亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        加權(quán)Dirichlet空間上Toeplitz算子的緊性與Fredholm性質(zhì)

        2015-12-21 14:44:00錦,胡
        關(guān)鍵詞:緊性信息科學(xué)廣州大學(xué)

        夏 錦,胡 坤

        (廣州大學(xué)a.數(shù)學(xué)與信息科學(xué)學(xué)院;b.數(shù)學(xué)與交叉科學(xué)廣東普通高校重點(diǎn)實(shí)驗(yàn)室,廣東廣州 510006)

        夏錦a,胡坤b

        (廣州大學(xué)a.數(shù)學(xué)與信息科學(xué)學(xué)院;b.數(shù)學(xué)與交叉科學(xué)廣東普通高校重點(diǎn)實(shí)驗(yàn)室,廣東廣州510006)

        利用對數(shù)加權(quán)Bloch空間和對數(shù)加權(quán)小Bloch空間,刻畫了加權(quán)Dirichlet空間上Toeplitz算子的有界性、緊性與Fredholm性質(zhì),討論了Toeplitz算子的譜性質(zhì),計(jì)算了Toeplitz算子的Fredholm指標(biāo).

        加權(quán)Dirichlet空間;Toeplitz算子;緊性;Fredholm指標(biāo)

        1 Introduction and prelim inaries

        We deal with compactness of Toeplitz,little Hankel and Hankel operators.The results of compactness of these operator on Dirichlet space D2,can be found in CAO[5],ZHAO[6].Herewe obtain some useful sufficient condition for compactness of Toeplitz,little Hankel and Hankel operators onOur proof is partly based on some estimates in connection with logarithmic weighted bounded mean oscillation which is similar to bounded mean oscillation in ZHU[3].More information of Toeplitz operators refers to Refs[7-13].

        2 Bounded and com pact Toeplitz,little Hankel and Hankel operators

        We first recall some results on bounded mean oscillation in Bergman metric,more facts and proof in Ref.[2].

        The Bergman metric is also M?bius invariant:

        be the Bergman metric disk with center z and radius r.It is well known that D(z,r)is a Euclidean disk with Euclidean center and radius

        where s=tanh r∈(0,1).A functionφ∈L1is called

        3 Fredholmness and index

        A bounded linear operator A on a Banach space X is said to be Fredholm if both its kernel and cokernel are finite-dimensional;the index of a Fredholm operator is defined by

        Ind A=dim ker A-dim coker A.

        We also define thewinding number of a nonvanishing continuous function u(z)by

        References:

        [1]WANG X F,XIA J,CAO G F.Some properties of Toeplitz operators on Dirichlet space Dp[J].Acta Math Sci,2012,32(2):395-403.(in Chinese)

        [2]ZHU K.Operator Theory on the Function spaces[M].New York:Marcel Dekker,1990.

        [3]ZHU K.Multipliers of BMO in Bergman metrics with applications to Toeplitz operators[J].J Funct Anal,1989,87(1):31-50.

        [4]TASKINEN J,VIRTANEN JA.Spectral theory of Toeplitz and Hankel operators on the Bergman space A1[J].New York J Math,2008,34:305-323.

        [5]CAO G F.Fredholm properties of Toeplitz operators on Dirichlet spaces[J].Pacif JMath,1999,2:209-223.

        [6]ZHAO L K.Hankel operators on the Dirichlet space[J].JMath Anal Appl,2009,352:767-772.

        [7]B?TTCHER A,SILBERMANN B.Analysis of Toeplitz operators[M].Berlin:Springer Monographs in Mathematics,Springer-Verlag,2006.

        [8]PAPADIMITRAKIS M,VIRTANEN JA.Hankel and Toeplitz transforms on H1:Continuity,compactness and Fredholm properties[J].Integr Eq Oper Theory,2008,61(4):573-591.

        [9]COBURN L A.Singular integral operators and Toeplitz operators on odd spheres[J].Indian Univ Math J,1973/1974,23:433-439.

        [10]MCDONALD G,SUNDBERG C.Fredholm properties of a class of Toeplitz operators on the ball[J].Indian Univ Math J,1977,26(3):567-576.

        [11]DOUGLASR G.Banach algebraic techniques in operators theory(vol.128)[M].New York:Springer-Verlag,1971.

        [12]UPMEIER H.Toeplitz operators and index Theory in several complex variables[M].Basel:Birkh?user,1996.

        [13]CAO G F.Toeplitz operators and algebras on Dirichlet spaces[J].Chin Ann Math,2002,23B(3):385-396.

        【責(zé)任編輯:周全】

        date:2015-10-20;Revised date:2015-11-09

        Com pact and Fredholm Toeplitz operators on weighted Dirichlet space

        XIA Jina,HU Kunb

        (a.School of Mathematics and Information Sciences;b.Key Laboratory of Mathematics and Interdisciplinary Sciences of the Guangdong Higher Education Institute,Guangzhou University,Guangzhou 510006,China)

        In this paper,boundedness and compactness of the Toeplitz operators on the weighted Dirichlit space D1αare characterized with logarithmic weighted Bloch space and little logarithmic weighted Bloch space.The spectra properties of the Toeplitz operators are discussed.The Fredholm index of Toeplitz operators are computed.

        weighted Dirichlet space;Toeplitz operator;compactness;Fredholm index

        O 177 Document code:A

        O 177

        A

        1671-4229(2015)06-0001-08

        Biography:XIA Jin(1973-),female,associate professor,Ph.D.E-mail:2695931921@qq.com

        猜你喜歡
        緊性信息科學(xué)廣州大學(xué)
        一類廣義Cartan-Hartogs域上加權(quán)Bloch空間之間復(fù)合算子的有界性和緊性
        廣州大學(xué)作品選登
        山西大同大學(xué)量子信息科學(xué)研究所簡介
        三元重要不等式的推廣及應(yīng)用
        A Tale of Two Cities:Creating city images through “Shanghai Police Real Stories” and“Guard the Liberation West”
        光電信息科學(xué)與工程專業(yè)模塊化課程設(shè)計(jì)探究
        基于文獻(xiàn)類型矯正影響因子在信息科學(xué)與圖書館學(xué)期刊中的實(shí)證分析
        《廣州大學(xué)學(xué)報(bào)( 社會科學(xué)版) 》2016 年( 第15 卷) 總目次
        L-拓?fù)淇臻g中Starplus-緊性的刻畫*
        中國心情
        海峽影藝(2012年1期)2012-11-30 08:16:54
        一本色道久久亚洲综合| 91免费国产高清在线| 亚洲成生人免费av毛片| 国产一区二区三区在线蜜桃| 亚洲成av人影院| 国产美女网站视频| 亚洲一区二区三在线播放| 国产影片一区二区三区| 亚欧中文字幕久久精品无码| 亚洲影院天堂中文av色| 国产精品美女久久久浪潮av| 美女脱了内裤洗澡视频| 亚洲欧美日韩成人高清在线一区| 亚洲成aⅴ人在线观看| 亚洲av综合色区久久精品天堂| 亚洲女同恋av中文一区二区| 久久久久亚洲av无码麻豆| 91精品福利观看| 精品国产乱来一区二区三区| 日韩中文字幕一区二区二区| 亚洲av无码一区二区三区人| 国产区福利| 18禁成人免费av大片一区| 亚洲 小说区 图片区 都市| 亚洲日本在线电影| 亚洲欧美日韩中文v在线| 精品国产女主播一区在线观看| 夹得好湿真拔不出来了动态图| 广东少妇大战黑人34厘米视频| 40分钟永久免费又黄又粗| 亚洲第一黄色免费网站| 在线成人一区二区| 久久人妻AV无码一区二区| 亚洲av高清一区三区三区| 亚洲人成网站色7799| 欧美白人最猛性xxxxx| 亚洲国产日韩综一区二区在性色| 亚洲最近中文字幕在线| 最近日本免费观看高清视频| 久久亚洲第一视频黄色| 日本一区二区三区经典视频|