GOSSELINJ.OnmultilinearsingularintegralsonRn[J].StudiaMath, 1982,72(4):199-223.

        [3]COHENJ,GOSSELINJ.ABMOestimateformultilinearsingularintegrals[J].IllinoisJMath, 1986,30(3):445-464.

        [4]HUG,YANGD.Avariantsharpestimateformultilinearsingularintegraloperators[J].StudiaMath, 2000,141(1):22-25.

        [5]LIUL.BoundednessformultilinearsingularintegraloperatorsonMorreyspaces[J].BullMalaysMathSciSoc, 2010,33(1):93-103.

        [6]DUJ,HUANGC,LIUL.Boundednessforvector-valuedmultilinearsingularintegraloperatoronLpspaceswithvariableexponent[J].BullAcadStiinteRepubMoldMath, 2012,3(70):3-15.

        [7]PREZC,TRUJILLO-GONZALEZR.Sharpweightedestimatesformultilinearcommutators[J].LondMathSoc, 2002,65(03):672-692.

        [8]PREZC,PRADOLINIG.Sharpweightedendpointestimatesforcommutatorsofsingularintegrals[J].MichiganMathJ, 2001,49(1):23-37.

        [9]PREZC,TRUJILLO-GONZLEZR.Sharpweightedestimatesforvector-valuedsingularintegraloperatorsandcommutators[J].TohokuMathJ, 2003,55(1):109-129.

        [10]PEREZC.Endpointestimatesforcommutatorsofsingularintegraloperators[J].JFunctAnal, 1995,128(1):163-185.

        [11]MORREYJRCB.Onthesolutionsofquasi-linearellipticpartialdierentialequations[J].TransAmMathSoc, 1938,38(1):126-166.

        [12]GULIYEVVS,ALIYEVSS,KARAMANT.BoundednessofsublinearoperatorsandcommutatorsongeneralizedMorreyspaces[J].IntegrEquOperTheor, 2011,71(3):327-355.

        [13]KARLOVICHA,LERNERA.CommutatorsofsingularintegralsongeneralizedLpspaceswithvariableexponent[J].PublMath, 2005,49(1):111-125.

        [14]GRAFAKOSL.ClassicalandmodernFourieranalysis[M].NewJersey:PrenticeHall, 2004.

        (編輯胡文杰)

        向量值多線性奇異積分算子在廣義Morrey空間上的有界性

        俞飛*

        (安徽師范大學(xué)數(shù)學(xué)計(jì)算機(jī)科學(xué)學(xué)院,中國(guó) 蕪湖241000)

        摘要本文主要討論向量值多線性奇異積分算子在廣義Morrey空間上的有界性.

        關(guān)鍵詞奇異積分算子;向量值多線性奇異積分算子;有界平均振動(dòng)空間;廣義Morrey空間

        中圖分類號(hào)O174.2

        文獻(xiàn)標(biāo)識(shí)碼A

        文章編號(hào)1000-2537(2015)05-0076-08

        通訊作者*,E-mail:yf2014620@sina.com

        基金項(xiàng)目:This paper was supported by the National Nature Science Foundation of China (No.11201003) and NNSF (No.KJ2012A133) of Anhui Province in China

        收稿日期:2014-06-30

        DOI:10.7612/j.issn.1000-2537.2015.05.013

        猜你喜歡
        積分算子安徽師范大學(xué)量值
        多元向量值區(qū)域和加權(quán)風(fēng)險(xiǎn)值
        齊次核誘導(dǎo)的p進(jìn)制積分算子及其應(yīng)用
        基于QAR數(shù)據(jù)的碳當(dāng)量值適航符合性驗(yàn)證方法
        《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
        一類振蕩積分算子在Wiener共合空間上的有界性
        帶有中心值的量值的公差表示
        山東冶金(2018年5期)2018-11-22 05:12:28
        Hemingway’s Marriage in Cat in the Rain
        平均振蕩和相關(guān)于具有非光滑核的奇異積分算子的Toeplitz型算子的有界性
        《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
        旋量值函數(shù)的Plemelj公式
        色偷偷亚洲女人的天堂| 性动态图av无码专区| 少妇久久久久久被弄高潮| 亚洲av福利无码无一区二区| 亚洲精品高清你懂的| 最新国产精品精品视频| 亚洲精品偷拍自综合网| 99久久超碰中文字幕伊人| 最新69国产成人精品视频免费| 国产 中文 制服丝袜 另类| 一区二区三区精品偷拍av| 日本最新一区二区三区在线视频| 夜夜添夜夜添夜夜摸夜夜摸| 欧美第一黄网免费网站| 国产一区二区三区4区| 丰满人妻被公侵犯的视频| 人人妻人人澡人人爽国产| 亚洲a∨无码一区二区三区| 中国极品少妇videossexhd| 亚洲中文字幕久久精品蜜桃| 国产三级精品三级在线| 极品少妇被黑人白浆直流| 欧美日韩中文国产一区发布| 国产成人久久精品区一区二区| 日韩精品成人一区二区三区久久久 | 尤物在线精品视频| 日本一区二区精品88| 日本道免费一区日韩精品| 亚洲男人天堂一区二区| 久久精品娱乐亚洲领先| 99久久精品一区二区三区蜜臀 | 国产午夜精品一区二区三区软件| 亚洲精品成人网久久久久久| 久久精品爱国产免费久久| 久久精品人妻嫩草av蜜桃| 看日本全黄色免费a级| 国产又色又爽又黄的| 国产99re在线观看只有精品| 日本加勒比一道本东京热| 婷婷五月六月激情综合色中文字幕| 少妇内射高潮福利炮|