亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        加權(quán)Dirichlet空間上Toeplitz算子的緊性與Fredholm性質(zhì)

        2015-12-21 14:44:00錦,胡
        關(guān)鍵詞:緊性信息科學(xué)廣州大學(xué)

        夏 錦,胡 坤

        (廣州大學(xué)a.數(shù)學(xué)與信息科學(xué)學(xué)院;b.數(shù)學(xué)與交叉科學(xué)廣東普通高校重點(diǎn)實(shí)驗(yàn)室,廣東廣州 510006)

        夏錦a,胡坤b

        (廣州大學(xué)a.數(shù)學(xué)與信息科學(xué)學(xué)院;b.數(shù)學(xué)與交叉科學(xué)廣東普通高校重點(diǎn)實(shí)驗(yàn)室,廣東廣州510006)

        利用對數(shù)加權(quán)Bloch空間和對數(shù)加權(quán)小Bloch空間,刻畫了加權(quán)Dirichlet空間上Toeplitz算子的有界性、緊性與Fredholm性質(zhì),討論了Toeplitz算子的譜性質(zhì),計(jì)算了Toeplitz算子的Fredholm指標(biāo).

        加權(quán)Dirichlet空間;Toeplitz算子;緊性;Fredholm指標(biāo)

        1 Introduction and prelim inaries

        We deal with compactness of Toeplitz,little Hankel and Hankel operators.The results of compactness of these operator on Dirichlet space D2,can be found in CAO[5],ZHAO[6].Herewe obtain some useful sufficient condition for compactness of Toeplitz,little Hankel and Hankel operators onOur proof is partly based on some estimates in connection with logarithmic weighted bounded mean oscillation which is similar to bounded mean oscillation in ZHU[3].More information of Toeplitz operators refers to Refs[7-13].

        2 Bounded and com pact Toeplitz,little Hankel and Hankel operators

        We first recall some results on bounded mean oscillation in Bergman metric,more facts and proof in Ref.[2].

        The Bergman metric is also M?bius invariant:

        be the Bergman metric disk with center z and radius r.It is well known that D(z,r)is a Euclidean disk with Euclidean center and radius

        where s=tanh r∈(0,1).A functionφ∈L1is called

        3 Fredholmness and index

        A bounded linear operator A on a Banach space X is said to be Fredholm if both its kernel and cokernel are finite-dimensional;the index of a Fredholm operator is defined by

        Ind A=dim ker A-dim coker A.

        We also define thewinding number of a nonvanishing continuous function u(z)by

        References:

        [1]WANG X F,XIA J,CAO G F.Some properties of Toeplitz operators on Dirichlet space Dp[J].Acta Math Sci,2012,32(2):395-403.(in Chinese)

        [2]ZHU K.Operator Theory on the Function spaces[M].New York:Marcel Dekker,1990.

        [3]ZHU K.Multipliers of BMO in Bergman metrics with applications to Toeplitz operators[J].J Funct Anal,1989,87(1):31-50.

        [4]TASKINEN J,VIRTANEN JA.Spectral theory of Toeplitz and Hankel operators on the Bergman space A1[J].New York J Math,2008,34:305-323.

        [5]CAO G F.Fredholm properties of Toeplitz operators on Dirichlet spaces[J].Pacif JMath,1999,2:209-223.

        [6]ZHAO L K.Hankel operators on the Dirichlet space[J].JMath Anal Appl,2009,352:767-772.

        [7]B?TTCHER A,SILBERMANN B.Analysis of Toeplitz operators[M].Berlin:Springer Monographs in Mathematics,Springer-Verlag,2006.

        [8]PAPADIMITRAKIS M,VIRTANEN JA.Hankel and Toeplitz transforms on H1:Continuity,compactness and Fredholm properties[J].Integr Eq Oper Theory,2008,61(4):573-591.

        [9]COBURN L A.Singular integral operators and Toeplitz operators on odd spheres[J].Indian Univ Math J,1973/1974,23:433-439.

        [10]MCDONALD G,SUNDBERG C.Fredholm properties of a class of Toeplitz operators on the ball[J].Indian Univ Math J,1977,26(3):567-576.

        [11]DOUGLASR G.Banach algebraic techniques in operators theory(vol.128)[M].New York:Springer-Verlag,1971.

        [12]UPMEIER H.Toeplitz operators and index Theory in several complex variables[M].Basel:Birkh?user,1996.

        [13]CAO G F.Toeplitz operators and algebras on Dirichlet spaces[J].Chin Ann Math,2002,23B(3):385-396.

        【責(zé)任編輯:周全】

        date:2015-10-20;Revised date:2015-11-09

        Com pact and Fredholm Toeplitz operators on weighted Dirichlet space

        XIA Jina,HU Kunb

        (a.School of Mathematics and Information Sciences;b.Key Laboratory of Mathematics and Interdisciplinary Sciences of the Guangdong Higher Education Institute,Guangzhou University,Guangzhou 510006,China)

        In this paper,boundedness and compactness of the Toeplitz operators on the weighted Dirichlit space D1αare characterized with logarithmic weighted Bloch space and little logarithmic weighted Bloch space.The spectra properties of the Toeplitz operators are discussed.The Fredholm index of Toeplitz operators are computed.

        weighted Dirichlet space;Toeplitz operator;compactness;Fredholm index

        O 177 Document code:A

        O 177

        A

        1671-4229(2015)06-0001-08

        Biography:XIA Jin(1973-),female,associate professor,Ph.D.E-mail:2695931921@qq.com

        猜你喜歡
        緊性信息科學(xué)廣州大學(xué)
        一類廣義Cartan-Hartogs域上加權(quán)Bloch空間之間復(fù)合算子的有界性和緊性
        廣州大學(xué)作品選登
        山西大同大學(xué)量子信息科學(xué)研究所簡介
        三元重要不等式的推廣及應(yīng)用
        A Tale of Two Cities:Creating city images through “Shanghai Police Real Stories” and“Guard the Liberation West”
        光電信息科學(xué)與工程專業(yè)模塊化課程設(shè)計(jì)探究
        基于文獻(xiàn)類型矯正影響因子在信息科學(xué)與圖書館學(xué)期刊中的實(shí)證分析
        《廣州大學(xué)學(xué)報(bào)( 社會科學(xué)版) 》2016 年( 第15 卷) 總目次
        L-拓?fù)淇臻g中Starplus-緊性的刻畫*
        中國心情
        海峽影藝(2012年1期)2012-11-30 08:16:54
        中文字幕av素人专区| 国产国拍亚洲精品mv在线观看| 国产va免费精品高清在线观看| 免费在线观看视频专区| 风流少妇一区二区三区| 全部亚洲国产一区二区| (无码视频)在线观看| 国产精品激情| 国产亚洲精品aaaa片app| 涩涩国产在线不卡无码| 久久精品国产亚洲av一| 一区二区三区高清在线观看视频| 色多多性虎精品无码av| 欧美午夜精品一区二区三区电影| 无码日日模日日碰夜夜爽| 狼人综合干伊人网在线观看| 国产蜜桃传媒在线观看| 天天摸天天做天天爽水多| 亚洲精品无人区| 亚洲香蕉视频| 久久99久久99精品免观看不卡 | 米奇亚洲国产精品思久久| 性生大片免费观看性少妇| 人人爽久久久噜人人看| 日本中文字幕一区二区高清在线| 秒播无码国产在线观看| 视频精品熟女一区二区三区| 日韩一区三区av在线| 18国产精品白浆在线观看免费| 天堂影院一区二区三区四区| 免费成人福利视频| 无码三级国产三级在线电影| 一区二区视频在线国产| 疯狂添女人下部视频免费| 亚洲av第一页国产精品| 中文岛国精品亚洲一区| 色男色女午夜福利影院| 久久精品国产自在天天线| 国产在线精品欧美日韩电影| 在线国产视频精品视频| 国产精品一区二区夜色不卡|